APPENDIX D

Preliminary Soil and Soil Gas Sampling Report and Phase II Environmental Site Assessment

Woo, Casey

From:

Lew, Kelvin

Sent:

Friday, June 14, 2013 4:21 PM

To:

Wong, Gary

Cc:

Sedlacek, Mark; Faeustle, George; Ledesma, Reynan; Woo, Casey

Subject:

FW: Tyrone Property - Shallow Soil and Soil Gas Investigation Executive Summary

Attachments: Tables_prelim.pdf; Figures_prelim.pdf; Tyrone EXECSummary_Prelim.pdf

Gary:

Here is the Executive Summary (along with tables and figures). Preliminary conclusions and recommendations are provided.

We are still waiting for analytical results from sampling completed two days ago (June 12) in the former septic tank area. We do not anticipate the pending results to change the conclusions or recommendations.

We should be able to have the completed final report a week or so after the final lab results are in.

Kelvin.

EXECUTIVE SUMMARY

Alta Environmental (Alta) conducted a Surface Soil and Soil Gas Investigation for the Los Angeles Department of Water and Power (LADWP) on the former Quest Diagnostics property located at 7600 Tyrone Avenue, Van Nuys, California (the "Site). The Site is unoccupied and is listed for sale as a commercial/industrial property. The purpose of the investigation was to assess potential hazardous substance contamination at the Site prior to site acquisition. A Site Location Map is provided as Figure 1.

Site Description

The Site was an unoccupied bioscience laboratory prior to the investigation and consisted of nine buildings, parking areas, facility equipment, and chemical and hazardous material storage areas on the western and central section of the Site, and a vacant field containing an abandoned residential dwelling, bunny house, construction equipment, and construction material storage areas on the eastern portion of the Site. During field implementation of the investigation, the building structures on the Site were under active asbestos and lead-based paint abatement and demolition. Historical uses at the Site included agricultural activities up to 1965, when the initial building construction began at the Site. A Site Layout is provided as Figure 2.

Previous Investigations

Past environmental investigations at the Site included a Phase I Environmental Site Assessment (ESA) prepared for Quest Diagnostics, Inc. (ODIC, October 22, 2010), a Phase I ESA prepared for Shubin-Nadal Realty Investors (AMEC, October 22, 2012a), and a Screening Level Phase II Investigation prepared for Shubin-Nadal Realty Investors (AMEC, September 28, 2012b).

Based on the results of the Phase I ESAs (ODIC, 2010 and AMEC, 2012a) and Screening Level Phase II Investigation (AMEC, 2012b) the following conclusions were made:

The soil vapor data do not suggest a significant release has occurred at the site that would require mitigation for commercial development. Soil sample data suggest metals are not present at concentrations indicative of environmental impact and generally are consistent with typical background concentrations. The few low concentrations of volatile organic compounds (VOCs) and relatively low and heavier end hydrocarbons detected in shallow soil do not suggest significant impacts are present in the areas investigated (AMEC, 2012).

Based on information obtained from other properties in the general site vicinity of the Site, the anticipated depth to groundwater beneath the site is assumed to be between 200 and 250 feet bgs (RWQCB's online Geotracker database).

Environmental Concerns and Investigation Objectives

The primary objective of this investigation was to assess any subsurface impacts to the soil and soil gas at the Site from former use as a bioscience laboratory, historical structures, and former agricultural use.

Shallow Soil Matrix and Soil Gas Sampling

On May 28 and 29, 2013, a total of 30 shallow borings (B1 – B30) were drilled at the Site. All soil borings were continuously cored from surface to the terminus depth of 3 feet bgs using a direct-push drill rig. Soil matrix samples were collected from each boring at 1, 2, and 3 feet bgs using a core sampler lined with acetate sleeves. Soil boring locations are presented in Figure 3.

Following sample collection, the sample containers were properly capped, sealed, labeled, and stored in a chilled ice chest for transport under chain-of-custody documentation for analysis or archiving to LADWP's State of California-certified laboratory (Certificate No. 1207) located in Los Angeles, California. All soil samples designated for volatile analysis were preserved using in-field preservation kits in accordance with EPA Method 5035. The 1 and 3 foot samples from each boring were variously analyzed for Title 22 Metals by EPA Method 6010B, organochlorine pesticides (OCPs) by EPA Method 8081A, polychlorinated biphenyls (PCBs) by EPA Method 8082, total petroleum hydrocarbons (TPH) by EPA Method 8015M, semivolatile organic compounds (SVOCs) by EPA Method 8270C, and VOCs by EPA Method 8260B. The 2 foot samples collected from each boring were archived at the laboratory. The shallow soil sampling and analysis plan is presented as Table 1.

On May 30 and 31, 2013 soil vapor probes were installed at 15 boring locations (VP1 through VP15) at 5 and 15 feet bgs. On June 4 and 5, 2013, the soil vapor probes were sampled and analyzed by Jones Environmental, Inc.'s on-site mobile laboratory. Samples were not collected from vapor probes at VP4 and VP5 due to inaccessibility from stockpiled demolition debris. On June 12, 2013, soil vapor probes were installed in boring location VP16 in the vicinity of the former septic tank/cesspool at 5 and 15 feet bgs. Following probe installation and a minimum 2 hours of equilibration time, the vapor probes at VP16 were sampled using SUMMA® canisters and analyzed by the Jones Environmental fixed laboratory.

All soil vapor samples collected for this investigation were analyzed for VOCs by EPA Method 8260B by Jones Environmental Laboratory. The soil vapor samples included 28 primary samples, two (2) purge volume samples, and three (3) field replicates for a total of 33 soil vapor samples. The soil gas sampling and analysis plan is presented as Table 2. Soil Gas boring locations are presented in Figure 3.

Preliminary Findings

The following surface soil sample results are presented in milligrams per kilogram (mg/kg) and micrograms per kilogram (ug/kg) as identified in Tables 3 through 8. The following soil gas sample results are presented in micrograms per liter (ug/L) as identified in Table 9. All soil gas sample results were available and reviewed for the preparation of the following summary with the exception of sample results for VP16 (collected and submitted June 12, 2013), which are still pending.

- No VOCs or PCBs were detected in any of the surface soil samples submitted for analysis.
- Surface soil samples variously exhibited detected concentrations of:
 - Title 22 Metals including antimony (not detected above the laboratory reporting limit [ND] to 4.2J mg/kg), barium (99 to 300 mg/kg), cadmium (1.8J to 4.1 mg/kg), chromium (10 to 23 mg/kg), cobalt (7.8 to 21 mg/kg), copper (7.7J to 22 mg/kg), lead (6.7 to 42 mg/kg), molybdenum (ND to 0.5J), nickel (12.3 to 24 mg/kg), vanadium (19 to 38 mg/kg), zinc (36 to 124 mg/kg), and mercury (ND to 0.048 mg/kg). In addition, silver was detected in one sample (B22-1') at 7.4J mg/kg;
 - SVOCs including benzo(g,h,i)perylene (ND to 0.11J mg/kg), butyl benzyl phthalate (ND to 0.29J mg/kg), and indeno(1,2,3-cd)pyrene (ND to 0.17J mg/kg). In addition, dibenzo(a,h)antrhacene and pentachlorophenol were detected in one sample (B21-1') at 0.099J mg/kg and 0.39J mg/kg, respectively;
 - OCPs including 2,4-DDD (ND to 36 ug/kg), 2,4-DDT (ND to 190 ug/kg), 4,4-DDE (ND to 740 ug/kg), 4,4-DDT (ND to 270 ug/kg), beta-hexachlorocyclohexane (beta-BHC; ND to 42 ug/kg), and toxaphene (ND to 2,400 ug/kg); and
 - TPH as total extractable petroleum hydrocarbons (TEPH; ND to 60.6 mg/kg [as motor oil]);
- Soil gas samples exhibited detected concentrations of VOCs including carbon tetrachloride (ND to 0.035 ug/L), chloroform (ND to 0.896 ug/L), Freon 113 (ND to 2.82 ug/L), tetrachloroethylene (PCE; ND

to 0.059 ug/L), and trichloroethylene (TCE; ND to 2.89 ug/L). In addition, 1,1-dichloroethene (1,1-DCE) was detected in one sample (VP13-15') at a concentration of 0.118 ug/L.

Preliminary Conclusions

Based on the shallow soil sample results and the available soil gas sample results at the time of this summary:

- Concentrations of Title 22 Metals and SVOCs in soil are below the Environmental Protection Agency's (EPA, Region 9) Regional Screening Levels (RSLs) developed for a commercial/industrial scenario.
- Concentrations of OCPs in soil are below the Office of Environmental Health Hazard Assessment (OEHHA) and the CalEPA (OEHHA/CalEPA, 2010) residential and commercial/industrial California Human Health Screening Levels (CHHSLs), with the exception of toxaphene detected in one sample (B16-3'; 2,400 ug/kg), which exceeded the commercial/industrial CHHSL of 1,800 ug/kg.
- Concentrations of TPH detected in soil are below the Los Angeles California Regional Water
 Quality Control Board's (LARWQCB) maximum soil screening levels above drinking water aquifers
 greater than 150 feet bgs (LARWQCB, Table 4-1, May 1996) for TPH as gasoline (1,000 mg/kg),
 TPH as diesel (10,000 mg/kg), and TPH as motor oil (50,000 mg/kg).
- Concentrations of VOCs detected in soil gas are below the OEHHA/EPA (2010) CHHSLs for shallow soil gas (engineered fill) in a commercial/industrial land use scenario, for carbon tetrachloride (0.21 ug/L), PCE (1.6 ug/L), and TCE (4.4 ug/L). No CHHSLs are documented by Cal/EPA, OEHHA for the VOCs 1,1-DCE, Freon 113, and chloroform in soil gas.

It should be noted that the RSLs, CHHSLs, and Maximum Soil Screening Levels have been used as a general comparison, and are not regulatory standards and/or acceptable concentrations. These levels are used as benchmark values to determine whether further assessment and evaluation of the constituents detected in soil and soil gas, are required for the Site.

Preliminary Recommendations

Based on available analytical data, and the findings of this investigation, additional assessment work is not warranted at this time. However, any unknown subsurface structures or potentially contaminated soil encountered during site demolition and construction should be investigated for potential hazardous substances impacts to the property.

Additional assessment around sample location B16 at 3 feet bgs (B16-3') may be warranted in order to define the lateral and vertical extent of OCP (toxaphene) impacts in the area as necessary, and where disturbance of shallow soil in that area is anticipated during any site redevelopment activities.

These recommendations are preliminary. Updated or supplemental recommendations may be given, based on any additional information that becomes available (pending soil gas data). Once all the data has been reviewed by Alta Environmental, the LADWP will be provided with the final investigation report, which will include a finalized executive summary and recommendations.

TABLE 1

Surface Soil Sample and Analysis Plan Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

Blanning, No.5.	Sample Ramonale	Analytical Plagram
B1 - B12	Lead based paint from existing and historic structures.	Lead (6010B)
B13 - B20	Former agriculture activities	Arsenic (6010B)
B13 - B20	Former agriculture activities.	OCPs (8081A)
		Metals (6010B/7471A)
D24 D24	Various surface soil stains, equipment	TPH Full Scan (8015M
B21 – B24	storage, and hazardous waste storage.	SVOCs (8270C)
		PCBs (8082)
		Metals (6010B/7471A)
		TPH Full Scan (8015M
B25 - B28	Import soil	VOCs (8260B)
		SVOCs (8270C)
		PCBs (8082)
DOC DOC	Della	TPH diesel/oil (8015M)
B29 – B30	Railroad ties and saw dust piles.	SVOCs (8270C)

NOTES:

OCPs - Organochlorine Pesticides by EPA Method 8081A

PCBs - Polychlorinated Biphenyls by EPA Method 8082

VOCs - Volatile Organic Compounds by EPA Method 8260B

SVOCs - Semi Volatile Organic Compounds by EPA Method 8270C

Metals - Title 22 Metals by EPA Method 6010B/7471A

TPH Full Scan - Total Petroleum Hydrocarbons as gasoline, diesel, and oil by EPA Method 8015M

TPH diesel/oil - Total Petroleum Hydrocarbons as diesel and oil by EPA Method 8015M

Lead - Lead by EPA Method 6010B

Arsenic - Arsenic by EPA Method 6010B

bgs - below ground surface

TABLE 2 Soil Vapor Sampling and Analysis Plan Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

Sample ID	Sample Depth (ft bgs)	Surface Type	Sampling Method	Sample Rationale	Analytical Program
VP1	5 15	Asphalt and/or concrete	Geoprobe/ Direct Push	Emergency generator location, east side of Building G	VOCs
VP2	5 15	Planter Area - Unpaved	Geoprobe/ Direct Push	Floor drain, along perimeter of Building F	VOCs
VP3	5	Asphalt and/or concrete	Geoprobe/ Direct Push	Emergency generator, rinsing area, uncovered floor drain, potential location of "floor drain blank"	VOCs
VP4	5	Asphalt and/or concrete	Geoprobe/ Direct Push	Former diesel generator	VOCs
VP5	5	Asphalt and/or concrete	Geoprobe/ Direct Push	Miscelaneous storage area, unknown buckets of liquid	VOCs
VP6	5 15	Asphalt and/or concrete	Geoprobe/ Direct Push	Former diesel generator and boilers	VOCs
VP7	5 15	Planter Area - Unpaved	Geoprobe/ Direct Push	Floor drains, along perimeter of Building C	VOCs
VP8	5 15	Asphalt and/or concrete	Geoprobe/ Direct Push	Floor drains, along perimeter of Building C	VOCs
VP9	5 15	Planter Area - Unpaved	Geoprobe/ Direct Push	Second boring along perimeter of Building F	VOCs
VP10	5 15	Planter Area - Unpaved	Geoprobe/ Direct Push	One of two borings along perimeter of Building A; side of fume hoods	VOCs
VP11	5 15	Planter Area - Unpaved	Geoprobe/ Direct Push	Second of two borings along perimeter of Building A; side of fume hoods	VOCs
VP12	5 15	Planter Area - Unpaved	Geoprobe/ Direct Push	South side of Building D	VOCs
VP13	5 15	Planter Area - Unpaved	Geoprobe/ Direct Push	South side of Building E	VOCs
VP14	5 15	Asphalt and/or concrete	Geoprobe/ Direct Push	Perimeter of Building G	VOCs
VP15	5 15	Asphalt and/or concrete	Geoprobe/ Direct Push	Perimeter of Building G	VOCs
VP16	5 15	Unpaved	Geoprobe/ Direct Push	Vicinity of Former Septic Tank/Cesspool	VOCs

Notes:

VOCs analysis analyzed by EPA Method 8260B. bgs – below ground surface

TABLE 3
Shallow Soil Sample Results - Title 22 Metals
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

(V(T)A)	(6)(1)	0.00002	_		0 43		•	•				•																												•			0.024	0.000
900	le.	5.0	2.0	23,000	310,000			•			•	•			•	•	•						0	•	•	•						•								•	•		6.4	404
vmudag	sneV	5.0	5.0	390	5,200																		•	•							•									•			7 PE	200
mulli	BANT.	5.0	5.0	1.6	20																		•		•						•									•			ON	2014
Ver	IIS	5.0	5.0	390	5,100	0		•							•									•	•	•					•									•	•		Q CN	
umite	ગાળક	5.0	5.0	390	5,100												•							•							•										0		Q CX	200
间缩	ρίΝ	5.0	5.0	1,500	20,000																																						24	4.7
шпцәр	Weigb	5.0	5.0	390	5,100																			•																			ON CA	ON.
pe	1	5.0	5.0	400	800	8.6	12	11	15	12	12	11	12	52		5.7	10	200	24	72	22	14	15	15	13	17	12																14	7
edd	100	5.0	5.0	3,100	41,000																										•									•			77	01
)led	<u>ර</u> ව)	5.0	5.0	23	300		•																																				18	0
umuu	еже	5.0	5.0	**000,08	180,000**					•																																	27.5	20
(uniou	ibs2	10		Ш	800																																			•	0		3.4	2.00
muilli	Vu a B	2.5	2.5	160	2,000					•																					•												N N	ND
wni	168	5.0	5.0	15,000	190,000																																						263	607
ojua	S)∀	5.0																					•	•				GN	QN	ND	QN	QN	ON.	2 2	2 2	GN CN	QN	QN	QN	QN	QN	QN.	ON CA	ND
Λαοίμ	imA	5.0	5.0	310	4,100					•														•																			4.63	3.63
Sample	Date	MDL (mg/kg):	RL (mg/kg):	Resident	Comm./Indust.	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/08/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/29/2013	5/29/2013	5/29/2013	5/29/2013	5/29/2013	5/29/2013	5/28/2013	5/28/2013	5/20/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	2/20/2013
Sample 10				RSLs:	SECOND .		B1-3'	B2-1'	B2-3'	B3-1,	B3-3'	B4-1'	B4-3	B5-1'	B3-3	B6-1'	B6-3	B/-1	88.41	B8-3'	B9-1'	B9-3'	B10-1'	B10-3'	B11-1'	B11-3	B12-1	B13-1	813-3	B14-1'	B14-3'	B15-1'	815-3	D46 41	047.4	R17.3'	B18-1*	B18-3'	B19-1'	B19-3'	B20-1'	B20-3'	B21-1	521-3

TABLE 3 Shallow Soil Sample Results - Title 22 Metals Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

100	SAUTATION CO.	41 (12)	SWENCE OF THE PARTY OF THE PART	Days.			tillte 22 ole	tells (by)	HALLIGUE	មានប្រការ	/47 NAVIOUS	(Ka)	THE SAME	100	O. Or	ALS THE		015-31p
Sample ID	Sample Date	Antimony	Arsenic	Barium	Beryllium	Oacimium	chromium	(Gebalf	Copper	Lead	Wolybashum.	Mickel	(UnitraljeS	Silver	Teathann	Vanadlum	2016	Mejreum
(FE 08)	MDL (mg/kg):	5.0	5.0	5.0	2.5	2.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.00002
All the second	RL (mg/kg):	- 5.0	5.0	5.0	2.5	2.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.0001
RSLs*	Resident.	310	0.39	15,000	160	70	180,000**	23	3,100	400	390	1,500	390	390	1.6	390	23,000	10
(malka):	Comm Indust.	4,100	1.60	190,000	2,000	800	180,000**	300	41,000	800	5,100	20,000	5,100	5,100	20	5,200	310,000	43
B23-1'	5/29/2013	3.3J	ND	218	ND	3.3	20	15	21	39	ND	20	ND	ND	ND	31	124	0.048
B23-3'	5/29/2013	4.0J	ND	300	ND	4	23	20	22	15	ND	24	ND	ND	ND	38	79	0.021
B24-1'	5/29/2013	3.3J	ND	205	ND	3.2	19	16	18	42	ND	20	ND	ND	ND	30	93	0.024
B24-3'	5/29/2013	4.2J	ND	296	ND	4.1	23	21	22	15	ND	24	ND	ND	ND	37	78	0.023
B25-1'	5/28/2013	3.3J	ND	194	ND	2.42J	16.4	13.5	13.5	10.5	ND	16.6	ND	ND	ND	28	48	0.009
B25-3'	5/28/2013	4.2J	ND	281	ND	3.0J	23	16	19	13	ND	24	ND	ND	ND	37	60	0.013
B26-1'	5/28/2013	1.3J	ND	61	ND	1.1J	7.8	5.5	11.6	6	ND	9.3	ND	ND	ND	18	26	0.021
B26-3'	5/28/2013	3.1J	ND	195	ND	2.9J	18	15	13	11	ND	20	ND	ND	ND	31	56	0.0.12
B27-1'	5/29/2013	2.7J	ND	190	ND	3.1	18	14	14	12	0.50J	20	ND	ND	ND	30	59	0.020
B27-3'	5/29/2013	3.8J	ND	256	ND	3.6	23	18	20	14	ND	23	ND	ND	ND	35	74	0.020
B28-1'	5/29/2013	2.0J	ND	99	ND	1.8J	10	7.8	7.73	6.7	0.44J	12.3	ND	ND	ND	19	36	0.0093
B28-3'	5/29/2013	4.0J	ND	263	ND	3.7	22	19	21	18	ND	22	ND	ND	ND	35	78	0.019

NOTES:

mg/kg = milligrams per kilogram

ND = Not Detected; below MDL

MDL = Method Detection Limit

RL = Reporting Limit

J = Concentration above the MDL and below the RL

^{· =} Not Analyzed

^{*}EPA Region 9 Regioant Screenig Levels (RSLs) for residential and commercial settings

^{**}No RSL information available; Protection of groundwater Soil Screening Level (SSL) based on maximum contaminant level (MCL) provided for reference

TABLE 4
Shallow Soil Sample Results - OCPs
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

OGPs by	CHHSLs	(µg/kg)	2000	Sample 100	E1134-11.	B(18, 8)	尼州4 省	国的思	BISAN	EIE 3	1. Tallidedt"	132 (3-31)
EPA Method 8081A	E 80 5/0	Comm.l	1838	Dates	5/29/2013	5/29/2013	5/28/2013	5/28/2013	5/04/2013	5/28/2043	5/20/2003	SIMPLEM
E P A MERITION GUSTA	Resident.	Indust.	MBL	MRE			(OCP Concent	traiton (µg/kg)		
2,4'-DDD	2,300	9,000	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
2,4'-DDE			21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
2,4'-DDT	1,600	6,300	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	190
4,4'-DDD		-	4.0 - 4.8	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	1,600	6,300	6.3 - 7.7	21 - 25	40	ND	ND	ND	ND	15	ND	740
4,4'-DDT	1,600	6,300	4.5 - 5.5	21 - 25	10	ND	ND	ND	ND	7.8	ND	270
Aldrin			9.5 - 12	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
alpha-BHC	-	-	11 - 15	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
alpha-Chlordane		_	11 - 13	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC	NA	NA	6.5 - 7.9	21 - 25	ND	ND	ND	ND	ND	ND	ND	37
Chlordane (tech)	-	_	84 - 100	410 - 500	ND	ND	ND	ND	ND	ND	ND	ND
cis-Nonachlor	-	-	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
DCPA	-	-	21-25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
delta-BHC	10-00		4.7 - 5.7	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	-	_	6.2 - 7.5	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I		-	4.7 - 5.7	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	-		2.6 - 3.2	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate		A - 1 - 1	4.4 - 5.5	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endrin			11-13	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	100	-	5.8 - 7.0	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND.
Endrin ketone		-	3.8 - 4.6	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC (Lindane	_		11 - 13	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
gamma-Chlordane	-		8.2 - 10	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	75-		11 - 14	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	-		7.5 - 9.1	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Kepone	-		180 - 220	410 - 500	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	-		4.5 - 5.5	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Mirex	-		6.4 - 7.8	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Oxychlordane			21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	460	1,800	71 - 85	620 - 750	ND	ND	ND	ND	ND	ND	ND	2,400
trans-Nonachlor			21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND

OCPs = Organochlorine Pesticides

MDL = Method Detection Limit

MRL = Method Reporting Limit

μg/kg = micrograms per kilogram

ND = Not detected at or above the MDL

NA = Information not available

-= Not applicable

*California Human Health Screening Levels (CHHSLs) for residential and commercial settings are provided for detected concentrations of OCPs

Indicates concentration exeeds the commercial/industrial CHHSL

TABLE 4
Shallow Soil Sample Results - OCPs
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

OCPs by	CHHSLs	(µg/kg)	NEW TOWN	Sample ID	(\$0)81-0	BISS.	1598(1)	E11943	6.20.50	E20.5	F26-11	1500
EPA Method 8081A	PROPERTY	Comm.l	Coult De	Date	\$/28/2013	5/28/2013	5/28/2013	5/28/2013	5/28/2013	5/48/2013	41/28/120/13	\$728740H3
EFA MOUTOU OUOTA	Resident.	Indust	MPL:	MRE				OCP Concen	traiton (µg/kg)		
2,4'-DDD	2,300	9,000	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	36
2,4'-DDE	-		21 - 25	21 - 25	ND	ND	ND	ND	, ND	ND	ND	ND
2,4'-DDT	1,600	6,300	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	94
4,4'-DDD	_	-	4.0 - 4.8	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	1,600	6,300	6.3 - 7.7	21 - 25	ND	ND	ND	ND	ND	ND	ND	440
4,4'-DDT	1,600	6,300	4.5 - 5.5	21 - 25	ND	ND	ND	ND	ND	ND	ND	260
Aldrin		F	9.5 - 12	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
alpha-BHC	-	-	11 - 15	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
alpha-Chlordane		-	11 - 13	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC	NA.	NA	6.5 - 7.9	21 - 25	ND	ND	ND	ND	ND	ND	ND	42
Chlordane (tech)	-		84 - 100	410 - 500	ND	ND	ND	ND	ND	ND	ND	ND
cis-Nonachlor		-	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
DCPA	-	-	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
delta-BHC	-	-	4.7 - 5.7	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	2 - 1	-	6.2 - 7.5	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I			4.7 - 5.7	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	-	_	2.6 - 3.2	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate		-	4.4 - 5.5	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	-	-	11 - 13	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	-	-	5.8 - 7.0	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone	-	-	3.8 - 4.6	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC (Lindane	_	_	11 - 13	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
gamma-Chlordane	-	-	8.2 - 10	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	-	_	11 - 14	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	-		7.5 - 9.1	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Kepone			180 - 220	410 - 500	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	-	-	4.5 - 5.5	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Mirex	1	-	6.4 - 7.8	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Oxychlordane	-	V	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	460	1,800	71 - 85	620 - 750	ND	ND	ND	ND	ND	ND	ND	1,500
trans-Nonachlor	200	-	21 - 25	21 - 25	ND	ND	ND	ND	ND	ND	ND	ND

MOTES

OCPs = Organochlorine Pesticides

MDL = Method Detection Limit

MRL = Method Reporting Limit

μg/kg = micrograms per kilogram

ND = Not detected at or above the MDL

NA = Information not available

- = Not applicable

*California Human Health Screening Levels (CHHSLs) for residential and commercial settings

are provided for detected concentrations of OCPs

TABLE 5
Shallow Soil Sample Results - PCBs
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

	(S) constant	MARK	12/013/5	by (812/4 lu)	ethod 3082	imeylkent	
Stampalle (ID)	Sample Date	PCB	POB	PCB	PCB	FCB	ROE
	5444	1/2/21	1/2/6/9	1026	1/2/4/6	1254	1760
	MDL (mg/kg):	0.07	0.07	0.07	0.07	0.07	0.07
	PQL (mg/kg):	0.2	0.2	0.2	0.2	0.2	0.2
B23-1'	5/29/2013	ND	ND	ND	ND	ND	ND
B23-3'	5/29/2013	ND	ND	ND	ND	ND	ND
B24-1'	5/28/2013	ND	ND	ND	ND	ND	ND
B24-3'	5/28/2013	ND	ND	ND	ND	ND	ND
B25-1'	5/28/2013	ND	ND	ND	ND	ND	ND
B25-3'	5/28/2013	ND	ND	ND	ND	ND	ND
B26-1'	5/28/2013	ND	ND	ND	ND	ND	ND
B26-3'	5/28/2013	ND	ND	ND	ND	ND	ND
B27-1'	5/29/2013	ND	ND	ND	ND	ND	ND
B27-3'	5/29/2013	ND	ND	ND	ND	ND	ND
B28-1'	5/29/2013	ND	ND	ND	ND	ND	ND
B28-3'	5/29/2013	ND	ND	ND	ND	ND	ND

PCB = Polychlorinated Biphenyls

MDL = Method Detection Limit

PQL = Practical Quantitation Limit

mg/kg = milligrams per kilogram

ND = Indicates constituents not detected; below MDL

TABLE 6
Shallow Soil Sample Results - TPH
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

	Semille		多用的小星型 小小多数	100 30 517 (mg/)	(G))
Sample (i)	Date	(C94635)	GR(0 (C4-C12)	(6/(0-28))	(C23+C3a)
	MDL (mg/kg):	4	1.1	29	35
	PQL (mg/kg):	20	5.5	145	175
B21-1'	05/28/13	12.6J	ND	ND	ND
B21-3'	05/28/13	ND	ND	ND	ND
B22-1'	05/28/13	12.6J	ND	ND	ND
B22-3'	05/28/13	ND	ND	ND	ND
B23-1'	05/29/13	ND	ND	ND	ND
B23-3'	05/29/13	4.2J	ND	ND	ND
B24-1'	05/29/13	60.6	ND	ND	60.6J
B24-3'	05/29/13	4.4J	ND	ND	ND
B25-1'	05/28/13	12.5J	ND	ND	ND
B25-3'	05/28/13	ND	ND	ND	ND
B26-1'	05/28/13	4.4J	ND	ND	ND
B26-3'	05/28/13	ND	ND	ND	ND
B27-1'	05/29/13	4.0J	ND	ND	ND
B27-3'	05/29/13	13.1J	ND	ND	ND
B28-1'	05/29/13	ND	ND	ND	ND
B28-3'	05/29/13	ND	ND	ND	ND
B29-1'	05/28/13	12.6J	ND	ND	ND
B29-3'	05/28/13	4.1J	ND	ND	ND
B30-1'	05/28/13	12.7J	ND	ND	ND.
B30-3'	05/28/13	12.4J	ND	ND	ND
	Soil Screening Levels" (mg/kg):	_	1,000	10,000	50,000

ND = Indicates constituents not detected; below MDL

MDL = Method Detection Limit

PQL = Practical Quantitation Limit

J = Concentration above the MDL but below the PQL

TEPH = total extractable petroleum hydrocarbons

TPH = total petroleum hydrocarbons

GRO = gasoline range organics

DRO = diesel range organics

mg/kg = milligrams per kilogram

- = information not available

* The LARWQCB Maximum Soil Screening Levels are are provided for TPH in soil above drinking water aquifers greater than 150 bgs (LARWQCB Table 4-1, May 1996)

- SIV(0)(6):	Visited, 2141	P (Tanglie)		Sayingulan	(E)Onei*	199(1.20)	372271	\$550 A	EVEN
	Charles a	(SOMM)	100000000000000000000000000000000000000	19876	MANUAL C	TO THE PARTY OF TH	- Spiritetini	1/08/AUST	(10/11/4)
ny 124 Mathia Swall	Threshops.	finit(S).	WDF.	1/1/2017			Concentration		
,2,4-Trichlorobenzene	_	_	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND.
,2-Dichlorobenzene	-	_	0.097 - 0.11	0.44 - 0.50	ND	NO	NO	ND:	ND
3-Dichforobenzene	-		0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
4-Dichlorobenzene	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	NO	ND
4,5-Trichlorophenol	-	_	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
4.6-Trichloropheno/	-		0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
									NO
,4-Dichlorophenol	-	-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	
,4-Dimethylphenol	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
,4-Dinitrophenol	-	_	3.4 + 3.8	22 - 25	ND	ND	ND	ND	ND
,4-Dinitrotoluene	-	_	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
,6-Dinitrotoluene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
Chloronaphthalene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND.	ND	ND
-Chlorophenol	-	-	0.088 - 0.10	0.44 - 0.50	ND	ND:	ND	ND	ND
Methylnaphthalene	-	_	0.080 - 0.090	0.44 - 0.50	ND	ND	NO	ND	ND
Methylphenol	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND.	ND
Nitroaniline	-		0.12-0.13	0.44 - 0.50	ND	ND	ND	ND	ND
Nitrophenol		_	0.19 - 0.22	0.44 - 0.50	ND	ND	ND	ND	ND
& 4Methylphenol	-	-	0.11 - 0.12	0.44 - 0.50	NO	ND	ND	ND	ND
3'-Dichlorobenzidine	-	-	1.3 - 1.5	2.2 - 2.5	ND	ND	ND	ND	ND
Nitroaniline	-	-	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
6-Dinitro-2-methylphenol	-	-	1.4 - 1.5	4.4 - 5.0	ND	ND	ND	ND	ND
Bromophenyl phenyl ether	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
Chloro-3-methylphenol	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
-Chloroaniline	-	-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
-Chlorophenyl phenyl ether		-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
	-								ND
Nitroanline	-	_	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	
Nitrophenol			0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
cenaphthene	-	_	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
cenaphthylene	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
niline	-	-	0.2 - 0.23	0.44 - 0.50	ND	ND	ND	ND	ND
nthracene		_	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
zobenzene/1,2-Diphenylhydrazine		-	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
enzidine		-	1.1 - 1.3	4.4 - 5.0	ND	ND	ND	ND	ND
enzo(a)anthracene			0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(a)pyrene		-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(b)fluoranthene	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(g,h,i)perylene	NA	NA.	0.053 - 0.060	0.88 - 1.0	ND	ND	ND	NO	ND
enzo(k)fluoranthene	-	-	0.12 - 0.13	0,44 - 0.50	ND	ND	ND	ND	ND
enzoic acid	-	-	1.7 - 1.9	22 - 25	ND	ND	ND	ND	ND
enzyl alcohol	-	-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
ls(2-chloroethoxy)methane	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
is(2-chloroethyl)ether	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
is(2-chlorolsopropyl)ether	-	S 1-10	0.12 - 0.14	0.44 - 0.50	ND	ND	ND	ND	ND
					ND	ND	ND	ND	ND
is(2-ethylhexyl)phthalate	900		0.11 - 0.12	0.44 - 0.50					
utyl benzyl phthalate	260	910	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
arbazole		-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
hrysene		-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
ibenzo(a,h)anthracene	0.015	0.21	0.044 - 0.050	0.88 - 1.0	0.099J	ND	ND	ND	ND
ibenzofuran			0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
ielhyl phthalate	-	-	0.053 - 0.060	0.44 - 0.50	NO	ND	ND	ND	ND
imethyl phthalate	-	DO BUT	0.78 - 0.88	2.2 - 2.5	ND	ND	ND	ND	ND
-n-butyl phthalate	_	-	0.071 - 0.080	0.44 - 0.50	ND.	ND	ND	ND	ND
i-n-octyl phthalate		-	0.12 - 0.14	0.44 - 0.50	ND	ND	ND	ND	ND
	-	=	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
uoranthene							ND		ND
luorene	- 1	_	0.062 - 0.070	0.44 - 0.50	ND	ND		ND	
exachlorobenzene	-	_	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
exachlorobutadiene		344	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
exachtorocydopentadiene	_		0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
exachloroethane	2 -	200	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
deno(1,2,3-cd)pyrene	0.15	2.1	0.080 - 0.090	0.88 - 1.0	0.15J	NO	ND	ND	ND
ophorone	-	-	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
aphthalene	-		0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND.	ND
trobenzene			0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
	-	-							ND
Nitrosodimethylamine	-	_	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	
Nitrosodl-n-propylamine	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
-Nitrosodiphenylamine	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND -	ND	ND	ND
entachlorophenol	0.89	2.7	0.14 - 0.16	0.44 - 0.50	0.39J	ND	ND	ND	ND
henanthrene	-		0.071 - 0.080	0.44 - 0.50	ND	ND	ND.	ND.	ND
henol	-		0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
yrene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
41			2141 1 10000	0.88 - 1.0	7.450	ND	ND	1.00	ND

SVOC = Semivolatile Organic Compound MDL = Method Detection Limit

MRL = Method Reporting Limit

ND = Indicated constituents not detected; below method detection limit

ing/kg = milligrams per kilogram

J = Analyte detected. However, concentration is an estimated value, between the MDL and the MRL RSLs = Regional Screening Levels NA = Information not available

Not applicable

*PPA Region 9 Regional Screenig Levels (RSLs) for residential and commercial settings, information provided for detected concentrations of SVOCs

SW/Figes	ANGASON FORM	(matter)	COLUMN TO THE	Samulant	ENOUGH .	12/80/17 12/80/17	200 En	HERREIT -	3000
SWAGS	STATE OF THE PARTY OF	(Sommin		Elif Git	到阳阳的	1980 (1981)	- TANKARES	30000000	325000
THE SETAL MERITAGE SPARIE	somment.	Through:	White	1/31=1L=			Concentration		1
2,4-Trichlorobenzene	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
2-Dichlorobenzene	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
3-Dichforobenzene	-	_	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
4-Dichlorobenzene	-		0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
4,5-Trichlorophenol	-	-	0.097 - 0.11	0.44 - 0.50	NO	ND	ND	ND	ND
4,6-Trichloropheno/	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	NO
4-Dichlorophenol		-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
	-								
,4-Dimethylphenol	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
,4-Dinitrophenol		-	3.4 - 3.8	22 - 25	ND	ND	ND	ND	ND
,4-Dinitrotoluene	-	_	0.088 - 0.10	0,44 - 0.50	ND	ND	ND	ND	ND
6-Dinitrotoluene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
-Chloronaphthalene		-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
-Chlorophenol		-	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
-Methylnaphthalene		- O-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
	_	_	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
-Methylphenol									
-Nitroaniline	-	_	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
Nitrophenol	-	-	0.19 - 0.22	0.44 - 0.50	ND	ND	ND	ND	ND
& 4Methylphenol	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
3'-Dichlorobenzidine	-	_	1.3 - 1.5	2.2 - 2.5	ND	ND	ND	ND	ND
Nitroaniline	_	-	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
6-Dinitro-2-methylphenol	-	-	1.4 - 1.5	4.4 - 5.0	ND	ND	ND	ND	ND
-Bromophenyl phenyl ether	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
	-		0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
-Chioro-3-methylphenol	-								ND
-Chloroaniline	-	~	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	
-Chlorophenyl phenyl ether	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
-Nitroaniline	-	-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
-Nitrophenol	-	_	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
cenaphthene	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
cenaphlhylene		-	0.080 - 0.090	0.44 - 0.50	ND	ND .	NO	ND	ND
niline	-	_	0.2 - 0.23	0.44 - 0.50	ND .	ND	ND	ND	ND
nthracene	-		0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
		-							ND
zobenzene/1,2-Diphenylhydrazine	-	-	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	
enzidine		-	1.1 - 1.3	4.4 - 5.0	ND	ND	ND	ND	ND
enzo(a)anthracene	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(a)pyrene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(b)fluoranthene	0.000		0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(g,h,i)perylene	NA	NA	0.053 - 0.060	0.88 - 1.0	ND	ND	ND	0.11J	ND
enzo(k)fluoranthene	-	-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
enzolc acid			1.7 - 1.9	22 - 25	ND	ND	ND	ND	ND
	-	_							ND
enzyl alcohol	-	-	0.12 - 0.13	0,44 - 0,50	ND	ND	ND	ND	
is(2-chloroethoxy)methane	_	-	0.080 - 0.090	0,44 - 0.50	ND	ND	ND	ND	ND
lis(2-chloroethyl)ether	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
is(2-chloroisopropyl)ether	_	_	0.12 - 0.14	0.44 - 0.50	ND	ND	ND	ND	ND
is(2-ethylhexyi)phthalate		_	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
utyl benzyl phthalate	260	910	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	0,28J	ND.
arbazole	-		0.080 - 0.090	0.44 - 0.50	NO	ND	ND	ND	ND
hrysene	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
		0.21						ND	ND
ibenzo(a,h)anthracene	0.015		0.044 - 0.050	0.88 - 1.0	ND	ND	ND		
Ibenzofuran	-	_	0,080 - 0,090	0.44 - 0.50	ND	ND	ND	ND	ND
lethyl phthalate	-	-	0.053 - 0.060	0.44 - 0.50	ND	ND	ND	ND	ND
imethyl phthalate	-	-	0.78 - 0.88	2.2 - 2.5	ND	ND	ND	ND	ND
i-n-butyl phthalate	-	Page .	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
i-n-octyl phthalate	-		0.12 - 0.14	0.44 - 0.50	ND	ND	ND	ND	ND
luoranthene	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
luorene		-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
incord Condition and		100							ND
exachiorobenzene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	
exachlorobutadiene		-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
exachiorocydopentadiene	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
exachioroethane	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
deno(1,2,3-cd)pyrene	0.15	2.1	0.080 - 0.090	0.88 - 1.0	ND .	ND	ND	0.15J	ND
ophorone	-	-	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
aphthalene		-	0.097 - 0.11	0.44 - 0.50	ND.	ND	ND	ND	ND
		-			ND	ND		ND	ND
itrobenzene	-		0.097 - 0.11	0.44 - 0.50			ND		
-Nitrosodimethylamine	-		0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
-Nitrosodi-n-propylamine	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
-Nitrosodiphenylamine	-		0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
entachlorophenol	0.89	2.7	0.14 - 0.16	0.44 - 0.50	ND	ND	ND	ND	ND
henanthrene		-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
henol	-	-	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
									ND
yrene		-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	
yridine	-	-	0.044 - 0.050	0.88 - 1.0	ND	ND	ND	ND	ND

SVOC = Semivolettle Organic Compound

MDL = Method Detection Limit

MRL = Method Reporting Limit

ND = Indicated constituents not detected; below method detection limit

mg/kg = milligrams per kilogram

J = Analyte detected. However, concentration is an estimated value, between the MDL and the MRL RSLs = Regional Screening Levels

NA = Information not available

Not applicable
 PA Region 9 Regional Screenig Levels (RSLs) for residential and commercial settings, information provided for detected concentrations of SVOCs

Pyridine	Pyrene	Phenanihrene	Pentachlorophenol	N-Nitrosodiphenylamine	N-Nitrosodi-n-propylamine	N-Nitrosodimethylamine	Nitrobenzane	Nanhihalana	Indeno(1,2,3-cd)pyrene	Hexachloroethane	Hexachlorocydopentadiene	Hexachlorobutadiene	Hexachlorobenzene	Eliprane	Di-n-octyl phinalate	Di-n-butyl phthalate	Dimethyl phthalate	Diethyl phthalate	Dibenzofuran	Dibenzo(a,h)anthracene	Chrysane	Buyl benzyi phihalate	Bis(2-ethylhexyl)phthalate	Bis(2-chloroisopropyl)ether	Bis(2-chloroethyl)ether	Bis(2-chloroethoxy)methane	Benzyl alcohol	Benzoic acid	Benzo(g,n,l)peryiene	Benzo(b)fluoranthene	Benzo(a)pyrene	Benzo(a)anthracene	Benzidine	Azobenzene/1,2-Diphenylhydrazine	Anthracona	Acenaphthylene	Acenaphthene	4-Nitrophenol	4-Olivopriety pretty euter	4-Chloroaniine	4-Chloro-3-methylphenol	4-Bromophenyl phenyl ether	4,6-Dinitro-2-methylphenol	3-Nitroanline	3 & 4Methylphenol	2-Nitrophenol	2-Nitroaniline	2-Methylphenol	2-Methylnaphihalene	2-Chloronaphthalene	2,6-Dinitrotoluene	2,4-Dinitrotoluene	2.4-Dinitrophenoi	2 4-Dimelhylphenol	2.4.6-Trichloropheno/	2,4,5-Trichlorophenol	1,4-Dichlorobenzene	1,3-Dichforobenzene	1 2-Dichlorobenzene	DV SPA Welling Whee	1996
1	1	1	0.89	1	ı	ı	1	1	0.15	ı	1	1	1	1	-	-	ı	ı	1	0.015		280	1		1	1	1	1	NA	1	ı	ı	1	1	11	1	1	1	1 1	1	1	ı	1	1 1	1	1	1	1	1 1	1	1	ı	1	1	1	1	1	1 1		SERVICE STATE	NS CURNI
1	1	1	2.7	1	1	1		1	21		1	1	1		-	,	1	1	I	0.21	1 1	910	1	1	1	1	ı	1	NA	-	1	1	1	1	1	1	1	ī	1	1	ı	ı	1	1		1	1	ı	,	1	1	ı	1		1		1	1 1	,	Templett	(essimilar)
0.044 - 0.050	0.071 - 0.080	0.071 - 0.080	0.14 - 0.16	0.062 - 0.070	0.080 - 0.090	0.080 - 0.090	0.097 - 0.11	0.000 - 0.10	0.080 - 0.090	0.062 - 0.070	0.11 - 0.12	0.080 - 0.090	0.071 - 0.080	0.062 - 0.070	0.72-0.74	0.071 - 0.080	0.78 - 0.88	0.063 - 0.060	0.080 - 0.090	0.044 - 0.050	0.000 - 0.000	0.13 - 0.15	0.11-0.12	0.12-0.14	0.097 - 0.11	0.080 - 0.090	0.12 - 0.13	1.7-1.9	0.003 - 0.000	0.062 - 0.070	0.071 - 0.080	0.062 - 0.070	1.1 - 1.3	0.088 - 0.10	0.2 - 0.23	0.080 - 0.090	0.080 - 0.090	0.13 - 0.15	0.12 - 0.13	0.72 - 0.73	0.097 - 0.11	0.062 - 0.070	1.4-1.5	0.13 - 0.15	0.11 - 0.72	0.19 - 0.22	0.12-0.13	0.11-0.12	0.000 - 0.000	0.071 - 0.080	0.071 - 0.080	0.088 - 0.10	3.4-3.8	0.11-0.12	0.097 - 0.11	0.097 - 0.11	0.11 - 0.12	0.071 - 0.080	0.080 - 0.090	View of	
0.88 - 1.0		0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0,44 - 0.50	0.44 - 0.50	0.44 - 0.50						1		0.44 - 0.50		0.44 - 0.50			T	0.44 - 0.50	Г		1		0.44		0.44 -0.50	0		0.44 - 0.50	4.4-5.0	0.44 - 0.50	0.44-0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	4.4-5.0	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50	22 - 25	0.44-0.50	0.44 - 0.50	0.44 - 0.50	0.44 - 0.50		0.44 - 0.50	FIRM	unio.
NO	ND	NO	ND	ON	NO	ND	NO	200	NO	ND	ND	NO	NO	N S	N N	ND	ND	NO	ND	ND	Z	Z Z	ON	ND	ND	NO	ND	NO	NO	N	ND	ND	NO	NO	200	NO	ND	ND	N	200	No.	ND	N	NO	200	ND	ND	8	N	NO	NO	ND	ND	S	8	NO	NO	N	N N		11/05/05/05 11/05/05
ON	NO	No	NO	NO	ND	ND	N	NO	No	ND	ND	ND	No	NO CON	NO CO	NO	NO	ND	ND	NO	NO	NO	NO	NO	ON	ND	NO	NO	NO.	NO	ON	ND	ND	ND	ON	NO	ND	ND	S	NO	ON	ND	NO	N	ND	ND	ND	ND	S	ND	NO	ND	NO	36	NO	ND	NO	8	58	SVOC	Special Comment
ND	ND	NO	NO	NO	ND	NO	No	200	NB	NO	ND	NO	No	NO	200	NO	ND	ND	ND	NO.	No	200	8	NO	ND	ND	NO	S	38	NO	ND	NO	NO	No	35	NO	ND	ND	88	N	NO	NO	NO	No	N N	ND	ND	NO	ND	NO	ND	NB	S	S	NO	ND	ND	ND NO	NO	SVOC Concentration (mg/kg)	50050165045 (U.94632)
NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	ND	NO	NO	N CO	NO	NO	ND	ND	NO	No	NO	NO.	NO	NO	NO	ND	ND	NO	NO.	NO	ON	ND	NO	NO	S C	NO	ND	ND	No	N N	ND	ND	ND	NO	500	ND	ND	NO	NO	NO	NO	ND	NO	NO	NO	ND	NO	88	Z Z	mg/kg)	Shittenes.
ND	NO	NO.	ND	ND	ND	ND	NO	NO	ND	ND	ND	ND	NO	Sign	NO.	NO	NO	ND	ND	ND	NO	38	ON	ND	ND	ND	ND	No	N N	No	ND	ND	ND	NO	S	NO	ND	ND	No	38	NO	ND	ND	NO	NO	ND	ND	ND	ND	NO	ND	ND	ND	No	NO	NO	NO	88	S	5	0.01(\$) (0.01) (1.01)

NOTES:
SVOC = Semi-valatile Organic Compound
MDL = Method Detaction, Limit
MRL = withhod Repeting Limit
MRL = withhod Repeting Limit
ND = indicated constituents not detacted; below method detaction limit.

mg/kg = milligrams per kilogram
J = Analyte detacted, however, concentration is an estimated value, between the MDL and the MRL
J = Regional Screening Levels
NA = information not available

--- Not applicable
--- Not applicable
*EPA Region & Regional Screening Levels (RSLs) for residential and commercial settings, information provided for detacted concentrations of SVOCs

PRELIMINARY

TABLE 7 Shallow Soil Sample Results - SVOCs Tyrone Property 7500 Tyrone Avanue, Van Nuys, CA

TRUMPS-	JAPAN GILL	(OFFICE)	STATE OF THE PARTY	Souther that	(A)(1)(A)	EPS AN	1200	(5)(6)(1)	2000(2)
SWORE	Santia	(SETHURA)	7700	(O)T(O)	626PH1	9/50/9/9/9/9	ापालाया र	्र भागसाम्बाह्यसम्ब	albeight (is)
Shy Fish Interpret Specific	Registrate	dminst.	4700	MELL	100		Concentration		1100
2.4-Trichlorobenzene	-	per 1	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND.
,2-Dichlorobenzene	-	-	0.097 - 0.11	0.44 - 0.50	ND.	ND	ND	ND	ND
3-Dichforobenzene	ALC: N	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
4-Dichlorobenzene	-	-	0.11 + 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
,4,5-Trichlorophenol	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
4,6-Trichloropheno/	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
4-Dichiorophenol		_	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
4-Dimethylphenol			0.11 - 0.12	0.44 - 0.50	ND:	ND	ND	ND	ND
	-	-							
.4-Dinitrophenol	-	-	3.4 - 3.8	22 - 25	ND	ND	ND	ND	ND
4-Dinitrotoluene			0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
6-Dinitrotoluene	/	***	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
-Chioronaphthalene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	NO.	ND
-Chlorophenol		-	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
Methylnaphthalene	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND-	ND	ND
Methylphenol	10.	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	NO
-Nitroaniline				0.44 - 0.50	ND	ND	ND	ND	ND
			0.12 - 0.13						
Nitrophenol	-		0.19 - 0.22	0.44 - 0.50	ND	ND	ND	ND	ND
& 4Methylphenol	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
3'-Dichlorobenzidine	-	-	1,3 - 1,5	2.2 - 2.5	ND	ND	ND	ND	ND
Nitroaniline	-	-	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	NO
6-Dinitro-2-methylphenol	-		1.4 - 1.5	4.4 - 5.0	ND	ND	ND	ND	ND
Bromophenyl phenyl ether	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
-Chloro-3-methylphenol	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
Chloroaniline	-	-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
	-		The second secon					ND	ND
Chlorophenyl phenyl ether	-	_	0.080 - 0.090	0.44 - 0.50	ND	ND	ND		
Nitroaniline	-	-	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
Nitrophenol	-	-	0.13 - 0.15	0.44 - 0.50	ND	ND	ND	ND	ND
cenaphthene	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
cenaphthylene	77-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	NO	ND	ND
niline	-		0.2 - 0.23	0.44 - 0.50	ND	ND	ND	ND	ND
nihracene	-		0.071 - 0.080	0.44 - 0.50	ND	ND	NO	ND	ND
zobenzene/1,2-Diphenylhydrazine	0		0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
enzidine	_	-	1.1 - 1.3	4.4 - 5.0	ND	ND	ND	ND	ND
								ND	ND
enzo(a)anthracene	-	_	0.062 - 0.070	0.44 - 0.50	ND	ND	ND		
enzo(a)pyrene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(b)fluoranthene	-		0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
enzo(g,h,i)perylene	NA	NA	0.053 - 0.060	0.88 - 1.0	ND	0.12J	ND	ND	ND
snzo(k)fluoranthens	-		0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
enzoic acid	-	-	1.7 - 1.9	22 - 25	ND I	ND	ND	ND	ND
enzyl alcohol		100	0.12 - 0.13	0.44 - 0.50	ND	ND	ND	ND	ND
is(2-chloroethoxy)methane			0.080 - 0.090	0.44 - 0.50	ND	ND	ND.	ND	ND
			0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
is(2-chloroethyl)ether	-	-							
s(2-chloroisopropyl)ether	-	-	0.12 - 0.14	0.44 - 0.50	ND	ND	ND	ND	ND
s(2-ethylhexyl)phthalate	-	-	0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
utyl benzyl phthalate	260	910	0.13 - 0.15	0.44 - 0.50	0.29J	ND	ND	ND	ND
arbazole			0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND-
hrysene	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
benzo(a,h)anthracene	0.015	0.21	0.044 - 0.050	0.88 - 1.0	ND	ND	ND	ND	ND
benzofuran		-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND ND
ethyl phthalate	12.72		0.053 - 0.060	0.44 - 0.50	ND	ND	ND	ND	ND
									ND
methyl phthalate	-		0.78 - 0.88	2.2 - 2.5	ND	ND	ND	ND	
-n-butyl phthalate	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND.
-n-octyl phthalate	-		0.12 - 0.14	0.44 - 0.50	ND	ND	ND	ND	ND
uoranthene	-	-	0.097 - 0.11	0.44 - 0.50	NO	ND	ND	ND	ND
uorena	-	-	0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
exachlorobenzene	-		0.071 - 0.080	0.44 - 0.50	ND I	ND	ND	ND	ND
exachlorobutadiene	B-157	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
exachlorocydopentadiene	-		0.11 - 0.12	0.44 - 0.50	ND	ND	ND	ND	ND
exachloroethane			0.062 - 0.070	0.44 - 0.50	ND	ND	ND	ND	ND
		-							
deno(1,2,3-cd)pyrene	0.15	2.1	0.080 - 0.090	0.88 - 1.0	ND	0.17J	ND	ND	ND
ophorone	-	-	0.088 - 0.10	0.44 - 0.50	ND	ND	ND	ND	ND
aphthalene	-	-	0.097 - 0.11	0.44 - 0.50	ND	ND	ND	ND	ND
trobenzene		-	0.097 - 0.11	0.44 - 0.50	NO	ND	ND	ND	ND
Nitrosodimethylamine		-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
Nilrosodi-n-propylamine	-	-	0.080 - 0.090	0.44 - 0.50	ND	ND	ND	ND	ND
			0.062 - 0.070	0.44 - 0.50	ND	ND ND	ND	ND	ND
Nitrosodiphenylamine	0.00	0.7							
entachlorophenol	0.89	2.7	0.14 - 0.18	0.44 - 0.50	ND	ND	ND	ND	ND
henanthrene	-	-	0,071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
nenal	-		0,13 - 0,15	0.44 - 0.50	ND	ND	ND	ND	ND
vrene	-	-	0.071 - 0.080	0.44 - 0.50	ND	ND	ND	ND	ND
vridine	-	-	0.044 - 0.050	0.88 - 1.0	ND	ND	ND	ND	ND

NOTES:

SVCC = Semivolalile Organic Compound

MOL = Method Detection Limit

MRL = Method Reporting Limit

ND = Indicated constituents not detected; below method detection limit

mg/kg = milligrams per kilogram

J = Analyte detected. However, concentration is an estimated value, between the MDL and the MRL RSLs = Regional Screeening Levels
NA = Information not available

= Noi applicable

*EPA Region 9 Regioani Screenig Levels (RSLs) for residential and commercial settings, information provided for detected concentrations of SVOCs

TABLE 6 Shallow Soil Sample Results - VOCs Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

		Signification 15%	3/63	18/06/01	12/07/01	TERRIPORT -
WORLE	18.00	15/11/4	41020001010	- REGINALISE:	(a) supplied (THE POINT
ther \$20, Misternal Waters	Willen	2010		and the second second second second	tration (µg/kg)	
cetone	32	160	ND	ND	ND	ND
ert-Amyl methyl ether (TAME)	23	115	ND	ND	ND	ND
Benzene	26	130	ND	ND	ND .	ND
Bromobenzene	26	130	ND	ND:	ND	ND
Bromochloromethane	24	120	ND	ND	ND	ND
Bromodichioramethane	22	110	ND	ND	ND	- ND
Bromoform	23	115	ND	ND .	ND	ND
Bromomethane	20	100	ND	ND	ND	ND
Methyl ethyl ketone (MEK)	26	130	ND	ND	ND	ND
ert-Butyl alcohol (TBA)	373	1865	ND	ND	ND	ND
Butylbenzene	29	145	ND	ND	ND	ND
ec-Butylbenzene	27	135	ND	ND	ND	ND
ert-Butylbenzene	29	145	ND	ND	ND	ND
ert-Butyl ethyl ether (ETBE)	20	100	ND	ND	ND	ND
Carbon disuifide	116	580	ND	ND	ND	ND.
Carbon Tetrachionde	32	160	ND	ND	ND	ND
Chlorobanzena	28	140	ND	ND	ND	ND
Chloroethane	42	210	ND	ND	ND	ND
-Chloroethyl vinyl ether	23	115	ND	ND	ND	ND
Chioroform	30	150	ND	ND	ND	ND
hioromethane	70	350	ND	ND	ND	ND
-Chlorotoluene	27	135	ND	ND	ND	ND
-ChloroloJuene	28	140	ND	ND	ND	ND
Dibromochioromethane	25	125	ND	ND	ND	ND
.2-Dibromo-3-chloropropane	31	155	ND	ND	ND	ND
,2-Dibromoethane	23	115	ND	ND	ND.	ND
Dibromomethane	33	165	ND	ND	ND	ND
,2-Dichlorobenzene	27	135	ND	ND	ND	ND
3-Dichlorobenzene	27	135	ND	ND .	ND	ND
A-Dichlorobenzene	33	165	ND	ND	ND	ND
ichlorodifluoromethane	37	185	ND	ND	ND.	ND
1-Dichloroethane	29	145	ND	ND	ND	ND
2-Dichlorgethane	22	110	ND	ND	ND	ND
.1-Dichloroethene	28	140	ND	ND	ND	ND
is-1,2-Dichloroethene	26	130	ND	ND	ND	ND
ans-1_2-Dichloroethene	32	160	ND	ND	ND	ND
2-Dichloropropane	22	1110	ND	ND	ND	ND
,3-Dichloropropane	21	105	ND	ND	ND	ND
2.2-Dichloropropane	38	190	ND	ND	ND	ND
,1-Dichloropropene	27	135	ND	ND	ND	ND
ils-1,3-Dichloropropene	26	130	ND	ND	ND	ND
rans-1,3-Dichloropropene	29	145	ND	ND	ND	ND
	26	130	ND	ND	ND	ND.
disopropyl ether (DIPE)	30	150	ND	ND	ND	ND
	44	220	ND	ND	ND	ND
lexachlorobutadjene -Hexanone	21	105	ND	ND	ND	ND
1110110110	33	165	ND	ND	ND	ND ND
sopropylbenzene	28	140	ND	ND	ND	ND ND
-Isopropyitoluene	23	115	ND	ND	ND	ND
Methyl-t-butyl ether (MTBE)		155	ND	ND	ND ND	ND
Mathylene chloride	31		ND	ND	ND ND	ND ND
domethane	20	100			ND	ND
fethyl isobutyl ketone (MIBK)	19	95	ND	ND ND		ND ND
laphthelene	30	150	ND	ND ND	ND	275
ropylbenzene	30	150	ND	ND	ND	ND
tyrene	33	165	ND	ND	ND	ND
.1.1,2-Tetrachloroethane	23	115	ND	ND	ND	ND.
1,2,2-Tetrachloroethane	40	200	ND	ND	ND	ND
etrachloroethylene (PCE)	27	135	ND	ND	ND	ND
oluene	25	125	ND	ND	ND	ND
2,3-Trichlorobenzene	29	145	ND	ND	ND.	ND
2,4-Trichlorobenzene	31	155	ND	ND	ND	ND
1,1-Trichloroethane	26	130	ND	ND	ND.	ND
,1,2-Trichloroethane	23	115	ND	ND	ND	ND
richloroethylene (TCE)	24	120	ND	ND	NO.	ND
nchlorofluoromethane	35	175	ND	ND	ND	ND
,2,3-Trichloropropane	22	110	ND	ND	ND	ND
2.4-Trimelhylbenzene	25	125	ND	ND	ND	ND
3.5-Trimethylbenzene	28	140	ND	ND	ND	ND
inyl acetate	52	260	ND	NO	ND	ND
(inyl Chloride (Chloraethene)	38	180	ND	ND	ND	ND
n & p-Xylene	75	375	ND	ND	ND	ND
-Xylene	28	140	ND	ND:	ND	ND

NOTES:

VGC = Voistile Organic Compound

MOL = Method Detection Limit

PQL = Practical Quantitation Limit

ND = Indicated constituents not detected; below method detection limit

yg/kg = micrograms per killogram

TABLE 6 Shallow Soil Sample Results - VOCs Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

1 1 1 1 1 1 1 1 1	Contract of the	Samme Joh	3/4/1/20	12/4/20	到在中	300
- Volete		- inetten	计图的图明	可以的例识	विषयाप्राधानाः ।	पुरियाणका
by lattly Madrant string	Gfot).	2000			tration (µg/kg)	
Acetone	32	160	ND	ND	ND	ND
ert-Amyl methyl ether (TAME)	23	115	ND	ND	ND	ND
Benzene	26	130	ND	ND	ND	ND
Bromobenzene	26	130	ND	ND	ND	ND
Bromochloromethane	24	120	ND	ND	ND	ND
Bromodichloramethane	22	110	ND	ND	ND	ND
3romoform	23	115	ND	ND	ND	ND
Bromomethane	20	100	ND	ND	ND	ND
Methyl ethyl ketone (MEK)	28	130	ND	ND	ND	ND
ert-Butyl alcohol (TBA)	373	1865	ND	ND	ND	ND
Butylbenzene	29	145	ND	ND	ND	ND
sec-Bulylbenzene	27	135	ND	ND	ND	ND
ert-Butylbenzene	29	145	ND	ND	ND	ND
ert-Butyl ethyl ether (ETBE)	20	100	ND.	ND	ND	ND
Carbon disulfide	116	580	ND	ND	ND	ND
Carbon Tetrachloride	32	160	ND	ND	ND	ND
Chlorobenzene	28	140	ND	ND	ND	ND
hloroethane	42	210	ND	ND	ND	ND
-Chloroethyl vinyl ether	23	115	ND	ND	ND	ND
Chloroform	30	150	ND	ND	ND	ND
Chloromethane	70	350	ND	ND	ND.	ND.
-Chlorotoluene	27	135	ND	ND	ND	ND
-ChlorotoJuene	28	140	ND	ND	ND	ND
Dibromochloromethane	25	125	ND	ND	ND	ND
,2-Dibroma-3-chloropropane	31	155	ND	ND	- ND	ND
,2-Dibromoethane	23	115	ND	ND	ND	ND
Dibromomethane	33	165	ND	ND	ND	ND
.2-Dichlorobenzene	27	135	ND	ND:	ND	ND
.3-Dichlorobenzene	27	135	ND	ND	ND	ND
A-Dichlorobenzene	33	185	ND .	ND	ND	ND
ichlorodifluoromethane	37	185	ND	ND	ND	ND
1-Dichloroethane	29	145	ND	ND	ND	ND
2-Dichloroethane	22	110	ND	ND	ND	ND
1-Dichloroethene	28	140	ND	ND	ND	ND
is-1,2-Dichloroethene	26	130	ND	ND	ND	ND
rans-1,2-Dichloroethene	32	160	ND	ND	ND	ND
.2-Dichloropropane	22	110	ND	ND	ND	ND
,3-Dichloropropane	21	105	ND	ND	ND	ND
,2-Dichloropropane	38	190	ND	ND	ND	ND
,1-Dichloropropene	27	135	ND	ND	ND	ND
is-1,3-Dichloropropene	26	130	ND	ND	ND	ND
rans-1,3-Dichloropropene	29	145	ND	ND ND	ND	ND
Disopropyl ether (DIPE)	26	130	ND	ND	ND ND	ND
thy/benzene	30	150	ND	ND.	ND	ND
Hexachlorobutadiene	44	220	ND	ND	ND	ND
-Hexanone	33	105	ND ND	ND ND	ND ND	ND ND
sopropylbenzene						
-Isopropyltoluene	28	140	ND	ND ND	ND	ND ND
fethyl-t-butyl ether (MTBE)	23		ND	ND	ND	ND
fethylene chloride	31	155	ND	ND	ND	ND
domethane	20	100	ND	ND	ND	ND
Methyl isobutyl ketone (MIBK)	19	95	ND	ND	ND	ND
aphthalene	30	150	ND	ND	ND	ND
ropylbenzene	30	150	ND	ND	ND	ND
lyrene	33	165	ND	ND	ND	ND
1,1,2-Tetrachloroethane	23	115	ND	ND	ND	ND
1,2,2-Tetrachloroethane	40	200	ND	ND	ND	ND
etrachloroethylene (PCE)	27	135	ND	ND	ND	ND
oluene	25	125	ND	ND	ND	ND
2,3-Trichlorobenzene	29	145	ND	ND	ND	ND
2,4-Trichlorobenzene	31	155	ND	ND	ND	ND
1,1-Trichloroethane	26	130	ND	ND	ND	ND
1,2-Trichloroethane	23	115	ND	ND	ND	ND
richloroethylene (TCE)	24	120	ND	ND	ND	ND
richlorofiuoromethane	35	175	ND	ND	ND	ND
,2,3-Trichloropropane	22	110	ND	ND	ND	ND
2,4-Trimethylbenzene	25	125	ND	ND	ND	ND
,3,5-Trimethylbenzene	28	140	ND	ND	ND	ND
finyl acetate	52	260	ND	ND	ND	ND
inyl Chloride (Chloroethene)	36	180	ND	ND	ND	ND
& p-Xylane	75	375	ND	ND	ND	ND
-Xylene	28	140	ND	ND	ND	ND

VOC = Volatile Organic Compound

MOL = Method Detection Limit
PQL = Practical Quantitation Limit
ND = Indicated constituents not detected; below method detection limit
ug/kg = micrograms per kilogram

TABLE 9 Soil Vapor Sample Results - VOCs Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

((a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	Malang	S. (TABLE)	Sylverylly Hu:	WENE	Worlds.	VE-NSS	Weights)	Waster	AHERON (13)	Manufic 45	MENNESS.
100 M (May 100 M)	Restaura	Commo	THE REAL PROPERTY.	1889901A	特的知识。	100/MINE	中海 经	\$64.000se	HAMPLE	BENDER!	SHAVUR
	REMEDIC	tightsh:	3(0)1				The second of th	trations (µg/L			
Benzene	-	-	0,008	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Bramoform	-	~	0.008	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	-	-	0,008	ND	ND	ND	ND	ND	ND	ND	ND:
sec-Butylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
ert-Butylbenzene	_		0.008	ND	ND	ND.	ND	ND	ND	ND	ND
Carbon tetrachloride	0.063	0.21	0.008	ND	ND	ND	ND	ND	0.033	0.014	0.029
Chlorobenzene	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	_	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	NA	NA.	0.008	ND	ND	ND	ND	0.316	0.896	0.81	0.872
Chloromethane	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
2-Chiorotoluene	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
								ND.		ND	ND
Dibromochloromethane	-	_	0.008	ND	ND	ND	ND		ND		
,2-Dibromo-3-chloropropane	-	-	800.0	NO	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2- Dichlorobenzene	_	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	-	U No. C	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	NA	NA	0.008	ND	ND	ND	ND	ND	ND	ND	ND
is-1,2-Dichloroethene	_	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
rans-1,2-Dichloroethene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane			0.008	ND	ND	ND	ND	ND	ND	ND	ND
The state of the s		-	0.008				ND	ND	ND	ND	ND
2,2-Dichloropropane	-	-		ND	ND	ND					
1,1-Dichloropropene		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene		-	800,0	ND	ND	ND	ND	ND	ND	ND	ND
rans-1,3-Dichloropropene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	NA	NA	0.008	2.82	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	_	-	800,0	ND	ND	ND	ND	ND	ND	ND	ND
sopropylbenzene		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1-Isopropyltoluene	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	-	-	0.008	ND	ND	ND	ND	ND	ND.	ND	ND
Vaphthalene			0.008	ND	ND	ND	ND	ND	ND	ND	ND
1-Propylbenzene	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND-
Styrene	-	7-1	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane			0.008	ND	ND	ND	ND	ND	ND	ND	ND
Company of the Compan	0.47	10	0.008	ND	ND	ND	ND	0.059	0.057	0.048	0.054
Tetrachloroethylene (PCE)		1.6								ND	ND ND
Toluene	-	-	0,008	ND	ND	ND	ND	ND	ND		
1,2,3-Trichlorobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	-	-	0.008	ND	ND	ND	ND	ND.	ND	ND	ND
Trichloroethylene (TCE)	1.3	4.4	0.008	ND	ND	ND	ND	2,26	2.83	2,55	2,89
richlorofluoromethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
,2,3-Trichloropropane	-	-	0.008	ND	ND	ND-	ND	ND	ND	ND	ND
,2,4-Trimethylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
,3,5-Trimethy/benzene	-	- L	0.008	ND	ND	ND	ND	ND	ND	ND	ND
/inyl chioride	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
(ylenes	_		0.008	ND	ND I	ND	ND	ND	ND	ND	ND
MTBE			800.0	ND	ND	ND	ND	ND	ND	ND	ND
	704	-						ND	ND	ND	ND
Ethyl-tert-butylether	- 11	-	0.008	ND	ND	ND	ND				
Di-isopropylether	-	-	0,008	ND	ND	ND.	ND	ND	ND	ND	ND
ert-amylmethylether	-	-	0,008	ND	ND	ND	ND	ND	ND	ND	ND
ert-Butylaicohol	-		0,040	ND	ND	ND	ND	ND	ND	ND	ND

NOTES: VGC = Volatile Organic Compound PGLs = Practical Quantitation Limits

PGLs = Practical Quantitation Limits
ND = Not Detacted Above the PGL
P = Purgs Volume
REP = replicate
µgit = micrograms per liter
NA = information not available
= Not applicable
*California Human Health Screening Levels (CHHSLs) for residential and commercial settings
are provided for detected concentrations of VOCs.

TABLE 9 Soil Vapor Sample Results - VOCs Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

(Vigitis iny	OMES!		Someth For	ADMA.	- Writing	W2500	Wilder S	Malada	Withday	Marie .	(4)(5)(5)(5)
SPA MONION BANKS	Manufalan	South of	3480	10000	10/2/	Bersy	WOO Comment	in landing to	OR THE STATE OF TH	SHEDING.	361211
Desired.	Resident	(thi)ma		_			VOC Concer	trations (µg/l	,	Lin	1 10
Benzene	-	-	0.008					ND	ND	ND	ND
Bromobenzene	-	-	800.0				1	ND	ND	ND	ND
Bromodichloromethane	_	-	0,008					ND	ND	ND	ND
Bromoform	_	-	800.0				1	ND	ND	ND	ND
n-Buty/benzene	_	-	800.0					ND	ND	ND	ND
sec-Butylbenzene	-	-	0.008					ND	ND	ND	ND
tert-Butylbenzene			800.0					ND	ND	ND	ND
Carbon tetrachloride	0.063	0.21	0.008				1	ND	ND	ND	0.035
Chlorobenzene	_	-	0.008					ND	ND	ND	ND
Chloroethane		-	0,008					ND	ND	ND	ND
Chloroform	NA	NA	0.008					ND	0.046	0.022	0.363
Chloromethane	-		0.008		11 11			ND	ND	ND	ND
2-Chlorotoluene	-	-	800.0					ND	ND	ND	ND
4-Chlorotoluene	-	-	0.008		1			ND	ND	ND	ND
Dibromochloromethane	-		0.008				1 3	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane			800.0	1				ND	ND	ND	ND
1,2-Dibromoethane (EDB)			0,008					ND	ND	ND	ND
Dibromomethane	-		0,008					ND	ND	ND	ND
1,2- Dichlorobenzene	-	-	0.008					ND	ND	ND	ND
1,3-Dichlorobenzene	-	-	0.008	w	ni.	(r)	111	ND	ND	ND	ND
1,4-Dichlorobenzene	-	-	0.008	NO SAMPLE COLLECTED - PROBE LOCATION INACCESSIBLE	ND	ND	ND	ND			
Dichiorodifluoromethane	- 1	_	0.008	S	S S	S	S	ND	ND	ND	ND
1,1-Dichloroethane	_	-	0.008	S	S	ES	S	ND	ND	ND	ND
1,2-Dichloroethane	- 1		0.008	8	8	8	8	ND	ND	ND	ND
1,1-Dichloroethene	NA.	NA	0.008	Š	ă I	3	¥	ND	ND	ND	ND
cis-1,2-Dichloroethene	-	-	0.008	=	=	=	=	ND	ND	ND	ND
trans-1,2-Dichloroethene	-	_	0.008	6	ő l	ő	6	ND	ND	ND	ND
1,2-Dichloropropane			0.008	E	5	E	E	ND	ND	ND	ND
1,3-Dichloropropane		_	0.008	Ö	20	Ö	20	ND	ND	ND	ND
2,2-Dichloropropane	-	-	0.008	2	9	9	9	ND ND	ND	ND	ND
	-	-	800.0	M.	띪	黑	끮	ND			ND
1,1-Dichloropropene	-	-		Ö	Ö	Ö	Ö		ND	ND	
cis-1,3-Dichloropropene		_	800.0	F.	8	8	8	ND	ND	ND	ND
trans-1,3-Dichloropropane	-	-	0.008	ċ	i i	ó	ċ	ND	ND	ND	ND
Ethylbenzene	-	-	800.0	岜	邑	E	Ē	ND	ND	ND	ND
Freon 113	NA	NA	0.008	0	5	5	5	0.651	0.964	ND	0.057
Hexachlorobutadiene	_	_	0.008	=	=	<u>~</u>	1 4	ND	ND	ND	ND
Isopropylbenzene	-	-	0.008	ō	ŏ	ŏ	ō	ND	ND	ND	ND
4-Isopropyltoluene	-	-	0.008	O III	u l		0	ND	ND	ND	ND
Methylene chloride	-	_	0,008	2	7	7	2	ND	ND	ND	ND
Naphthalene		-	0.008	Σ	2	2	N	ND	ND	ND	ND
n-Propylbanzane	-	-	0.008	SA	SA	SS	SA	ND	ND	ND	ND
Styrene		-	0.008	0	9	0	9	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	-	-	0,008	4	~	4	5	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	-	0.008				1 1	ND	ND	ND	ND
Tetrachloroethylene (PCE)	0.47	1.6	0.008					ND	ND	ND	ND
Toluene	-	-	0,008				1 1 2	ND	ND	ND	ND
1,2,3-Trichlorobenzene	- i= 1	-	0.008				1 17	ND	ND	ND	ND
1,2,4-Trichlorobenzene			0.008					ND	ND	ND	NO
1,1,1-Trichloroethane	-	-	0.008					ND	ND	ND	ND
1,1,2-Trichloroethane	-	-	0.008				V. 3	ND	ND	ND	ND
Trichloraethylene (TCE)	1.3	4.4	0.008				17	ND	ND	ND	ND
Trichlorofluoromethane	-	1-	800.0				V 10	ND	ND	ND	ND
1,2,3-Trichloropropane		-	0,008				117	ND	ND	ND	ND
1,2,4-Trimethylbenzene		-	0.008					ND	ND	ND	ND
1,3,5-Trimethylbenzene			0.008				1.9	ND	ND	ND	ND
Vinyl chloride	-	past	0.008				1/3	ND	ND	ND	ND
Xylenes	-		0.008				V 18	ND	ND	ND	ND
MTBE			0.008				10	ND	ND I	ND	ND
			0.008							ND	ND
Ethyl-tert-butylether		-						ND	ND		
Di-isopropylether	-	-	0,008					ND	ND	ND	ND
tert-amylmethylether	-		800.0					ND	ND	ND	ND
tert-Butylalcohol	-	-	0.040				1	ND	ND:	ND	ND

NOTES:

VOC ≈ Volatile Organio Compound

PGL = Practical Quantitation Limits

ND = Not Detected Above the PQL

p = Purge Volume

REP = replicate

µgL = micrograms per litet

NA = information not evaliable

= Not applicable

"California Human Health Screening Levels (CHHSLs) for residential and gominercial settings are provided for detected concentrations of VOCs

TABLE 9 Soil Vapor Sampla Results - VOCs Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

((a)(a)(v)(y)	CHRIS		Samme (6)	1564RD911	i pulanti	- Appropriate	Manager 1	Making a	((((((((((((((((((((((((((((((((((((((- Maritanes	(B/S/40)
BINA Abdanist SQUA	(Season)	monny)	Spire.	The section of the	- parametrist					obeligner.	(a) and (a)
	Featurn)		800.0	ND	L		VOC Concen		1	1 410	NO
Benzene	-	_		ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform.	-		800.0	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	_	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
ert-Butyibenzene	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	0.063	0.21	0.008	ND	0.017	ND	ND	ND	ND	ND	ND
Chlorobenzene		_	800.0	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	NA	NA.	0.008	0.153	0.454	ND	ND	ND	ND	ND	ND
Chloromethane	-	-	800.0	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1-Chlorotoluene		\	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
,2-Dibromo-3-chloropropane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
,2-Dibromoethane (EDB)	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2- Dichlorobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	_	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	/	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane		_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	NA	NA	0.008	ND	ND	ND	ND	ND.	ND	ND	ND
tis-1,2-Dichloroethene	-	-	0.008	ND	ND	ND	ND	ND.	ND	ND	ND
rans-1,2-Dichloroethene	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	_	0,008	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloropropene	-	-	0.008	ND	ND	ND	ND	ND	NO	ND	ND
cis-1,3-Dichloropropene	-	-	800.0	ND	ND	ND	ND	ND	ND	ND	ND
rans-1,3-Dichloropropene	-		0,008	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	NA	NA	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
sopropylbenzene	-	-	0,008	ND	ND	ND	ND	ND	ND	ND	ND-
4-Isopropyltoluene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	-	Ey-Hyel	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1.1.1.2-Tetrachloroethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	0.47	1.6	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND.
1,2,3-Trichlorobenzene		-	0,008	ND	ND	ND	ND	ND	ND	ND	ND
.2.4-Trichlorobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	1.3	4.4	0.008	ND	ND	ND	ND	ND	ND	ND	ND
richlorofluoromethane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
,2,3-Trichloropropane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Trimethylbenzene	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
,3,5-Trimethylbenzene		(= 1	0.008	ND	ND	ND	ND	ND	ND	ND	ND
/inyl chloride	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
(ylenes	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
NTBE	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl-tert-butylether		10-0	0.008	ND	ND	ND.	ND	ND	ND	ND	ND
Di-isopropylether	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
ert-amylmethylether	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
			41444	1 1 667	1.150		7 750	1.750			1.75

NOTES:

VOC = Volatile Organic Compound

POLs = Practical Quantitation Limits

ND = Not Detacted Above the POL

P = Purga Volume

REP = replicate

reP = represe µgL = micrograms per liter NA = information not available — = Not applicable — California Human Health Screening Levels (CHHSLs) for residential and commercial settlings are provided for detected concentrations of VOCs

TABLE 9 Soil Vapor Sample Results - VOCs Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

V(0)05(0)	GHIRI	(E0(P))	- William In	MENTINEE	原的原则 第85	DEMONIA	ALMERICA.	Mari olas	Water	-th))Ba	。以使用世界
THE MANAGEMENT	10.4	Chiama.	(0)(1)(2)	可是例而证	国内的图片	10月900000	"Sidemen	वामित्रसम्म	- m/m240.63*	BANGED !	GARBERT C
En you do a mean or const	Resident	inglest.	3600					trations (µg/L			
Benzene	-	-	0.008	ND	ND	ND	ND	ND	ND	NO	ND
Bromobenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	_	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene			0.008	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	0.063	0.21	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	-	_	0.008	ND	ND	ND	ND	ND.	ND	ND	ND
Chloroethane	-		0.008	- ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	NA	NA	0.008	ND	ND	0.039	ND	ND	ND	ND	ND
Chloromethane		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	-	_	0.008	ND	ND	ND _	ND	ND	ND.	ND	ND
4-Chlorotoluene		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	7	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane			0.008	ND	ND.	ND	ND	ND	ND	ND	ND
1,2- Dichlorobenzene			0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene		0.00	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	7-0	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	1-1-1	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	7	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	NA	NA	0.008	ND	ND	ND	ND	ND	0.118	ND	ND
cis-1,2-Dichloroethene	-		0.008	ND	ND	ND	ND	ND	- ND	ND	ND
trans-1,2-Dichloroethene		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane		-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane		-	0,008	ND	ND	ND	ND	ND	ND:	ND	ND
1.1-Dichloropropene		_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	NA.	NA	0.008	0.068	ND	0.184	0.529	0.203	1.13	ND	ND
Hexachlorobutadiene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene		-	0.008	ND	ND	ND 1	ND	ND	ND	ND	ND
4-isopropyitoluene	_	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	0-10	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene			0.008	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	_	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	_	V = -	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	-	_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	0.47	1.6	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.47	1,0	0.008	ND	ND	ND	ND	ND	ND I	ND	ND
1,2,3-Trichlorobenzene	-	-	0.008	ND	ND I	ND	ND	ND	ND ND	ND	ND
1.2.4-Trichlorobenzene	==	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane			0.008	ND	ND	ND	ND			ND	ND
1,1,2-Trichloroethane	=	=	0.008	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND
Trichloroethylene (TCE)	1.3	4.4	0.008	ND	ND	ND ND	ND	ND	ND	ND	ND
Trichloroffuoromethane			0.008	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND
1,2,3-Trichloropropane	-	-	0.008	ND	ND ND	ND ND	ND ND		ND	ND	ND
1,2,3-1 richioropropane 1,2,4-Trimethylbenzene		-	0.008	ND	ND	ND ND	ND	ND	ND I	ND	ND
1,2,4-1 rimethylbenzene	-	-						ND			ND
	-		0.008	ND	ND	ND	ND	ND	ND	ND	
Vinyl chloride	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes		_	0.008	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	-	-	800.0	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl-tert-butylether	-	·	0.008	ND	ND	ND	ND	ND	ND	ND	ND
Di-isopropylether	-		0.008	ND	ND	ND	ND	ND	ND	ND	ND
lert-amylmethylether	-	-	0.008	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylatcohol	-	A-	0.040	ND	ND	ND	ND	ND	ND	NO	ND

NOTES: VOC = Voialile Organic Compound PQLs = Practical Quantitation Limits NO = Not Detected Above the PQL

P = Purge Valume

REP = replicate

µg/L = micrograms per liter

NA = information not available

= rivot applicable

*California Human Health Screaning Lavels (CHHSLs) for residential and commercial settlings are provided for detected concentrations of VOCs

TABLE 9 Soil Vapor Sample Results - VOCs Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

Tows W	(CHINA)		Sample B	Merchan	Wellerin	V/2010/2012	原列系の政治国	AVERGROUP
Sign worthous days is		Committee	Aprily	SAMSTES	(5)(19)(6)(3)	- 国用风格研译	Throughout .	司和登場和
	Regions	defined	POL-			oncentration	s (µg/L)	
Benzene	-	-	0.008	ND	ND		K L	
Bromobenzene	-	-	0,008	ND	ND			
Bromodichloromethane	-	-	800.0	ND	ND	0.1		
Bromoform		- inst	0.008	ND	ND			
n-Butylbenzene	-	-	0.008	ND	ND			0
sec-Butylbenzene	-	-	800.0	ND	ND		R 1	
ert-Butylbenzene	-	-	0.008	ND	ND			
Carbon tetrachloride	0.063	0.21	0.008	ND	ND	0.		
Chlorobenzene	-	Line Harris	0.008	ND	ND			
Chloroethane		-	800.0	ND	ND			
Chloroform	NA	NA	0.008	ND	ND			
Chloromethane		ine	0.008	ND	ND	n	1 1	
2-Chlorotoluene	-	-	0.008	ND	ND	0	K 11	
1-Chlorotoluene	-		0.008	ND	ND		1	
Dibromochloromethane	-	-	800.0	ND	ND			
,2-Dibromo-3-chloropropane		-	0.008	ND	ND	M I I		
,2-Dibromoethane (EDB)	-	-	0.008	ND	ND			
Dibromomethane		-	0.008	ND	ND		1	
1,2- Dichlorobenzene		-	0.008	ND	ND	M Y		
1,3-Dichlorobenzene		-	0.008	ND	ND		1	
4-Dichlorobenzene	-	-	0.008	ND	ND			
Dichlorodifluoromethane	-	-	0.008	ND	ND			
1-Dichloroethane		-	0.008	ND	ND			
1,2-Dichloroethane	-	-	0.008	ND	ND	щ	ш	щ
1,1-Dichloroethene	NA.	NA	0,008	ND	ND	100	商	SAMPLE RESULTS NOT YET AVAIALABLE
is-1,2-Dichloroethene	-	-	0.008	ND	ND	5	5	5
rans-1,2-Dichlorgethene		_	0.008	ND	ND	¥	1	¥
,2-Dichloropropane		-	0.008	ND	ND	SAMPLE RESULTS NOT YET AVAIALABLE	SAMPLE RESULTS NOT YET AVAIALABLE	>
1,3-Dichloropropane		_	0.008	ND	ND			F
2,2-Dichloropropane	-	-	0.008	ND	ND			Æ
,1-Dichloropropene	-	-	0.008	ND	ND		b	1
cis-1,3-Dichloropropene	-	-	0.008	ND	ND		ž	S
rans-1,3-Dichloropropene	-	-	0.008	ND	ND		20	60
Ethylbenzene	_	-	0.008	ND	ND		3	=
reon 113	NA	NA	800,0	ND	ND	S	SS	S
Hexachlorobutadiene	-	-	0,008	ND	ND	22	22	2
sopropylbenzene	-	-	0.008	ND	ND	ш,		
4-Isopropyitoluene		_	0.008	ND	ND	8	de M	E P
Methylene chloride	_	-	0.008	ND	ND	Y.	IA'S	A
Vaphthalene	1 = 1	-	0.008	ND	ND	.,	, v,	
n-Propylbenzene	-	-	800.0	ND	ND		V	
Styrene	==	=	0.008	ND	ND		[Y] []	
I.1.1.2-Tetrachloroethane		-	0.008	ND	ND			
1,1,2-Tetrachloroethane		_	0.008	ND	ND		N	
Tetrachloroethylene (PCE)	0.47	1.6	0.008	ND	ND			
oluene	0.47		0.008	ND				
.2.3-Trichlorobenzene	-		0.008	ND	ND			
,2,3-1 richlorobenzene	-				ND			
	-		0.008	ND	ND			
,1,1-Trichloroethane	-	-	0.008	ND	ND	4		
,1,2-Trichloroethane	-	-	0.008	ND	ND			
richloroethylene (TCE)	1.3	4.4	800.0	ND	ND			
richlorofluoromethane	-	-	0,008	ND	ND			
,2,3-Trichloropropane	-	_	0.008	ND	ND			
,2,4-Trimethylbenzene	-	-	0.008	ND	ND			
,3,5-Trimethylbenzene	-	-	0.008	ND	ND			
/inyl chloride	-	-	0.008	ND	ND			
(ylenes	U.₩.	-	0.008	ND	ND	1		
ATBE	-	-	0.008	ND	ND		18	
Ethyl-tert-butylether	-	_	0.008	ND	ND		18	
Di-isopropylether	-	-	0,008	ND	ND			
ert-amylmethylether	-		0.008	ND	ND			
ert-Butylalcohol	-	-	0,040	ND	ND			

NOTES:

VOC = Velatifie Organio Compound

PGLs = Practical Quariflation Limits

NO = Not Detected Above the PQL

P = Purge Volume

REP = replicate

µgL = micrograms per liter

NA = information not available

— Not applicable

*California Human Health Screening Levels (CHHSLs) for residential and commercial settings are provided for detected concentrations of VOCs

August 10, 2012

Project No. 12069-01

To:

Shubin Nadal Realty Investors

901 Dove Street, Suite 225

Newport Beach, California 92660

Attention:

Mr. William Shubin

Subject:

Preliminary Geotechnical Exploration for Proposed Office-Industrial Project at 7600

Tryone Avenue, Van Nuys, City of Los Angeles, California

At your request and authorization, NMG Geotechnical, Inc. (NMG) has conducted a geotechnical exploration for the proposed development at the subject site located at 7600 Tyrone Avenue, in Van Nuys in the City of Los Angeles, California. The site location is shown on Figure 1. The purpose of this exploration was to assess the onsite geotechnical conditions and provide preliminary geotechnical recommendations for project design, grading and construction.

Our geotechnical exploration was performed June 25 and 26, 2012, which included drilling, sampling and logging of fifteen hollow-stem-auger borings (H-1 through H-15) to depths ranging from 9 to 31.5. Two of the borings were used for onsite percolation testing. Laboratory testing was performed on selected soil samples to determine engineering soil properties.

Other than constraints typical for this area (e.g. seismicity), the primary geotechnical constraint at the site is a potentially collapsible soil layer ranging in thickness from 2 to 4 feet found in the upper 5 to 7.5 feet of Borings H-4 and H-5. However, these soils appear to be limited to a localized area within the vicinity of these borings. The site is not located in potential liquefaction or earthquake-induced landslide hazard zones. Near surface soil has low expansion potential. For typical low-rise commercial/industrial buildings the total post-construction settlement is not anticipated to exceed one-half inch and differential settlement is anticipated to be less than ¼ inch in a 40-foot span, provided recommended remedial grading is performed and existing site grades are not raised significantly. Therefore, conventional shallow foundations and slabs-on-grade will acceptable for the planned construction.

This report presents our findings, conclusions and preliminary recommendations for the proposed project. Upon the completion of grading, additional soil samples may need to be collected and tested to confirm the recommendations provided herein. Also, the future grading and foundation plans should be reviewed by the geotechnical consultant in light of this study to confirm that our recommended design parameters have been used, and to provide further recommendations, as needed.

If you have any questions regarding this report, please contact our office. We appreciate the opportunity to provide our services.

Respectfully submitted,

NMG GEOTECHNICAL, INC.

Ted Miyake, RCE 44864

Principal Engineer

CD/PA/TM/WG/je

Distribution: (3) Addressee

WILLIAM GOODMAN OF CERTIFIED ENGINEERING GEOLOGIST

William Goodman, CEG 1577

Principal Geologist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Site Location and Proposed Development	
1.2	Existing Site Conditions	
1.3	Scope of Services	1
2.0	GEOTECHNICAL FINDINGS	3
2.1	Geologic Setting	DOTTO TO SERVICE AND SERVICE A
2.2	Regional Faulting and Seismicity	
2.3	Geotechnical Conditions	
2.4	Laboratory Test Results	
2.5	Groundwater	
2.6	Settlement	
2.7	Seismic Hazards	
2.8	Percolation Testing	6
3.0	CONCLUSION AND RECOMMENDATIONS	7
3.1	General Conclusion and Recommendation	
3.2	Site Preparation and Earthwork	
1 45/11	2.1 Site Demolition and Clearing	
3.2	2.2 Protection of Existing Improvements and Utilities	7
3.2	2.3 Remedial Grading Measures	8
3.2	2.4 Fill Placement	8
3.2	2.5 Earthwork Shrinkage and Bulking	8
3.3	Seismic Design Parameters	9
3.4	Foundation Design	9
3.5	Interior Slab Moisture Mitigation	10
3.6	Settlement Potential	11
3.7	Lateral Earth Pressures	11
3.9	Soil Corrosivity	12
3.10	Vehicular Pavement	12
3.11	Other Site Concrete	13
3.12		13
3.13		14
3.14		
3.15		
3.16		
3.17	Limitations	16

List of Illustrations

Figure 1 - Site Location and Seismic Hazards Map - Rear of Text

Figure 2 - Geotechnical and Boring Location Map - Rear of Text

Figure 3 - Retaining Wall Drainage Detail - Rear of Text

Appendices

Appendix A – References

Appendix B - Boring Logs

Appendix C - Laboratory Test Results

Appendix D - Percolation Test Data

Appendix E - Seismic Analysis

Appendix F - General Earthwork and Grading Specifications

1.0 INTRODUCTION

1.1 Site Location and Proposed Development

The site is located in a commercial-industrial district at 7600 Tyrone Avenue, in Van Nuys, within the City of Los Angeles, California. The site bordered by railroad tracks that run along Cabrito Road on the north, by Tyrone Avenue and existing commercial properties on the west, by Hazeltine Avenue on the east, and by the extension of Saticoy Street and commercial properties on the south.

We understand that existing structures and improvements at the site will be demolished. The conceptual site plan shows three proposed new industrial buildings, associated driveways and parking lots, and Saticoy Avenue improvements. The buildings will be single level tilt up construction with some mezzanine space. Access to the site will be off an extension of Saticoy Avenue, which may also be extended further east in the future. We understand that future grades will not be significantly different that existing grades. Therefore, we have assumed that new fill loads will be minor.

1.2 Existing Site Conditions

The subject site is trapezoidal and approximately 16.4 acres with existing buildings having a footprint of over 172,000 square feet. The existing buildings, some of which are multi-story, are surrounded by paved driveways and parking lots; most were constructed in the mid-1960s with one building built in 1988. The eastern end of the site is a predominantly vacant dirt parcel containing three small buildings in the northwest corner. This entire property is relatively flat with local areas of grasses, weeds, and small stockpiles of soil and rubble in the vacant lot area. There are some relatively large trees at the site, especially in the west half around the primary building campus. The existing buildings are currently unoccupied.

1.3 Scope of Services

Our scope of services for this study included the following tasks:

- Review of geotechnical information pertaining to the subject site, including site geology, historic groundwater data, and seismic hazard maps.
- Site reconnaissance to identify the existing site conditions and marking of boring and test-pit locations.
- Coordination with Underground Service Alert and a private utility locating service (Utillocate) to identify and locate any underground utilities.
- Field exploration consisted of drilling, logging and sampling of fifteen hollow-stem-auger borings to depths of 9 to 31.5 feet. The borings were backfilled with cuttings and patched with cold patch asphalt concrete. Soils in the borings were sampled using a Modified California ring sampler (2.5-inch, inside-diameter, split-barrel). The sampler was driven with a 140-pound automatic hammer, free-falling 30 inches. We collected relatively undisturbed

120810

ring samples from the borings at 2.5- to 5-foot intervals. Representative bulk samples of onsite soils were collected from the hollow-stem auger cuttings. The sampling was used to assess the soil beneath the site, as well as to obtain a measure of resistance of the soil to penetration (recorded as blows-per-foot on the geotechnical boring logs). The boring logs are included in Appendix B.

- Percolation testing on two boring locations to measure percolation and infiltration rates based on accepted local percolation test procedures and requirements.
- Laboratory testing of selected samples to classify the onsite soils and evaluate in-situ
 moisture and density, maximum dry density and optimum moisture content, R-value, grainsize distribution, Atterberg limits, direct shear, consolidation, expansion index, and soil
 corrosivity. Test results are summarized in Appendix C. A corrosion engineer's report is
 also attached at the rear of Appendix C.
- Geotechnical evaluation and analysis of the compiled data in light of the planned project.
- Evaluation of faulting and seismicity in accordance with the 2010 California Building Code (CBC).
- Preparation of this report including our findings, conclusions, preliminary recommendations and accompanying illustrations.

NMG's expertise and scope of services did not include assessment of potential subsurface environmental contaminants or environmental health hazards.

2

2.0 GEOTECHNICAL FINDINGS

2.1 Geologic Setting

The subject site is located in the central San Fernando Valley portion of the Transverse Range province of Southern California. The San Fernando Valley is an east-west trending structural trough bounded to the north and south by active faulting along the southern edge of the San Gabriel and Santa Monica Mountains. The site is mapped by the state as underlain by young alluviul fan deposits (USGS 2005) generated by the Pacoima and Tujunga washes which originate in the adjacent San Gabriel Mountains. The underlying material is described as consisting of unconsolidated gravel, sand, silt and clay. Portions of the valley are also underlain by flood deposits of the Los Angeles River.

2.2 Regional Faulting and Seismicity

Regional Faults: The site is not located within a fault-rupture hazard zone as defined by the Alquist-Priolo Special Studies Zones Act (CDMG, 1999) and no evidence of active faulting was observed during this exploration.

Using the USGS computer program (USGS, 2002, updated 2008) and the site coordinates of 34.209 degrees north latitude and 118.442 degrees west longitude, the closest major active faults to the site are the Northridge Hills Fault (5.3 km), Verdugo Fault (6.1 km), Sierra Madre Fault (9.7 km), Hollywood Fault (12.9 km).

Seismicity: Sites in southern California are subject to seismic hazards of varying degrees depending upon the proximity, degree of activity, and capability of nearby faults. These hazards can be primary (i.e., directly related to the energy release of an earthquake such as surface rupture and ground shaking) or secondary (i.e., related to the effect of earthquake energy on the physical world, which can cause phenomena such as liquefaction and ground lurching). Since there are no active faults at the site, the potential for primary ground rupture is considered low. The primary seismic hazard for this site is ground shaking due to a future earthquake on one of the major regional active faults listed above.

The maximum moment magnitude for the controlling fault is 6.93 M_W, with peak ground accelerations of 0.48g (SDS/2.5) which would be generated from the Northridge Hills fault.

The site is not located within an area of potential liquefaction, as defined by the State's Seismic Hazard Mapping Act. The attached Site Location and Seismic Hazards Map (Figure 1) shows the approximate location of the site relative to seismic hazard zones, as shown on the State of California Seismic Hazard Zones Map for the Van Nuys Quadrangle (CDMG, 1998).

Secondary seismic hazards, such as tsunami and seiche, are considered low as the site is located more than 15 miles away from the ocean and is not located within a mapped Tsunami Inundation Zone, nor is the site located near any confined water storage facilities (e.g., open reservoirs, water tanks, etc.).

2.3 Geotechnical Conditions

NMG's exploration encountered approximately 2.5 to 7.5 feet of undocumented artificial fill overlaying the alluvial deposits of the site. The existing artificial fill generally consisted of yellowish brown to brown silty sand. The artificial fill materials encountered were medium dense to dense with blow-counts in the range of 7 to 34 blows/ft (California Ring Sampler blows). Field moisture content varied from approximately 1.3 percent to 12.6 percent, with an average of about 8 percent. The dry densities of the fill ranged from 105.6 to 126 pounds per cubic foot (pcf).

Most of the alluvium deposits at the site generally consisted of interlayered yellowish brown, olive brown, and brown sandy and clayey silts, and silty sands; with some poorly graded sands in local areas. Sandy and clayey silt soils were predominantly found in our borings, with silty sand layers found at depths of 20 to 25 feet in Borings H-5, H-7 trhough H-9, H-11, and H-12. The sandy and clayey silts were medium stiff to stiff with blow-counts ranging from 6 to 29 blows/ft. Field moisture content for these soils varied from 4.2 to 20.3 percent and the dry density ranged from 95.9 to 116.7 pcf. The silty sand soils were medium dense to dense with blow counts varying from 13 to 32 blows per foot; field moisture content varied from 3 to 19.3 percent, having dry densities ranging from 99.9 to 128.1 pcf. Groundwater was not encountered in our borings.

The engineering properties, based on the laboratory test results, used to characterize the subsfurface soils are presented in Section 2.4.

2.4 Laboratory Test Results

We tested representative samples of onsite soils collected during our field exploration to characterize their engineering properties in general conformance with applicable American Society for Testing and Materials (ASTM) standards. The laboratory test results from this study are provided in Appendix C. In-situ moisture content and dry density data are included on the geotechnical boring logs (Appendix B).

Results of the maximum dry density testing indicates that the silty sandy soils collected at depths of 0 to 5 feet in Borings H-1 and H-12 have maximum dry densities of approximately 122 and 120 pcf at optimum moisture contents of 10.5 and 10 percent, respectively.

Grain-size distribution and plasticity tests (Atterberg Limits) were conducted on samples considered representative of the alluvial and artificial fill soil in the upper 10 feet. The samples tested were generally classified as silty sands and sandy silts, with fine contents ranging from 27 to 70 percent. One sample in Boring H-1 and at depth of 7.5 feet was classified as a poorly graded sand with fine content of 4 percent. A representative artificial fill soil sample at a depth of 2.5 feet was found to be non-plastic. One clayey silt sample collected at a depth ranging from 5 to 10 feet was found to have a liquid limit of 27 percent and a plastic limit of 35 percent.

Based on laboratory testing, the onsite sandy and silty soils in the upper 10 feet have "low" to "very low" expansion potential (Expansion Index in the range of 8 to 22). The R-values of two near surface soil samples were 60 and 70.

Direct shear testing was conducted on two undisturbed alluvial samples and one undisturbed artificial fill sample representative of sandy and silty soils, collected at depths of feet, in order to evaluate the strength properties of the underlying materials. The results of the direct shear test indicate that the alluvial soils have an ultimate internal friction angle of 26 degrees with cohesion of 100 pounds per square foot (psf). The peak internal friction angle was 28 degrees at cohesion of 400 psf. The fill soil sample had an ultimate friction angle of 27 degrees at 175 cohesion; the peak values for friction angle and cohesion were 31 degrees and 350 psf, respectively.

The boring data and consolidation test results show that onsite soils have low to moderate settlement potential with the exception of some soil that may be prone to hydroconsolidation (collapse upon saturation). Soil samples tested from depths of 5 and 7.5 feet at borings H-4 and H-5, respectively showed collapse potentials ranging from from 1.86 to 4.21 percent upon the introduction of water at 3.2 ksf axial load. Two representative samples of the near-surface soils were sent to an outside laboratory for corrosivity testing. This testing included pH, soil resistivity, sulfate content and chloride content.

The electrical resistivity test on the saturated soil sample indicates that onsite soils are corrosive to ferrous metals. Sulfate-content test result indicates that onsite soils have "negligible" sulfate exposure per Table 4.3.1 of ACI-318. The corrosivity test results and the corrosion protection recommendation report prepared by HDR Schiff are presented in Appendix C.

2.5 Groundwater

Groundwater was not encountered in any of our borings to a depth of 31.5 feet. Historic high groundwater at the site is mapped at 70 to 80 feet below ground; however, local groundwater well data indicates it ould be as deep as 200 feet. Groundwater is not anticipated to be encountered during grading operations

2.6 Settlement

With the exception of the potentially collapsible soil discussed in Section 2.4, the soil at the site is has relatively low settlement potential for the anticipated fill and structural loads. Some of the near surface soil in the vacant portion of the site on the east end is looser and dry. Provided the recommended remedial measures herein are implemented the total consolidation (static) settlement for the proposed structures should not exceed 1/2- inch following construction. The differential settlement should not exceed 1/4-inch over a 40-foot span.

If not mitigated, the potential settlement related to the collapsible soil encountered in borings H-4 and H-5 is on the order of 1 to 2 inches. This assumes the collapsible soil layer is 2 to 4 feet thick and would become saturated following project completion (either from natural or maninduced infiltration). Because the limits of the collapsible soil can vary, the entire settlement

potential of 1 to 2 inches may be differential. This differs from differential settlements calculated from normal consolidation settlement which is often estimated as one half of the total settlement.

The soil characteristics at the site are such that the soil should not be prone to significant settlement that can be induced by earthquake related ground shaking.

2.7 Seismic Hazards

The site is not located within any mapped seismic hazard zone. We did not encounter conditions considered significant with respect to other secondary seismic hazards such as liquefaction.

2.8 Percolation Testing

Percolation testing at the site was performed on June 27, 2012. The Boring Percolation Test Procedure was used as described in "Low Impact Development Best Management Practice Guideline For Design, Investigation, And Reporting" by the County of Los Angeles Department of Public Works (LADPW, 2011). Two percolation tests were performed in borings H-3 and H-6 (8-inch diameter) with depths of 12.5 and 7.5 feet, respectively. The borings were presoaked overnight prior to testing. The percolation testing was performed over a six-hour period and the final measurement was used to calculate the preliminary design infiltration rate. Percolation test data sheets are provided in Appendix D.

Measured percolation and infiltration rates were calculated based on the results of the final measurements at each test location. Measured infiltration rates were calculated using the formula given in the Boring Percolation Test Procedure (LADPW, 2011). This equation corrects for vertical flow and removes the affects of lateral flow. Measured percolation rates and measured infiltration rates are given in Table 1, below.

TABLE	1 - PERCOLATION T	EST RESULTS
Boring No.	Measured Percolation Rate (in./hr.)	Measured Infiltration Rate (in./hr.)
H-3	24.0	3.08
H-6	4.80	1.50

NMG

3.0 CONCLUSION AND RECOMMENDATIONS

3.1 General Conclusion and Recommendation

Based on our study, the proposed project is considered feasible from a geotechnical standpoint provided the recommendations in this report are implemented during design, grading and construction. The site will require partial removal of existing artificial fill materials, as well as remedial grading to remove anticipated unsuitable soils and provide a compacted fill blanket to support the proposed improvements.

Our recommendations are based on the anticipated geotechnical conditions and should be verified during grading and construction. Additional soil testing and revised recommendations may be necessary if import fill is required and/or exposed geotechnical conditions vary significantly from the findings and interpretations presented in this report. Geotechnical observation and testing should be conducted during grading and construction operations. The recommendations in this report are considered minimum and may be superseded by more stringent requirements of others and/or the future geotechnical consultant of record.

3.2 Site Preparation and Earthwork

Site preparation and grading should be performed in accordance with the recommendations herein and the requirements of the City of Los Angeles. NMG's General Earthwork and Grading Specifications are included in Appendix F.

3.2.1 Site Demolition and Clearing

Prior to remedial grading and after demolition and removal of the existing improvements, deleterious materials and debris should be cleared from the site and disposed of offsite. Excavation for the removal of existing utilities and vegetation should be observed by the geotechnical consultant. Large roots, highly organic soils, existing foundations, pipelines and construction debris should be removed and should not be incorporated into new fills.

Soil that is disturbed as part of large excavations or removal of underground utilities and foundations should be observed and evaluated by the geotechnical consultant who should provide remedial recommendations. Excavations that require backfill should be properly documented and compacted under the observation and testing of the geotechnical consultant.

3.2.2 Protection of Existing Improvements and Utilities

Existing improvements and utilities at or adjacent to the site that are to be protected in place should be located and visually marked prior to demolition and grading operations. Excavations adjacent to improvements to be protected in-place or any utility easement should be performed with care, so as not to undermine existing foundations or destabilize the adjacent ground.

3.2.3 Remedial Grading Measures

Some of the near-surface soils including the existing artificial fill are expected to be disturbed and unsuitable for structural support following site demolition. The upper one to two feet of soil in the vacant areas at the east end of the site is also weathered and loose. These materials should be removed and recompacted (per Section 3.2.4). On average, remedial removals across the site should be on the order of 2 to 3 feet deep, with the exception of the collapsible soil area near borings H-4 and H-5. The existing soil in this area should be removed down to approximately 7.5 feet below existing ground and recompacted. The general area of potentially collapsible soil is show on Figure 3. The extent to which the collapsible soils extends laterally should be determined in the field during removals by the geotechnical consultant. Soil may be deemed to have insignificant collapse potential if it has an in-place soil with dry density near 110 pcf or a degree of saturation over 65 percent. Clayey or very clean sands may also be visually classified as having low collapse potential.

We recommend a minimum new fill blanket of 3 feet within the new building footprints. The removal bottoms should be reviewed and approved by the geotechnical consultant prior to placement of new fill. Because the recommended remedial removal depths are based on limited subsurface data, locally deeper removals may be required to establish competent removal bottoms based on observed field conditions.

Excavations for remedial removals deeper than 4 feet should be laid back at 1.5H:1V inclinations or flatter. Shallower excavations may consist of near vertical sides.

3.2.4 Fill Placement

Upon completion of remedial removals, the approved removal bottoms should be scarified a minimum of 6 inches. The removal bottoms and fill materials should be compacted to at least 90 percent of maximum dry density, as determined by ASTM Test Method D1557. Fill materials should be placed in loose lifts no thicker than 8 inches.

Fill materials should be relatively free of deleterious material. Crushed (recycled) asphalt concrete and PCC concrete may be used as fill materials. The existing fill soil and alluvium at the site should generally be suitable for re-use as compacted fill. The moisture content of new compacted fill soils should be placed at above the optimum moisture content within the compactable moisture range. Appropriate support equipment and other measures (e.g., mixing, stockpiling) may be needed to achieve the uniform and correct moisture content for placement of the fill. If the soils become extremely wet (during wet seasons), special measures for mixing and drying may be required that will need to be determined based on the field conditions.

3.2.5 Earthwork Shrinkage and Bulking

Due to the inherent variability of soil materials, earthwork volume changes are difficult to accurately quantify. Based on the gathered data and our experience with similar materials,

120810 8 NMG

we anticipate the near surface soil that is removed and recompacted will shrink on the order of zero to 5 percent. Since the site has been previously developed, little to no subsidence is anticipated from site earthwork equipment.

3.3 Seismic Design Parameters

The seismic design criteria based on the 2010 California Building Code (CBC) are as follows:

Selected Seismic Design Parameters from 2010 CBC	Seismic Design Values	Reference
Latitude	34.2094 North	
Longitude	118.4423 West	
Controlling Seismic Source	Northridge Hills Fault	USGS, 2008
Distance to the Controlling Seismic Source	3.2 Miles (5.2 km)	USGS, 2008
Site Class per Table 1613.5.2	D	USGS, 2011
Spectral Acceleration for Short Periods (Ss)	1.754 g	USGS, 2011
Spectral Accelerations for 1-Second Periods (S1)	0.612 g	USGS, 2011
Five-Percent Damped Design Spectral Response Acceleration at Short Periods (S _{DS}) from Equation 16-38 (Site Class D)	1.169 g	USGS, 2011
Five-Percent Damped Design Spectral Response Acceleration at 1-Second Period (S _{DI}) from Equation 16-39 (Site Class D)	0.612 g	USGS, 2011

3.4 Foundation Design

Shallow foundations and slab-on-grade floors should be feasible for the proposed structurers. Our exploration and laboratory testing suggests that expansive soil will not a significant issue for foundations and slabs-on-grade. Although one of two expansion index (EI) tests had an EI of just over 20, we anticipate that following site demolition and grading, the general EI for the site may be classified as less than 20. (Foundation and slabs on soil with EI's greater than 20 should be designed per the requirements of Section 1808.6 of the 2010 CBC.) The preliminary design parameters for wire-reinforced slabs are provided below; however, these parameters may need to be revised if different conditions are encountered during the grading.

The design of slabs and foundations is the purview of the project structural engineer based on the anticipated dead and live loads. The design of foundations should also consider the settlement as discussed in Section 3.6.

For preliminary design purposes, the net allowable bearing capacity for footings may be calculated based on the following equation:

qall = 1,000 D + 500 B + 500

where:

D = embedment depth of footing, in feet

B = width of footing, in feet

q_{all} = maximum allowable bearing pressure, not to exceed 3,000 psf.

If applicable, an effective plasticity index of 10 may be used for design of wire-reinforced slabs. Also, a soil subgrade reaction, k_s, of 150 pounds per cubic inch (pci) and soil modulus of elasticity, E_s, of 1,500 psi are recommended for design of foundations and slabs. The allowable bearing pressure may be increased by one-third for wind and seismic loading. The coefficient of resistance of 0.35 against sliding is considered appropriate. For isolated footings, we recommend minimum embedment of 18 inches below lowest adjacent grade.

3.5 Interior Slab Moisture Mitigation

In addition to geotechnical and structural considerations, the project owner should also consider moisture mitigation when designing and constructing slabs-on-grade. The intended use of the interior space, type of flooring, and the type of goods in contact with the floor may dictate the need for, and design of, measures to mitigate potential effects of moisture emission from and/or moisture vapor transmission through the slab. A vapor retarder or barrier is typical under the slab to help mitigate moisture transmission through slabs.

Guidelines by the American Concrete Institute (ACI) (302.1R-96) recommend that the vapor retarder be placed directly under the slab (sand layer not required). However, the location of the vapor retarder and the use of sand above it may also be subject to the owner's/builder's past successful practice. A minimum 10-mil thick vapor retarder is recommended where flooring and/or interior use requires floor slab water vapor control.

Concrete mix design and curing are also significant factors in mitigating slab moisture problems. Concrete with lower water/cement ratios results in denser, less permeable slabs. They also "dry" faster with regard to when flooring can be installed (reduced moisture emissions quantities and rates). Rewetting of the slab following curing should be avoided since this can result in additional drying time required prior to flooring installation. Proper concrete slab testing prior to flooring installation is also important.

The concrete mix design and the type and location of the vapor retarder should be determined in coordination with all parties involved in the finished product, including the project owner, architect, structural engineer, geotechnical consultant, concrete subcontractors, and flooring subcontractors.

3.6 Settlement Potential

Static and seismic settlements for the proposed structures are not expected to exceed ½-inch total and ¼-inch differential following completion of construction, provided the recommendations in this report are implemented for design, grading, and construction.

3.7 Lateral Earth Pressures

The recommended lateral earth pressures based on our limited subsurface exploration and for approved compacted soils in drained conditions are as follows:

Conditions	Level (pcf)	2:1 Slope (pcf)
Active	40	65
At-Rest	60	85
Passive	360	135 (sloping down)

In addition to the above lateral forces due to retained earth, the influence of surcharge due to other loads such as adjacent footings, vehicular traffic or lateral loads acting on the retaining wall, if any, should be considered during the design of retaining walls. Recommendations for drainage behind retaining walls are provided in the attached detail (Figure 3, rear of text).

To design an unrestrained retaining structure, such as a cantilever wall, the active earth pressure may be used. For a restrained retaining structure, such as a basement wall, loading docks or at restrained-wall corners, the at-rest pressure should be used. Passive pressure is used to compute lateral soil resistance developed against lateral structural movement. Further, for sliding resistance, the friction coefficient of 0.35 may be used at the concrete and soil interface. In addition, the passive resistance is taken into account only if it is ensured that the soil against embedded structures will remain intact with time. Drainage behind retaining walls should also be provided, unless hydrostatic forces are incorporated in wall design.

The seismic lateral earth pressure for level backfill may be estimated to be an additional 14 pcf for active and at-rest conditions. The earthquake soil pressure distribution is similar to active and at-rest pressure distributions and is added to the static pressures. For the active and at-rest conditions, the additional earthquake loading is zero at the top and maximum at the bottom.

3.8 Cement Type

Concrete mix design for structural concrete elements may be based on the "negligible" soluble sulfate category of Table 4.3.1 in ACI-318-318R-43. Other ACI guidelines for structural concrete are recommended. Additional sampling and testing at or near the completion of grading may be recommended if soil conditions are encountered that are significantly different than anticipated.

3.9 Soil Corrosivity

The corrosion protection recommendation report prepared by HDR Schiff is included in Appendix C of this report.

3.10 Vehicular Pavement

As discussed previously, the R-value of the near surface soil samples collected in our geotechnical study at the site were in the range of 60 to 70. For preliminary purposes using a traffic index (TI) of 5.0 for parking stalls, TI of 5.5 for drive areas, and TI of 6.0 for drive entries; and a design R-value of 50, we recommend the following pavement sections in accordance with the California Highway Design Manual. Because of the high R-value, a minimum section of 3 inches asphalt concrete (AC) over 6 inches of aggregate base (AB) applies for all cases. In addition, pavement sections for concrete unit pavers are provided in the event they are specified.

	T.I.= 5.0 Primarily Passenger and Light Duty Vehicles	T.I.= 5.5 Drive Aisles	T.I.= 6.0 Truck Traffic Areas
	3-inch AC/6-inch AB	3-inch AC/6inches AB	3-inch AC/6-inch AB
Pavement	5-inch Full Depth AC/	5.5-inch Full Depth AC/	6-inch Full Depth AC/
Section	Compacted Subgrade	Compacted Subgrade	Compacted Subgrade
Alternatives	80mm (3.15")	80mm	80mm
	PAVERS/6-inch AB	PAVERS/8-inch AB	PAVERS/8-inch AB

If higher traffic indices are determined when project plans are more complete, the above pavement sections should be reviewed and adjusted as necessary.

Pavement sections should be constructed in accordance with the requirements of Section 301 and 302 of the Standard Specifications of Public Works Construction (The Green Book). Prior to construction of pavement sections, the subgrade soils should be scarified to a minimum depth of 6 inches, moisture-conditioned as needed, and recompacted in place to a minimum of 90 percent relative compaction per ASTM D1557. If AC is placed directly over the subgrade soil, then the subgrade soil should be compacted to a minimum relative compaction of 95 percent. Subgrade should be firm and unyielding.

AB materials should be crushed aggregate or crushed miscellaneous base in accordance with The Green Book. AB should be free of deleterious materials, placed in 6- to 8-inch loose lifts, moisture-conditioned as necessary, and compacted to a minimum of 95 percent relative compaction per ASTM D1557. AC should also be compacted to 95 percent relative compaction.

PCC Section for Truck Loading Docks and Trash Bin Areas: We recommend that the truck loading dock and trash bin area pavements be a minimum of 6-inch-thick PCC slab over compacted subgrade. Reinforcement with No. 3 rebars, at least 18 inches on center, both ways,

NMG

is recommended. The soil subgrade should be compacted to a minimum 95 percent relative compaction per ASTM D1557.

Moisture and root barriers should be considered along the street pavements that are adjacent to unpaved medians and parkways with landscape and irrigation in order to minimize the potential for wetting of the street subgrade soils and pavement distress.

3.11 Other Site Concrete

We recommend that the "low" category be used during the preliminary design of the project site. Additional laboratory testing or field evaluation following the completion of grading operations should be performed to verify our preliminary recommendations.

TYPICAL RECOMMI			ON-STRUCT	TURAL CONC	RETE
Recommendations	Very Low (< 20)	Low (20 - 50)	Medium (51 – 90)	High (91 – 130)	Very High (> 130)
Slab Thickness (Min.): Nominal thickness except where noted.	4"	4"	4"	4"	4" Full
Subbase: Thickness of sand or gravel layer below concrete	N/A	N/A	Optional	2" - 4"	2" - 4"
Presaturation: Degree of optimum moisture content (opt.) and depth of saturation	Pre-wet Only	1.1 x opt. to 6"	1.2 x opt. to 12"	1.3 x opt. to 18"	1.4 x opt. to 24"
Joints: Maximum spacing of control joints. Joint should be ¼ of total thickness	10'	10'	8'	61	6
Reinforcement: Rebar or equivalent welded wire mesh placed near mid-height of slab	N/A	N/A	Optional (WWF 6 x 6 - W1.4xW1.4)	No. 3 rebar, 24" O.C. both ways or equivalent wire mesh	No. 3 rebar, 24" O.C. both ways
Restraint: Slip dowels across cold joints; between sidewalk and curb	N/A	N/A	Optional	Across cold joints	Across cold joints (and into curb)

3.12 Storm Water Treatment

No plans are currently available showing potential stormwater infiltration locations, or a proposed stormwater infiltration system; therefore the recommendations given in this section are preliminary and are based on limited percolation testing performed at two boring locations (see Figure 1). Additional percolation testing and analyses may be required at specific locations once plans showing proposed infiltration devices and locations are available.

The measured infiltration rate of 1.5 inches per hour represents the underlying soil in this area. A factor of safety of 2.0 should be used for design. Thus, a preliminary design infiltration rate of 0.75 inches per hour is recommended for the preliminary design of a stormwater treatment system.

The infiltration system should be sized and designed by a qualified engineer and adhere to local guidelines and regulations pertaining to treatment and infiltration of onsite stormwater. Special care should be taken so as to limit damage or disturbance to onsite soils in a manner that may affect infiltration in the area of the proposed infiltration system.

3.13 Trench Excavation and Backfill

Excavations should be performed in accordance with the requirements set forth by Cal/OSHA Excavation Safety Regulations (Construction Safety Orders, Section 1504, 1539 through 1547, Title 8, California Code of Regulations). In general, onsite soils are anticipated to be classified as Type "C" due to the low cohesion and sandy character. Cal/OSHA regulations apply to excavations that are up to 20 feet deep.

Trenches, including interior utility, should be either backfilled with native soil and compacted to 90 percent relative compaction, or backfilled with clean sand (SE 30 or better), which can be densified with water jetting and flooding (except for sewer and water lines under the jurisdiction of IRWD, which does not typically allow jetting of sands).

Trenches excavated on a graded slope-face, if any, for utility or irrigation lines and/or for any purpose should be properly backfilled and compacted in order to obtain a minimum 90 percent relative compaction to the slope face. Trenches excavated next to structures and foundations should also be properly backfilled and compacted to provide full lateral support and reduce settlement potential.

3.14 Drainage and Irrigation

Inadequate control of run-off water, heavy irrigation after development of the site, or regional groundwater level changes may result in shallow groundwater conditions where previously none existed. Maintaining adequate surface drainage, proper disposal of run-off water, and control of irrigation will help reduce the potential for future moisture-related problems and differential movements from soil heave/settlement.

Surface drainage should be carefully taken into consideration during grading, landscaping, and building construction. Positive surface drainage should be provided to direct surface water away from structures and slopes and toward the street or suitable drainage devices. Ponding of water adjacent to the structures should not be allowed. Paved areas should be provided with adequate drainage devices, gradients, and curbing to prevent run-off flowing from paved areas onto adjacent unpaved areas.

The performance of foundations is also dependent upon maintaining adequate surface drainage away from structures. The minimum gradient within 5 feet of the buildings will depend upon surface landscaping. In general, we suggest that unpaved turf and landscape areas have a minimum gradient of 2 percent away from structures.

Construction of planter areas immediately adjacent to structures should be avoided. If planter boxes are constructed adjacent to or near buildings, the sides and bottoms of the planter should be provided with a moisture barrier to prevent penetration of the irrigation water into the subgrade. Provisions should be made to drain excess irrigation water from the planters without saturating the subgrade below or adjacent to the planters. Raised planter boxes may be drained with weepholes. Deep planters (such as palm tree planters) should be drained with below-ground, water-tight drainage lines connected to a suitable outlet.

3.15 Future Geotechnical Plan Reviews

Future plans for the proposed project and the grading plan should be reviewed and accepted by the geotechnical consultant. Additional exploration, recommendations or modifications to the recommendations herein may be necessary at that time depending on the final plans. The geotechnical consultant should also review the foundation plans for conformance with the geotechnical design parameters and evaluate the foundation design impacts on total and differential settlement for the structures at the site.

3.16 Observation and Testing during Grading and Construction

Geotechnical observation and testing should be performed by the geotechnical consultant of record during the following phases of grading and construction:

- During site preparation and clearing,
- During excavations to remove existing foundations and underground improvements;
- During earthwork, including observation and acceptance of remedial removal bottoms and fill placement;
- Following the completion of grading, in order to verify soil properties for foundations, slabon-grade and pavements;
- · Upon completion of any foundation or structural excavation, prior to pouring concrete;
- · During slab and flatwork subgrade preparation prior to pouring of concrete;
- During placement of backfill for utility trenches;
- During placement of backfill for retaining structures;
- During installation and backfill of subdrainage systems (if any);
- During subgrade preparation and placement of aggregate base and asphaltic concrete; and

15

When any unusual soil conditions are encountered.

3.17 Limitations

This report has been prepared for the exclusive use of our client, Shubin Nadal Realty Investors, within the scope of services requested by our client for the specific project in Van Nuys described herein. This report or its contents should not be used or relied upon for other projects or purposes, or by other parties without the acknowledgement of NMG and the consultation of a geotechnical professional. The means and methods used by NMG for this study are based on local geotechnical standards of practice, care, and requirements of governing agencies. No warranty or guarantee, expressed or implied, is given.

Our findings, conclusions, and recommendations are professional opinions based on interpretations and inferences made from geologic and engineering data from specific locations and depths, observed or collected at a given time. By nature, geologic conditions can vary from point to point, can be very different in-between exploration points, and can also change over time. Our conclusions and recommendations are, by nature, preliminary and subject to verification and/or modification by NMG during grading and construction when more subsurface data is exposed.

Liquefaction

Areas where historic occurrence of liquefaction, or local geological, geotechnical and groundwater conditions indicate a potential for permanent ground displacements such that mitigation as defined in Public Resources Code Section 2693(c) would be required.

Earthquake-Induced Landslides

Areas where previous occurance of landslide movement, or local topographic, geotogical, geotochnical and aubsurface water conditions indicate a potential for permanent ground displacements such that mitigation as defined in Public Resources Code Section 2693(c) would be required.

SITE LOCATION AND SEISMIC HAZARDS MAP

BASE: U.S.G.S. SEISMIC HAZARDS MAP, VAN NUYS QUADRANGLE Dated: February 1, 1998

7600 TYRONE AVENUE, VAN NUYS CITY OF LOS ANGELES, CALIFORNIA Project Number: 12069-01

Project Name: Shubin Nadal/Van Nuys

Date: 8-10-12

Figure No. 1

NMG Georechnical, Inc.

NOTES

- PIPE TYPE SHOULD BE PVC OR ABS, SCHEDULE 40 OR SDR35 SATISFYING THE REQUIREMENTS OF ASTM TEST STANDARD D1527, D1785, D2751, OR D3034.
- 2. FILTER FABRIC SHALL BE APPROVED PERMEABLE NON-WOVEN POLYESTER, NYLON, OR POLYPROPYLENE MATERIAL.
- 3. DRAIN PIPE SHOULD HAVE A GRADIENT OF 1 PERCENT MINIMUM.
- 4. WATERPROOFING MEMBRANE MAY BE REQUIRED FOR A SPECIFIC RETAINING WALL (SUCH AS A STUCCO OR BASEMENT WALL).
- 5. WEEP HOLES MAY BE PROVIDED FOR LOW RETAINING WALLS (LESS THAN 3 FEET IN HEIGHT) IN LIEU OF A VERTICAL DRAIN AND PIPE AND WHERE POTENTIAL WATER FROM BEHIND THE RETAINING WALL WILL NOT CREATE A NUISANCE WATER CONDITION. IF EXPOSURE IS NOT PERMITTED, A PROPER SUBDRAIN OUTLET SYSTEM SHOULD BE PROVIDED.
- 6. IF EXPOSURE IS PERMITTED, WEEP HOLES SHOULD BE 2-INCH MINIMUM DIAMETER AND PROVIDED AT 25-FOOT MAXIMUM SPACING ALONG WALL. WEEP HOLES SHOULD BE LOCATED 3+ INCHES ABOVE FINISHED GRADE.
- SCREENING SUCH AS WITH A FILTER FABRIC SHOULD BE PROVIDED FOR WEEP HOLES/OPEN JOINTS TO PREVENT EARTH MATERIALS FROM ENTERING THE HOLES/JOINTS.
- OPEN VERTICAL MASONRY JOINTS (I.E., OMIT MORTAR FROM JOINTS OF FIRST COURSE ABOVE FINISHED GRADE) AT 32-INCH MAXIMUM INTERVALS MAY BE SUBSTITUTED FOR WEEP HOLES.
- 9 THE GEOTECHNICAL CONSULTANT MAY PROVIDE ADDITIONAL RECOMMENDATIONS FOR RETAINING WALLS DESIGNED FOR SELECT SAND BACKFILL.

RETAINING WALL DRAINAGE DETAIL

NMG Georechnical, Inc.

APPENDIX A

REFERENCES

- California Division of Mines and Geology, 1997 and updated 2008, Guidelines for Evaluation and Mitigating Seismic Hazards in California, Special Publications 117 and 117A.
- California Division of Mines and Geology, 1999, Fault-Rupture Hazard Zones in California, Special Publication 42, Revised 1997, 1 and 2 added 1999.
- California Division of Mines and Geology, 1997, Seismic Hazard Zone Report for the Van Nuys 7.5-Minute Quadrangle, Los Angeles County, California, SHZR 08
- California Division of Mines and Geology, 2001, Seismic Hazard Zones Map, Van Nuys Quadrangle, Official Map Released February 1, 1998.
- California Division of Mines and Geology, 2003, Fault-Rupture Hazard Zones in California, Special Publication 42, Revised 1997, Supplement 3 added 2003, Authored by Hart, E. W. and Bryant, W. A.
- Jennings, C. W., 1994 (Revised 2010), Fault Activity Map of California and Adjacent Areas, with Locations and Ages of Recent Volcanic Eruptions, California Department of Conservation, Division of Mines and Geology, Geologic Data Map No. 6.
 - County of Los Angeles Administrative Manual, 2011, Low Impact Development Best Management Practice Guideline For Design, Investigation, And Reporting, Department of Public Works, Geotechnical and Materials Engineering Division, dated June 1, 2011.
- U.S. Geological Survey, 2005, Preliminary Digital Geologic Map of the Los Angeles 30' X 60' Quadrangle, Southern California, dated 2005, CGS Open File Report 2005-1019.
- U. S. Geological Survey, 2008, 2002 Interactive Deaggregations Program, Updated August 19, 2008; web site address: http://eqint.cr.usgs.gov/deaggint/2002/.
- U.S. Geological Survey, 2011, Seismic Hazards Curves, Response Parameters and Design Parameters, Version 5.1.0, dated February 10, 2011; web site address: http://earthquake.usgs.gov/research/hazmaps/design

1208(0.dec A-1

SOIL CLASSIFICATION CHART

1	MAJOR DIVISION	S	SYME	BOLS	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS	000	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES	H	GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
GRAINED SOILS	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	14	GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS MORE THAN 50% OF	(LITTLE OR NO FINES)		SP	POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	COARSE FRACTION PASSING NO. 4 SIEVE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
		(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML.	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHL	Y ORGANIC SOILS			PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: Dual symbols are used to indicate gravels or sand with 5-12% fines and soils with fines classifying as CL-ML. Symbols separated by a slash indicate borderline soil classifications.

Sampler and Symbol Descriptions

- Modified California sample (63.5 mm diameter)
- Standard Penetration Test
- Undisturbed pushed tube sample
- Large bulk sample
- Small bulk sample
- * Approximate depth of perched water or groundwater

Note: Number of blows required to advance driven sample 300 mm (or length noted) is recorded; blow count recorded for seating interval (initial 150 mm of drive) is indicated by an asterisk.

Laboratory and Field Test Abbreviations

MD Laboratory compaction test
CN Laboratory consolidation test

DS Laboratory direct shear test

AL Atterberg limits

SE Sand Equivalent

GS Grain Size Analysis (Sieve and/or Hydro.)

RV R-Value

CC Chemical Testing incl. Soluble Sulfate

El Expansion Index

UU Unconsolidated Shear Strength

GENERAL NOTES

- 1. Station location is indicated with offset to right (R) or left (L) of centerline (CL).
- Soil classifications are based on the Unified Soil System and include color, moisture, and relative density or consistency. Field
 descriptions have been modified to reflect results of laboratory tests where deemed appropriate. Bedrock descriptions are based on visual
 classification and include rock type, moisture, color, grain size, strength, and weathering.
- Descriptions on these boring logs apply only at the specific boring locations and at the time the borings were made. They are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO LOG OF BORING

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

AG Geotechnical, Inc.

Groundwa SAMPLI	5 Modified Coater Depth;	and the same	Logged By CD Drill Bit Size/Type 8" Hammer Data 140 lbs @ 30" drop (auto)	Total Depti Drilled (ft) Approxima Surface El	n	heet	1-1 1 of 2 31.5
Bulk, N Groundwa SAMPLI	Modified Coster Depth:	and the same	Hammer Data 140 lbs @ 30" drop (auto)	Drilled (ft)	n		
Groundwa SAMPLI	eler Depth;	and the same		Drilled (ft)	n		
SAMPLI	ES D	G	roundwater Not Encountered	Drilled (ft)			31.5
	20	1			te Grou	-	ar cord.
	20				evation	ind (ft)	770.0
Number	ws per phic Log						
	Gra Gra	nscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
		SM	Surface: 3 inches of Asphaltic Concrete (AC). 4 inches of Aggregate Base (AB). Artificial Fill (Af)				
D-1	13		. @ 2.5' Yellowish brown fine-grained silty SAND, damp, dense, micaceous.	nedium	1.8	107.5	B-1 @ 0'-5', RV, MD, GS
D-2	13		@ 5' Yellowish brown fine-grained silty SAND, damp, m dense, micaceous.	edium	1.3	105.6	
D-3	25	SP	Alluvium (Qai) @ 7.5' Yelkowish brown gravelly SAND, damp, dense, fri inch gravel.	able, 0.25	1.0		Sample Disturbed, G
D-4	44		@ 10' Yellowish brown gravelly SAND, damp, very dens	e, friable.	1.3		Sample Disturbed
D-5	18	ML	@ 15' Light yellowish brown fine-grained sandy SILT, medium stiff, slightly plastic, slightly porcus, massive, m	oist, icaceous.	10.9	95.9	
D-6	26		@ 20' Light yellowish brown fine-grained sandy SILT, more medium stiff, slightly plastic, slightly porous, massive, m	pist, caceous.	7.8	108.6	
D-7	23		@ 25' Light yellowish brown fine-grained sandy SILT, more medium stiff, slightly plastic, slightly porous, massive, massive, massive, slightly laminated.	oist, caceous,	11.4	104.8	
	D-3 D-4 D-5	D-3 25 D-4 44 D-5 18	D-3 25 SP D-4 44 D-5 18 ML	D-3 25 SP Alluvium (Qal) ② 7.5' Yelkowish brown gravelly SAND, damp, dense, fri inch gravel. ② 10' Yellowish brown gravelly SAND, damp, very dense D-4 44 ML ② 15' Light yellowish brown fine-grained sandy SILT, mo medium stiff, slightly plastic, slightly porcus, massive, m ② 20' Light yellowish brown fine-grained sandy SILT, mo medium stiff, slightly plastic, slightly porcus, massive, mi	D-3 25 SP Alluvium (Qal) ② 7.5' Yellowish brown gravelly SAND, damp, dense, friable, 0.25 inch gravel. ② 10' Yellowish brown gravelly SAND, damp, very dense, friable. D-5 18 ML ② 15' Light yellowish brown fine-grained sandy SILT, moist, medium stiff, slightly plastic, slightly porous, massive, micaceous. ② 20' Light yellowish brown fine-grained sandy SILT, moist, medium stiff, slightly plastic, slightly porous, massive, micaceous.	D-3 25 SP Alluvium (Qal) @ 7.5' Yelkowish brown gravelly SAND, damp, dense, friable, 0.25 inch gravel. D-4 44 @ 10' Yelkowish brown gravelly SAND, damp, very dense, friable. 1.3 D-5 18 ML @ 15' Light yelkowish brown fine-grained sandy SiLT, moist, medium stiff, slightly plastic, slightly porous, massive, micaceous. D-6 26 @ 20' Light yelkowish brown fine-grained sandy SiLT, moist, medium stiff, slightly plastic, slightly porous, massive, micaceous. 7.8	D-3 25 SP Alluvium (Qal) @ 7.5' Yellowish brown gravelly SAND, damp, dense, friable, 0.25 inch gravel. D-4 44 @ 10' Yellowish brown gravelly SAND, damp, very dense, friable. D-5 18 ML @ 15' Light yellowish brown fine-grained sandy SILT, moist, medium stiff, slightly plastic, slightly porous, massive, micaceous. D-6 26 @ 20' Light yellowish brown fine-grained sandy SILT, moist, medium stiff, slightly plastic, slightly porous, massive, micaceous. 7.8 108.6

LOG OF BORING Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Elevation (ft)	Type	Blows per foot	Graphic Log	uscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
€	SAME	PLES							
Comments						Approximate Surface Ele	e Grou vation	nd (ft)	771.0
Approxima	te Ground	twater De	epth:	G	roundwater Not Encountered	Total Depth Drifled (ft)		31	.5
Sampling Method(s)	Mod	Ified Ca	liforni	la					
Drill Rig Type	CME	55			Hammer Data 140 lbs @ 30" drop (auto)	H-10 Sheet 1 of 2			of 2
Drilling Company	2R D	Orilling			Drill Bit Size/Type 8"				0
Date(s) Drilled	8/25	/12							

Shubin Nadai / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Comments			Approximate Ground Surface Elevation (ft) 772.0			
Approximate	Groundwater Depth: Groun	dwater Not Encountered	Total Depth 31.5			
Sampling Method(s)	Modified California					
Drill Rig Type	CME 55	CME 55 Hammer Data 140 lbs @ 30" drop (auto)				
Drilling Company	2R Drilling	Driff Bit Size/Type 8"	H-11			
Date(s) Drilled	6/25/12	Logged CD	1			

E	S	AMP	LES	_					
Depth (ft)	Type	Number	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
0					SM	Artificial Fill (Af) Surface: Yellowish brown silty SAND, dry, grass, weeds.			
70		D-1	16			@ 2.5 Yellowish brown fine-grained sitty SAND, moist, medium dense, micaceous, massive, trace gravel.	5.9	119.1	
5		D-2	8		ML	Alluvium (Qal) @ 5' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, massive.	10.6	107.7	CN
		D-3	12			@ 7.5' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, massive.	12.4	108.2	
10	I	D-4	10			@ 10' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, massive.	15.7	109.0	
15		D-5	11			@ 15' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, massive, trace gravel, trace root-hairs.	16.9	105.1	
20 ⁻	I	D-6	32		SP-SM	@ 20' Light yellowish brown medium-grained SAND/ silty SAND, moist, dense, micaceous, trace gravel.	2.7	112,6	
25		D-7	12				11.2	98.1	

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date(s) Drilled	6/26/12	Logged CD	H-12
Driffling Company	2R Drilling	2R Drilling Drill Bit Size/Type 8"	
Driff Rig Type	CME 55	Hammer Data 140 lbs @ 30" drop (auto)	Sheet 1 of 2
Sampling Method(s)	Bulk, Modified California		
Approximate	Groundwater Depth: Groundwa	ter Not Encountered	Total Depth Drilled (ft) 31.5
Comments	i.	Approximate Ground Surface Elevation (ft) 774.0	

5		S	AMP	LES					_	
Elevation (ft) Depth (ft)		Туре	Number	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
	U					SM	Artificial Fill (Af) Surface: Yellowish brown silty SAND, dry, weeds, roots.			
0			D-1	14			@ 2.5' Yellowish brown fine-grained silty SAND, moist, medium dense, micaceous, rock fragments, roots, massive.	5.8	106.8	B-1 @ 0'-5', CC, RV MD, AL, GS, EI
	5		D-2	14		ML	Alluvium (Qal) @ 5' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, trace gravel, trace root-hairs, massive.	9.3	109.5	
			D-3	14			@ 7.5' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, trace gravel, massive.	6.7	116.7	
	10-		D-4	12			@ 10' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, trace gravel, massive.	12.6	109.0	
00	15		D-5	18			@ 15' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, trace gravel, massive, slightly plastic.	14.4	107.1	
	20-		D-6	17		SP-SM	@ 20' Light yellowish brown fine-grained SAND/ silty SAND, moist, dense, micaceous, trace gravel.	3.0	104.0	
0	25		D-7	20	TIT)	ML	@ 25' Light yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, slightly laminated, non-plastic.	4.8	99.4	
	30-									

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date(s) Drifled	6/26	112			Logged CD				
Driffing Company	2R D	orilling			Drill Bit Size/Type 8"			H-1	3
Orill Rig Type	CME	55			Hammer 140 lbs @ 30" drop (auto)		S	neet 1	of 1
Sampling Method(s)	Mod	Ified Ca	llforn	ia	400,500				
Approxima	e Ground	water D	epth:	Gn	oundwater Not Encountered	Total Depti Drilled (ft)	1	11.	.5
Comments						Approxima Surface Ek		nd (ft)	769.0
	SAME	DI ES							
Elevation (ft) Depth (ft)	Type Number	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
0-			3-4		Surface: 4 inches of Asphaltic Concrete (AC).				
				SM	7 inches of Aggregate Base (AB). Alluvium (Qal)				
	D-1	24			@ 2.5' Yellowish brown fine-grained silty SAND, moist, of micaceous, thin root-hairs, trace gravel, massive.	dense,	3.2	120.1	
5	D-2	27			@ 5' Yellowish brown fine-grained silty SAND, moist, de micaceous, thin root-hairs, trace gravel, massive.	nse,	4.4	116.5	
760	D-3	21			@ 7.5' Yellowish brown fine-grained silty SAND, moist, dense, micaceous, thin root-hairs, trace gravel, massive.			116.0	
10-	D-4	23		SM-ML	@ 2.5' Yellowish brown fine-grained silty SAND/ sandy S stiff to dense, micaceous, thin root-hairs, trace gravel, m slightly porous.	SILT, moist, assive,	5.5	112.3	
15-					Notes: Total Depth: 11.5 Feet. Groundwater Not Encountered. Backfilled with Cuttings. AC Patched.				2
750 20-									
25									
740 30-									

LOG OF BORING Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date(s	5)	6/26/	12			Logged CD				
Drilling	O .	2R D	rilling			Drill Bit Size/Type 8"			H-	-14
Drill R Type		CME	55			Hammer Data 140 lbs @ 30" drop (auto)		S	heet	1 of 1
Sample	ling	Bulk	, Modif	led C	alifornia	Justa -		-	1001	
		e Ground	water D	epth:	Gr	oundwater Not Encountered	Total Dept Drilled (ft)	h		11.5
Comm	nents						Approxima Surface El		and (ft)	771.0
		SAMP	n E0							
Elevation (ft)	, Depth (ft)	Type Number	Blows per foot	Graphic Log	uscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
770	0-				SM	Surface: 3.5 inches of Asphaltic Concrete (AC). \[4 Inches of Aggregate Base (AB). \]	-/			
		D-1	27			Artificial Fill (Af) @ 2.5 Yellowish brown fine-grained silty SAND, moist, micaceous, trace gravel, massive.	dense,	10.4	120.1	B-1 @ 0'-5'
	5	D-2	7		ML	Alluvium (Qal) @ 5' Yellowish brown fine-grained sandy SILT, moist, r micaceous, non-plastic, thin root-hairs, slightly porous,	nedium stiff, massive.	10.9	116.5	
		D-3	13		SM-ML	@ 7.5' Yellowish brown fine-grained sandy StLT/ silty S medium stiff to medium dense, micaceous, non-plastic	AND, moist, massive.	12.3	116.0	
760	10	D-4	11		ML	@ 10' Yellowish brown fine-grained sandy SILT, moist, stiff, non-plastic, slight CaCO ₃ .	medium	12.2	112.3	
	15					Notes: Total Depth: 11.5 Feet. Groundwater Not Encountered. Backfilled with Cuttings. AC Patched.				
750	20-									
	25									
	30					LOG OF BORING				

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date(s) Drilled	6/26/12	Logged CD	- 1
Drilling Company	2R Drilling	Drill Bit Size/Type 6"	H-15
Drill Rig Type	CME 55	Hammer Data 140 lbs @ 30" drop (auto)	Sheet 1 of 1
Sampling Method(s)	Bulk, Modified California		
Approximate	Groundwater Depth: Groundwater Depth:	dwater Not Encountered	Total Depth 11.6
Comments			Approximate Ground Surface Elevation (ft) 771.0

(F)		SAME	PLES					_	-
Elevation (ft)	, Depth (ft)	Type Number	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
70	0-				SM	Artificial FIII (Af) Surface: Yellowish brown silty SAND, dry, grass.			
	1	D-1	17			@ 2.5' Yellowish brown fine-grained silty SAND, molst, medium dense, micaceous, massive, trace gravel.	8.7	118.1	B-1 @ 0'-5'
	5	D-2	8		ML	Alluvium (Qal) @ 5' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, non-plastic.	12.8	104.0	
		D-3	14			@ 7.5' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, non-plastic.	12.0	109.3	
60	10	D-4	12			@ 10' Yellowish brown fine-grained sandy SILT, moist, medium stiff, micaceous, non-plastic.	11.1	101.9	
	15-					Notes: Total Depth: 11.5 Feet. Groundwater Not Encountered. Backfilled with Cuttings.			
50	20-								
	25								

LOG OF BORING Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

30-

Date(Drille	(s)	6/25	112				Logged By	C	D						
Orilling Orill Bit Size/Type 8"										H-2					
Drift F	Rig	CMI	E 55				Hammer Data	14	40 lbs @ 30"	drop (auto)	1	Q	heat	1 of 2	
Type Samp	oling od(s)	Mod	Ilfied Ca	Ilforr	nla		Data					0	Heer	1012	
-	100	te Ground	dwater D	eoth:	Gn	undwater No	ot Encount	pred			Total De	pth		31.5	
	nents	-					-1-11-1-11				Approxing Surface	*		772.0	
-			-		T						Sunace	Elevation	(π)		
Elevation (ft)	, Depth (ft)	Type Number	Blows per mr	Graphic Log	nscs		MAT	ERI	IAL DESC	RIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS	
70					SM	Artificial Fil	II (Af)		itic Concrete ed silty SAND	(AC), No Base. , moist.					
		D-1	7		ML	Alluvium (C @ 2,5' Yello micacious,	Qal) owish brown slightly plas	n fine	grained san	dy SILT, moist,	soft,	12.6	101.6		
	5	D-2	10			@ 5' Yellow micacious, s	vish brown f slightly plas	fine-g stic, s	grained sandy slightly porou	SILT, moist, so s, massive.	oft,	12.6	112.8	DS	
		D-3	15			@ 7.5' Yello stiff, micacio	owish brown ous, slightly	n fine y plas	e-grained san stic, slightly p	dy SILT, moist, lorous, massive.	medium	8.1	115.1		
760	10-	D-4	15			@ 10' Yellor stiff, micacio	wish brown ous, slightly	fine y plas	-grained sand stic, massive	dy SILT, moist, i trace gravel.	nedium	7.0	109.0		
	15	D-5	15			@ 15' Yello medium stif	wish brown ff, micacious	i fine is, pla	-grained sand astic, slightly	dy clayey SILT, porous, laminat	moist, ed.	14.1	100,4		
750	20-	D-6	18			@ 20' Yello CaCO ₃ strin	wish brown ngers, slight	i fine-	-grained sand astic, micace	dy SILT, moist, s ous.	stiff, slight	16.1	111.0		
	25	D-7	20		ML-CL	@ 25' Yello CaCO ₃ strin Tip: Reddisi micaceous,	ngers, slight th brown cla	fine fly pla ayey	-grained sand astic, micace SILT/ silty CL	dy SILT, moist, s ous. AY, moist, stiff,	stiff, slight plastic,	14.5	110.5		

LOG OF BORING

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date(s	5)	6/26	112			Logged CD				
Drilling	9	2R E	rilling			Drill Bit Size/Type 8"	ill		H	-3
Drill R Type		CME	55			Hammer 140 lbs @ 30" drop (auto)	1	S	heet	1 of 1
Sampl	ling d(s)	Bulk	, Modfi	ed C	alifomia		1			
	AND LE	e Ground	water D	epth:	Gr	oundwater Not Encountered	Total Depti Drilled (ft)	1		14.0
Comm	ients						Approxima Surface Ele	le Grou	nd (ft)	772,0
							1			
E E	æ	SAME		60	1 1			(%	(Jo	OTHER
Elevation (ft)		Type	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	TESTS and REMARKS
	0-			811	SM-ML	Surface: 3 inches of Asphaltic Concrete (AC), No Base. Artificial Fill (Af)				
70						Autoria i in Jay				
		D-1	9			② 2.5' Yellowish brown fine-grained sandy SILT/ silty SA medium stiff to medium dense, micaceous, massive, slig plastic.	ND, moist,	5,9	113.6	
	5	D-2	9	33	ML	Alluvium (Qal) @ 5' Yellowish brown fine-grained sandy SILT/ silty SAN medium stiff to medium dense, micaceous, massive, slig plastic.	D, moist,	12.1	109.6	
		D-3	10			@ 7.5' Yellowish brown fine-grained sandy SILT/ silty SA medium stiff to medium dense, micaceous, massive, no	ND, moist, n-plastic.	13.0	106.6	B-1 @ 5'-10', CC, AL GS, EI
	10-	D-4	9			@ 10' Yellowish brown fine-grained sandy SILT/ silty SA medium stiff to medium dense, micaceous, massive, no slight CaCO ₃ .	ND, moist, n-plastic,	10.5	110.8	
60		D-5	10			@ 12.5' Yellowish brown fine-grained sandy SILT/ silty S moist, medium stiff to medium dense, micaceous, mass non-plastic, slight CaCO ₃ .	AND, ve,	10.2	107.0	
750	15					Notes: Total Depth: 14 Feet. Groundwater Not Encountered. Percolation Test. Backfilled with Cuttings. AC Patched.				
	25									
	30					LOG OF BORING Shubin Nadal / Van Nuys				~~~

Van Nuys, California PROJECT NO. 12069-01

Date(Drille	s) d	6/25	112			Logged CD		-							
Drillin Comp	bg .	2R 0	rilling			Driff Bit Size/Type 8"			H	4					
Orill Rig CME 55 Hammer 140 lbs @ 30" drop (auto)										Sheet 1 of 2					
Samp	oling od(s)	Mod	filed Ca	llforni	a										
Appro	oxima	e Ground	water D	epth:	G	roundwater Not Encountered	Total Dept Drilled (ft)	h		31.5					
Comi	nents						Approxima Surface E	ite Grou evation	nd (ft)	773.0					
£		SAME	LES												
Elevation (ft)	Depth (ft)	Type	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS					
	0				SM	Surface: 2 inches of Asphaltic Concrete (AC). 4 inches of Aggregate Base (AB).									
						Artificial Fill (At)									
770		D-1	22			@ 2.5' Yellowish brown fine-grained sitty SAND, mois dense, massive.	t, medium	3.7	115.3						
	5	D-2	25		ML	Alluvlum (Qal) @ 5' Light yellowish brown fine-grained sandy SILT, n stiff, slightly plastic, micaceous, porous, massive.	noist, medium	6.6	106.9	Collapse					
		D-3	23			@ 7.5' Light yellowish brown fine-grained sandy SILT medium stiff, slightly plastic, micaceous, porous, mas	moist, sive.	5.5 6.2 5.3	104.5 102.9 97.4	CN, Collapse					
	10-	D-4	25			@ 10' Light yellowish brown fine-grained sandy SILT, medium stiff, slightly plastic, micaceous, porous, mas CaCO ₃ .	moist, sive, slight	7.6	109.1						
760															
	15	D-5	24			@ 15' Light yellowish brown fine-grained sandy SILT, medium stiff, slightly plastic, micaceous, porous, mas CaCO ₃ .	moist, sive, slight	8.9	99.0						
	20-	D-8	23			@ 20' Light yellowish brown fine-grained sandy SILT, medium stiff, slightly plastic, slightly porous, local silty layers.	moist, SAND	4.2	106.6						
750	25	D-7	29			@ 25' Light yellowish brown fine-grained sandy SILT, hard, porous, slight CaCO ₃ .	moist, stiff to	5.8	109.3						

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date Drille	(s)	6/25	/12			Logged CD				
Drilli		2R D	Orllling			Driff Bit Size/Type B"			for	-5
Drill Type	Rig	CME	55			Hammer Data 140 lbs @ 30" drop (auto)		S	heet	1 of 2
	pling od(s)	Mod	Hied Ca	aliforn	la	1				
		e Ground	water D	epth:	Gr	oundwater Not Encountered	Total Depti Drilled (ft)	h		31.5
Com	ments						Approxima Surface Ele	te Grou	ind (ft)	774.0
							1 04,1450			
Elevation (ft)	Depth (ft)	SAMF Number	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
ш	0	r z	<u>a</u> <u>a</u>	Ö	ž	Surface: 4 inches of Asphaltic Concrete (AC).		ĕŏ	مَمَ	T CEMPTE O CO
770		D-1	10		SM	3 inches of Aggregate Base (AB). Artificial Fill (Af) @ 2.5' Yellowish brown fine-grained silty SAND, moist, dense, slightly porous, massive, root-hairs.	medium	3.9	107.4	
	5-	D-2	19		SM-ML	Alluvium (Qal) @ 5' Yellowish brown fine-grained sandy SILT/ sitty SAl medium stiff to medium dense, slightly porous, massive	ID, moist, , root-hairs.	5.1	103.9	Collapse
		D-3	18			@ 7.5' Yellowish brown fine-grained sandy SILT/ silty Simedium stiff to medium dense, slightly porous, massive	AND, moist, , root-hairs.	3.5	114.0	
	10-	D-4	21	÷1	ML	@ 10' Yellowish brown fine-grained sandy SILT, moist, slight CaCO ₃ , trace root-hairs, slightly plastic.	stiff, porous,	8.4	107.5	
760	15-	D-5	20			@ 15' Yellowish brown fine-grained sandy SILT, moist, slight CaCO ₃ , slightly plastic.	stiff, porous,	10.7	104.5	
	20-	D-8	25			@ 20' Light yellowish brown fine-grained sandy SILT, m massive, trace root-hairs, micaceous.	pist, stiff,	7.7	108.3	
750	25	D-7	22		SM	@ 25' Light yellowish brown fine-grained silty SAND, mo micaceous.	ist, dense,	4.5	111.4	

LOG OF BORING Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date(s) Drilled	6/26/12	Logged CD	
Drilling Company	2R Drilling	Drill Bit Size/Type 8"	H-6
Drill Rig Type	CME 55	Hammer Data 140 lbs @ 30" drop (auto)	Sheet 1 of 1
Sampling Method(s)	Modified California		
Approximate	Groundwater Depth: Groundwa	ter Not Encountered	Total Depth 9,0 Drilled (ft)
Comments			Approximate Ground Surface Elevation (ft) 775.0

LOG OF BORING

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Date Drille	(s)	5/2	5/12			Logged CD				
Drillin	ng	2R	Orilling			Drill Bit Size/Type 8"			Н	-7
Drill F	Rig	CM	CME 55 Hammer 140 lbs @ 30" drop (auto)							1 of 2
_	oling od(s)	Bul	k, Modif	fled Ca	llfomla					
		te Groun	dwater D	epth:	Gr	oundwater Not Encountered	Total Depth Drilled (ft)	1	:	31.5
Com	ments						Approximat Surface Ele	e Grou	nd (ft)	773.0
£		SAM	PLES	DG.	100			(9)	cf)	OTHER
Elevation (ft) Depth (ft)		Type Number	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION		Maisture Content (%)	Dry Density (pcf)	TESTS and REMARKS
	0-			2.5	SM	Surface: 3 inches of Asphaltic Concrete (AC). \(5 \) inches of Aggregate Base (AB).				
770		D-1	30			Artificial Fill (Af) @ 2.5' Brown fine-grained silty SAND, moist, dense, mic massive, trace gravel.	aceous,	9.7	126.0	B-1 @ 0'-5'
	5	D-2	8		SM-ML	Allulvum (Qal) @ 5' Brown fine-grained sandy SILT/ silty SAND, moist, stiff to medium dense, micaceous, slightly plastic.	medium	10.7	112.6	
		D-3	10			@ 7.5' Brown fine-grained sandy SILT/ silty SAND, moist stiff to medium dense, micaceous, slightly plastic.	, medium	11.0	115.7	DS
	10-	D-4	8	÷1.	ML	@ 10' Brown clayey SILT, medium stiff, micaceous, plas-	tic.	23.1	100.4	
760	15	D-5	9			@ 15' Brown clayey SILT, medium stiff, micaceous, plas	lic.	16.3	107.9	
	20-	D-6	25		SM	@ 20' Light reddish brown silty SAND, dense, micaceous		6.6	105.8	
750	25	D-7	21			@ 25' Light reddish brown silty SAND, dense, micaceou Tip: Gravelly SAND	s.	6.0	112.9	
	30-					LOG OF BORING Shubin Nadal / Van Nuys				~~~

Van Nuys, California PROJECT NO. 12069-01

6/26	V12			Logged CD				
2R !	Orilling			Drill Bit			H-	8
CMI	E 55			Hammer Data 140 lbs @ 30" drop (auto)		S	neet 1	of 2
Mod	ilfled Ca	llforni	a					
le Ground	twater De	epth:	Gr	oundwater Not Encountered	Total Depth Drilled (ft)		31	.5
					Approximat Surface Ele	e Grou	nd (ft)	773.0
SAM	PLES							
Type	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION		Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
D-1	34		SM	Surface: 3.5 inches of Asphaltic Concrete (AC). 2 inches of Aggregate Base (AB). Artificial Fill (Af) @ 2.5' Brown fine-grained silty SAND, moist, medium to micaceous, massive.	oose,	0,0	124.6	
D-2	6		ML	Alluvium (Qai) @ 5' Yellowish brown fine-grained sandy SILT, moist, so micaceous, massive.	oft,	11.0	104.9	os
D-3	10			@ 7.5' Yellowish brown fine-grained sandy SILT, moist, stiff, micaceous, massive.	medium	13.0	110.3	
D-4	â			@ 10' Yellowish brown fine-grained sandy SILT, moist, stiff, micaceous, massive.	medium	12.7	112.3	
D-5	12			@ 15' Yellowish brown fine-grained sandy SILT, moist, stiff, micaceous, massive, slightly laminated, slightly pla	medium stic.	17.1	110.4	
	2R I CMI Mode Ground to Gr	SAMPLES SAMPLES BdK1 D-1 34 D-2 6 D-3 10 D-4 8	2R Drilling CME 55 Modified Californi te Groundwater Depth: SAMPLES Body 100 D-1 34 D-2 6 D-3 10 D-4 8	2R Drilling CME 55 Modified Callifornia te Groundwater Depth: Gr SAMPLES Body Jack Son SM D-1 34 D-2 6 Mil. D-3 10 D-4 8	CME 55 Hammer 140 lbs @ 30" drop (auto) Modified California The Groundwater Depth: Groundwater Not Encountered MATERIAL DESCRIPTION SAMPLES DOT OF SURface: 3.5 inches of Asphaltic Concrete (AC). 2 inches of Aggregate Base (AB). Artificial Fill (Af) Q. 2.5' Brown fine-grained silty SAND, moist, medium to micaceous, massive. D-1 34 ML Alluvium (Qal) @ 5' Yellowish brown fine-grained sandy SILT, moist, stiff, micaceous, massive. Q. 10' Yellowish brown fine-grained sandy SILT, moist, stiff, micaceous, massive. Q. 10' Yellowish brown fine-grained sandy SILT, moist, stiff, micaceous, massive.	CME 55 Hammer Data 140 lbs @ 30" drop (auto)	CME 55 Hammer 140 lbs @ 30" drop (auto) SI	CME 55 Hammer 140 lbs @ 30" drop (auto) Sheet 1

LOG OF BORING Shubin Nadai / Van Nuys

@ 20' Light yellowish brown fine-grained silty SAND, moist, dense, micaceous.

@ 25' Yellowish brown clayey SILT, moist, medium stiff, micaceous, locally plastic.

SM

ML

20

17

-750

25

30-

D-7

Shubin Nadai / Van Nuys Van Nuys, California PROJECT NO. 12069-01

8.9

18.4

108.9

100.0

Comments			Approximate Ground Surface Elevation (ft) 771.0
Approximate	Groundwater Depth: Groundwater Depth:	water Not Encountered	Total Depth Drilled (ft) 31.5
Sampling Method(s)	Modified California		
Driff Rig Type	CME 55	Hammer Data 140 lbs @ 30" drop (auto)	Sheet 1 of 2
Drilling Company	2R Drilling	Drill Bit Size/Type 8"	H-9
Date(s) Orilled	6/25/12	Logged CD	

£	L	SAME	LES	-	1 1			6	OTHER
Elevation (ft)	Type	Number	Blows per foot	Graphic Log	nscs	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	OTHER TESTS and REMARKS
70			-	àñ	SM-ML	Surface: 3.5 inches of Asphaltic Concrete (AC). 4 inches of Aggregate Base (AB).			
	1					Artificial FIII (Af)			
		D-1	7			@ 2.5' Brown fine-grained silty SAND/ sandy SILT, moist, medium dense, micaceous, massive.	11.3	112.4	
5		D-2	10		ML	Alluvium (Qal) @ 5' Brown fine-grained sandy SILT, moist, medium stiff, micaceous, slightly plastic.	13.0	114.5	
		D-3	10			@ 7.5' Brown fine-grained sandy SILT, moist, medium stiff, micaceous, slightly plastic.	17.6	106.9	
10		D-4	11			@ 10' Yellowish brown clayey SILT, moist, medium stiff, micaceous, plastic, slight CaCO ₃ , slightly laminated.	20.3	105.4	
15	- Comment	D-5	13			@ 15' Yellowish brown clayey SILT, moist, medium stiff, micaceous, plastic, slight CaCO ₃ , slightly laminated.	16.4	107.0	
20-		D-6	11		SM	@ 20' Yellowish brown fine-grained silty SAND, moist, medium dense, micacaous, massive, local sand.	10.3	103.8	
25		D-7	25			@ 25' Reddish brown fine-grained silty SAND, moist, dense, micaceous, FeO staining.	19.3	99.9	

LOG OF BORING Shubin Nadal / Van Nuys Van Nuys, Callfornia PROJECT NO. 12069-01

PROJECT NO. 12069-01

APPENDIX C

Boring N	o. H-4	Sample No. D-2	Depth: 5	.0 ft					
Sample Description: Light Yellowish Brown Fine-Grained Sandy SILT									
Liquid Lin	nit:	Plasticity Index:	Percent Pa No. 200 Si						
Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio					
Initial	5.9	106.8	27.6	0.578					
Final	21.8	107.7	104.3	0.564					

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring N	o. H-4	Sample No. D-3	Depth:	7.5 ft
Sample De	escription: Lig	jht Yellowish Brown Fi	ne-Grained Sandy S	ILT
Liquid Lin	ilt	Plasticity Index:	Percent F No. 200 S	-
Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial	5.5	111.5	28.1	0.539

123.2

CONSOLIDATION TEST RESULTS

144.9

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

NMG Geotechnical, Inc.

Final

20.7

0.393

Boring No. H-4	Sample No. D-3A	Depth: 7.5 ft
Sample Description:	Light Yellowish Brown Fine-G	rained Sandy SILT
Liquid Limit:	Plasticity Index:	Percent Passing No. 200 Sieve:

Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial	6.2	102.9	25.5	0.668
Final	22.5	106.3	100.7	0.614

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring N	o. H-4	Sample No. D-3B	Depth: 7	.5 ft
Sample De	escription: Lig	ht Yellowish Brown Fi	ne-Grained Sandy SII	Т
Liquid Lim	nit:	Plasticity Index:	Percent Pa No. 200 Si	
Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial	5.3	97.4	19.1	0.762
Final	23.0	103.5	96.1	0.658

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring N	o. H-5	Sample No. D-2	Depth: 5	.0 ft
Sample De	escription: Ye	llowish Brownn Fine-G	rained Sandy SILT/ S	ilty SAND
Liquid Lim	nit:	Plasticity Index:	Percent P	
Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial	6.3	92.7	21.3	0.784
Final	26.7	97.3	101.2	0.699

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring No. H-10		Sample No. D-2	Depth: 5.	0 ft
Sample De	escription: Ye	llowish Brown Fine-Gra	ained Sandy SILT	
Liquid Lim	nit;	Plasticity Index:	Percent Pa No. 200 Sid	
Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial	12.5	116.2	78.3	0.423
Final	16.4	117.5	106.7	0.407

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring N	o. H-11	Sample No. D-2	Depth: 5	0 ft
Sample De	escription: Ye	llowish Brown Fine-Gra	ained Sandy SILT	
Liquid Lim	nit:	Plasticity Index:	Percent Pa No. 200 Si	
Test Stage	Moisture Content (%)	Dry Density (pcf)	Degree of Saturation (%)	Void Ratio
Initial 10.9		99.4	43.5	0.664
Final	22.7	103.9	101.7	0.592

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring No. H-	2	Sample No. D-2	Depth: 5.0 ft		
Sample Descrip	ntion: Y	ellowish Brown Fine-Grai	ined Sar	ndy SILT	
Liquid Limit:		Plasticity Index:		Percent Passing No. 200 Sleve:	
Molsture Content (%): 21.6		Dry Density (pcf):	Dry Density (pcf): 109.1 Degree Satura		
Sample Type:	Undisturt	ped Rate o	f Shear	(in./min.): 0.00	5

SHEAR STRENGTH PARAMETERS						
Parameter	Peak •	Ultimate O				
Cohesion (psf)	400	175				
Friction Angle (degrees)	27	26.0				

DIRECT SHEAR TEST RESULTS

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring No. H-7	Sample No. D-1	Depth: 2.5 ft
Sample Description: O	live Brown Silty SAND	
Liquid Limit:	Plasticity Index:	Percent Passing No. 200 Sieve:
Moisture Content (%):	Dry Density (pcf): 117.0	Degree of Saturation (%):

SHEAR STRENGTH PARAMETERS						
Parameter	Peak •	Ultimate O				
Cohesion (psf)	350	175				
Friction Angle (degrees)	31	27.0				

DIRECT SHEAR TEST RESULTS

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring No. H-	В	Sample No. D-2	Depth: 5.0 ft		
Sample Descrip	tion: Ye	ellowish Brown Sandy SILT			
Liquid Limit:		Plasticity Index:	Percent Passing No. 200 Sieve:		
Moisture Content (%):	23.2	Dry Density (pcf): 103.4	Degree of Saturation (%):	100	
Sample Type:	Undisturb	ed Rate of Shear	77 - 77		

SHEAR STRENGTH PARAMETERS						
Parameter	Peak •	Ultimate O				
Cohesion (psf)	75	75				
Friction Angle (degrees)	29	29.0				

DIRECT SHEAR TEST RESULTS

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring No. H-12	Sample No. B-1	Depth: 2.5 ft
Sample Description: Ye	llowish Brown Silty SAND	
Liquid Limit: NP	Plasticity Index: NP	Percent Passing No. 200 Sieve: 48
Comments: 1557A		

COMPACTION TEST RESULTS

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Boring No. H-1	Sample No. B-1	Depth: 2.5 ft									
Sample Description: Yellowish Brown Silty SAND											
Liquid Limit:	Plasticity Index:	Percent Passing No. 200 Sieve:	27								

COMPACTION TEST RESULTS

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Symbol	Boring Number	Depth (feet)	Sample Number	Passing No. 200 Sieve (%)	LL	PI	uscs	Description
0	H-12	2.5	B-1	48	NP	NP	SM	Yellowish Brown Silty SAND
20	H-3	5.1	B-1	70	27	8	ML	Yellowish Brown Sandy Clayey SiLT
		-				1		

PLASTICITY CHART

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Symbol	Boring Number	Sample Number	Depth (feet)	Field Moisture (%)	LL	PI	Activity PI/-2µ	Çu	Cc	Passing No. 200 Sleve (%)	Passing 2µ (%)	USCS
0	H-1	B-1	2.5							27		SM
X	H-1	D-3	7.5	1						4		SP
A	H-12	B-1	2.5	1-0	NP	NP				48	14	SM
*	H-3	B-1	5.1		27	8				70	19	ML

PARTICLE SIZE DISTRIBUTION

Shubin Nadal / Van Nuys Van Nuys, California PROJECT NO. 12069-01

Sample	Compacted Moisture (%)	Compacted Dry Density (pcf)	Final Moisture (%)	Volumetric Swell (%)	Expo Inc Value	ension dex Method	Expansive Classification ²	Soluble Sulfate (%)	Sulfate Exposure
H-3, B-1, 5'-10'	9.8	113.1	21,8	2.0	22	В	Low		
H-12, B-1, 0'-5'	9.1	115.2	16,7	0.7	8	В	Very Low		
			_						

Test Method: ASTM D4829

HACH SF-1 (Turbidimetric)

Notes:

1. Expansion Index (EI) method of determination:

[A] E.I. determined by adjusting water content to achieve a $50 \pm 1\%$ degree of saturation [B] E.I. calculated based on measured saturation within the range of 40% and 60%

2. ASTM D4829 (Classification of Expansive Soil)

3. ACI-318 Table 4.3.1 (Requirement for Concrete Exposed to Sulfate-Containing Solutions)

Expansion Index and Soluble Sulfate Test Results

(FRM001 Rev.5)

Project No. 1

12069-01

Project Name:

Shubin Nadal / Van Nuys

MG

R-VALUE TEST DATA CTM 301

Project:	Shubin	Nadal/Van Nuys	Project No:	12069-01	Date:	7/18/2	012
Boring Tren	ch No:	H-1	Sample No:	B-1	Sample	Depth:	0-5'
Field Desc	ription		(SM			
Lab Descrip	otion:		Dark Olive Brown	Silty SAND	(SM)		

Specimen Number		1	2	2	1 3	3	4
Mold Number		1	2	2	3	3	
Water Adjustment (g)	+1	25	+1	15	+1	10	
Compactor Pressure (psi)	35	50	35	50	36	50	
Exudation Pressure (psi)	19	92	36	35	67	72	
Gross Weight (g)	319	6.5	322	3.8	321	2.8	
Mold Tare (g)	211	6.5	212	8.5	211	3.7	
Wet Weight (g)	10	80	109	5.3	109	9.1	
Sample Height (in)	2.4	49	2.51		2.52		
Initial Dial Reading	0.0615		0.0991		0.0424		
Final Dial Reading	0.0619		0.0996		0.0431		
Expansion (in x10 ⁻⁴)	4	1		5	7	7	
Stability(psi) at 2,000 lbs (160 psi)	22	38	22	36	18	28	
Turns Displacement	3.8	81	3.	6	-	1	
R-Value Uncorrected	6	8	71		75		
R-Value Corrected	6	8	7	1	7	5	
Moisture Content (%)	12	.6	11	.7	11	.1	
Dry Density (pcf)	116	5.7	111	3.3	118	3.9	
Assumed Traffic Index	4.	.0	4.	0	4.	0	
G.E. by Stability	0.3	33	0.3	30	0.2	26	
G.E. by Expansion	0.	13	0.	17	0.3	23	
Gf				1.	25		

Moisture Content								
Dish No.	D	UX	ннн					
Weight of Moist Soil and Dish (g)	288.3	278	263.8					
Weight of Dry Soil and Dish (g)	261.7	254.1	242.4					
Water Loss (g)	26.6	23.9	21.4					
Weight of Dish (g)	50.3	50.2	50.3					
Dry Soil (g)	211.4	203.9	192.1					
Moisture Content (%)	12.6	11.7	11.1					

R-Value by Exudation =

70

R-Value by Expansion =

77

R-Value at Equilibrium =

7/18/2012

70 by Exudation

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301

Remarks:

Set up by: Calculated by: Run by: GEH

Checked by:

Date Completed:

Project:	Shubin	Nadal/Van Nuys	Project No:	12069-01	Date: 7/1	8/2012
Boring Trer	nch No:	H-1	Sample No:	B-1	Sample Dept	h: 0-5'
Field Desc	ription:			SM		
Lab Descrip	otion:	1	Dark Olive Brown	Silty SAND	(SM)	

Cover 0.24 Thickness (ft)

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation,

State of California, Materials & Research Test Method No. 301

Remarks:

Set up by: Run by:

Calculated by:

Checked by:

GEH

7/18/2012 Date Completed:

R-VALUE TEST DATA ** CTM 301

Project:	Shubin/	Nadal/ Van Nuys	Project No:	12069-01	Date:	7/20/2	012
Boring Trer	nch No:	H-12	Sample No:	B-1	Sample	Depth:	0-5'
Field Descr	iption:		SN	1-ML			
Lab Descrip	otion:		Dark olive brow	n silty SAND (SM)		

Specimen Number	1		3	2		3	4
Mold Number		1		2		3	
Water Adjustment (g)	+8	35	+	75	+	60	
Compactor Pressure (psi)	30	00	38	50	3	50	
Exudation Pressure (psi)	13	31	20	38	5	47	
Gross Weight (g)	327	4.3	324	19.1	322	20.4	
Mold Tare (g)	211	6.3	212	28.4	211	13.5	
Wet Weight (g)	11	58	112	20.7	110	06.9	
Sample Height (in)	2.4	46	2.	49	2.48		
Initial Dial Reading	0.0618 0.09		989	0.0428			
Final Dial Reading	0.0	62	0.1	002	0.0	447	
Expansion (in x10 ⁻⁴)	2	2	1	3	1	9	
Stability(psi) at 2,000 lbs (160 psi)	41	76	28	46	21	34	
Turns Displacement	5.2	27	4.22		3.86		
R-Value Uncorrected	3	4	59		71		
R-Value Corrected	3-	4	5	9	71		
Moisture Content (%)	12	.5	11	.6	10	0.3	
Dry Density (pcf)	126	3.8	12:	2.2	12	2.6	
Assumed Traffic Index	4.	0	4	.0	4	.0	
G.E. by Stability	0.6	86	0.	42	0.	30	
G.E. by Expansion	0.07		0.	43	0.	63	
Gf				1.	25		

	Moisture Content							
Dish No.	D	UX	ww					
Weight of Moist Soil and Dish (g)	289.1	251.3	243.3					
Weight of Dry Soil and Dish (g)	262,6	230.4	225.2					
Water Loss (g)	26.5	20.9	18.1					
Weight of Dish (g)	50.3	50.2	49.5					
Dry Soil (g)	212.3	180.2	175.7					
Moisture Content (%)	12.5	11.6	10.3					

R-Value by Exudation =

64

R-Value by Expansion =

60

R-Value at Equilibrium =

7/20/2012

60 by Expansion

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301

Remarks: Set up by:

Calculated by:

Run by: GEH/ Checked by:

GEH/ MPD

Date Completed:

~~~

# R-VALUE GRAPHICAL PRESENTATION

| Project:    | Shubin/  | Nadal/ Van Nuys | Project No:     | 12069-01       | Date:  | 7/20/2 | 012  |
|-------------|----------|-----------------|-----------------|----------------|--------|--------|------|
| Boring Tren | nch No:  | H-12            | Sample No:      | B-1            | Sample | Depth: | 0-5' |
| Field Desc  | ription: |                 | SN              | N-ML           |        |        |      |
| Lab Descri  | ption:   |                 | Dark olive brow | n silty SAND ( | SM)    |        |      |







Thickness (ft)

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation,

State of California, Materials & Research Test Method No. 301

Remarks:
Set up by: Run by: GEH/ MPD

Calculated by: Ghecked by:







www.hdrinc.com

Corrosion Control and Condition Assessment (C3A) Department

July 25, 2012

via email;

TMiyake@nmggeotechnical.com

RECEIVED

NMG GEOTECHNICAL, INC. 17991 Fitch Irvine, CA 92714 AUG 2 3 2012

MATG

Attention: Mr. Ted Miyake, P.E., G.E.

Re:

Soil Corrosivity Study Shubin Nadal/Van Nuys Van Nuys, California

HDR Schiff #12-0612SCS, HDR #188782

NMG #12069-01

### INTRODUCTION

Laboratory tests have been completed on two soil samples provided for the Shubin Nadal/Van Nuys project. The purpose of these tests was to determine if the soils might have deleterious effects on underground utility piping and concrete structures. HDR Engineering, Inc. (HDR|Schiff) assumes that the samples provided are representative of the most corrosive soils at the site.

The proposed construction consists of an office-industrial building. The site is located at 7600 Tyrone Avenue in Van Nuys, California. The water table is reportedly not encountered during boring explorations 32 feet deep.

The scope of this study is limited to a determination of soil corrosivity and general corrosion control recommendations for materials likely to be used for construction. Our recommendations do not constitute, and are not meant as a substitute for, design documents for the purpose of construction. If the architects and/or engineers desire more specific information, designs, specifications, or review of design, HDR|Schiff will be happy to work with them as a separate phase of this project.

### LABORATORY SOIL CORROSIVITY TESTS

The electrical resistivity of each sample was measured in a soil box per ASTM G187 in its asreceived condition and again after saturation with distilled water. Resistivities are at about their lowest value when the soil is saturated. The pH of the saturated samples was measured per CTM 643. A 5:1 water:soil extract from each sample was chemically analyzed for the major soluble salts commonly found in soil per ASTM D4327 and D6919. Test results are shown in Table 1.

### SOIL CORROSIVITY

A major factor in determining soil corrosivity is electrical resistivity. The electrical resistivity of a soil is a measure of its resistance to the flow of electrical current. Corrosion of buried metal is an electrochemical process in which the amount of metal loss due to corrosion is directly proportional to the flow of electrical current (DC) from the metal into the soil. Corrosion currents, following Ohm's Law, are inversely proportional to soil resistivity. Lower electrical resistivities result from higher moisture and soluble salt contents and indicate corrosive soil.

A correlation between electrical resistivity and corrosivity toward ferrous metals is:1

Soil Resistivity in ohm-centimeters Greater than 10,000 2,000 to 10,000 1,000 to 2,000 0 to 1,000

Corrosivity Category
Mildly Corrosive
Moderately Corrosive
Corrosive
Severely Corrosive

Other soil characteristics that may influence corrosivity towards metals are pH, soluble salt content, soil types, aeration, anaerobic conditions, and site drainage.

Electrical resistivities were in the mildly and moderately corrosive categories with as-received moisture. When saturated, the resistivities were in the moderately corrosive and corrosive categories. The resistivities dropped considerably with added moisture because the samples were dry as-received.

Soil pH values varied from 7.6 to 7.8. This range is mildly alkaline.<sup>2</sup> These values do not particularly increase soil corrosivity.

The soluble salt content of the samples was low.

The nitrate concentration was high enough to be aggressive to copper,

Tests were not made for sulfide and negative oxidation-reduction (redox) potential because these samples did not exhibit characteristics typically associated with anaerobic conditions.

This soil is classified as corrosive to ferrous metals and aggressive to copper.

<sup>&</sup>lt;sup>1</sup> Romanoff, Melvin, Underground Corrosion, NBS Circular 579, Reprinted by NACE, Houston, TX, 1989, pp. 166-167,

<sup>&</sup>lt;sup>2</sup> Romanoff, Melvin. Underground Corrosion, NBS Circular 579. Reprinted by NACE. Houston, TX, 1989, p. 8.

### CORROSION CONTROL RECOMMENDATIONS

The life of buried materials depends on thickness, strength, loads, construction details, soil moisture, etc., in addition to soil corrosivity, and is, therefore, difficult to predict. Of more practical value are corrosion control methods that will increase the life of materials that would be subject to significant corrosion.

The following recommendations are based on the soil conditions discussed in the Soil Corrosivity section above. Unless otherwise indicated, these recommendations apply to the entire site or alignment.

### Steel Pipe

Implement all the following measures:

- Underground steel pipe with rubber gasketed, mechanical, grooved end, or other nonconductive type joints should be bonded for electrical continuity. Electrical continuity is necessary for corrosion monitoring and cathodic protection.
- Install corrosion monitoring test stations to facilitate corrosion monitoring and the application of cathodic protection;
  - At each end of the pipeline.
  - b. At each end of all casings.
  - c. Other locations as necessary so the interval between test stations does not exceed 1,200 feet.
- To prevent dissimilar metal corrosion cells and to facilitate the application of cathodic protection, electrically isolate each buried steel pipeline per NACE Standard SP0286 from:
  - a. Dissimilar metals.
  - b. Dissimilarly coated piping (cement-mortar vs. dielectric).
  - c. Above ground steel pipe.
  - d. All existing piping.
- Choose one of the following corrosion control options:

### OPTION 1

- a. Apply a suitable dielectric coating intended for underground use such as:
  - Polyurethane per AWWA C222 or
  - ii. Extruded polyethylene per AWWA C215 or
  - iii. A tape coating system per AWWA C214 or
  - iv. Hot applied coal tar enamel per AWWA C203 or
  - v. Fusion bonded epoxy per AWWA C213.
- Apply cathodic protection to steel piping as per NACE Standard SP0169.

### OPTION 2

a. As an alternative to dielectric coating and cathodic protection, apply a ¾-inch cement mortar coating per AWWA C205 or encase in concrete 3 inches thick, using any type of cement. Joint bonds, test stations, and insulated joints are still required for these alternatives.

NOTE: Some steel piping systems, such as for oil, gas, and high-pressure piping systems, have special corrosion and cathodic protection requirements that must be evaluated for each specific application.

### Iron Pipe

Implement all the following measures:

- Electrically insulate underground iron pipe from dissimilar metals and from above ground iron pipe with insulating joints per NACE Standard SP0286.
- Bond all nonconductive type joints for electrical continuity. Electrical continuity is necessary for corrosion monitoring and cathodic protection.
- Install corrosion monitoring test stations to facilitate corrosion monitoring and the application of cathodic protection:
  - a. At each end of the pipeline.
  - b. At each end of any casings.
  - Other locations as necessary so the interval between test stations does not exceed 1,200 feet.
- 4. Choose one of the following corrosion control options:

### OPTION 1

- a. Apply a suitable coating intended for underground use such as:
  - i. Polyethylene encasement per AWWA C105; or
  - ii. Epoxy coating; or
  - iii. Polyurethane; or
  - iv. Wax tape.

NOTE: The thin factory-applied asphaltic coating applied to ductile iron pipe for transportation and aesthetic purposes does not constitute a corrosion control coating.

 Apply cathodic protection to cast and ductile iron piping as per NACE Standard SP0169.

#### OPTION 2

a. As an alternative to coating systems described in Option 1 and cathodic protection, concrete encase all buried portions of metallic piping so that there is a minimum of 3 inches of concrete cover provided over and around surfaces of pipe, fittings, and valves using any type of cement.

# Copper Tubing

Protect buried copper tubing by one of the following measures:

- 1. Prevention of soil contact. Soil contact may be prevented by placing the tubing above ground or encasing the tubing using PVC pipe with solvent-welded joints.
- Installation of a factory-coated copper pipe with a minimum 25-mil thickness such as Kamco's Aqua Shield™, Mueller's Streamline Protec™, or equal. The coating must be continuous with no cuts or defects.
- Installation of 12-mil polyethylene pipe wrapping tape with butyl rubber mastic over a suitable primer. Protect wrapped copper tubing by applying cathodic protection per NACE Standard SP0169.



### Plastic and Vitrified Clay Pipe

- No special precautions are required for plastic and vitrified clay piping placed underground from a corrosion viewpoint.
- Protect all metallic fittings and valves with wax tape per AWWA C217 or epoxy.

### All Pipe

- On all pipes, appurtenances, and fittings not protected by cathodic protection, coat bare metal such as valves, bolts, flange joints, joint harnesses, and flexible couplings with wax tape per AWWA C217 after assembly.
- Where metallic pipelines penetrate concrete structures such as building floors, vault walls, and thrust blocks use plastic sleeves, rubber seals, or other dielectric material to prevent pipe contact with the concrete and reinforcing steel.

### Concrete

- From a corrosion standpoint, any type of cement may be used for concrete structures and pipe because the sulfate concentration is negligible, 0 to 0.1 percent.<sup>3,4,5</sup>
- Standard concrete cover over reinforcing steel may be used for concrete structures and pipe in contact with these soils due to the low chloride concentration<sup>6</sup> found onsite.

<sup>3 2009</sup> International Building Code (IBC) which refers to American Concrete Institute (ACI-318) Table 4.3.1

<sup>\* 2009</sup> International Residential Code (IRC) which refers to American Concrete Institute (ACI-318) Table 4.3.1

<sup>5 2010</sup> California Building Code (CBC) which refers to American Concrete Institute (ACI-318) Table 4.3.1

<sup>6</sup> Design Manual 303: Concrete Cylinder Pipe, Ameron, p.65



www.hdrinc.com

Corrosion Control and Condition Assessment (C3A) Department

## Table 1 - Laboratory Tests on Soil Samples

NMG Geotechnical, Inc. Shubin Nadal / Van Nuys Your #12069-01, HDR|Schiff #12-0612SCS 12-Jul-12

|                            |                        |                 | H-3     | H-12   |                   |
|----------------------------|------------------------|-----------------|---------|--------|-------------------|
| Sample ID                  |                        |                 | B-1     | B-1    |                   |
|                            |                        |                 | @ 5-10! | @ 0-5' |                   |
|                            | The TYPE               | and the second  | SM/ML   | SM/ML  | 57573131490 NE 1. |
|                            | and Basery of the last | 97 A            |         |        |                   |
| Resistivity<br>as-received |                        | Units<br>ohm-cm | 4,400   | 33,200 |                   |
| saturated                  |                        | ohm-cm          | 1,760   | 9,600  |                   |
|                            |                        | OHH-OH          |         |        |                   |
| pH                         |                        |                 | 7.6     | 7.8    |                   |
| Electrical                 |                        |                 |         |        |                   |
| Conductivity               |                        | mS/cm           | 0.19    | 0.05   |                   |
| Chemical Analys            | es                     |                 |         |        |                   |
| Cations                    |                        |                 |         |        |                   |
| calcium                    | Ca <sup>2+</sup>       | mg/kg           | 78      | 36     |                   |
| magnesium                  | Mg <sup>2+</sup>       | mg/kg           | 11      | 4.8    |                   |
| sodium                     | Na1+                   | mg/kg           | 119     | 7.2    |                   |
| potassium                  | $K^{1+}$               | mg/kg           | 6.5     | 19     |                   |
| Anions                     |                        |                 |         |        |                   |
| carbonate                  | CO32-                  | mg/kg           | ND      | ND     |                   |
| bicarbonate                |                        | mg/kg           | 241     | 107    |                   |
| fluoride                   | F1-                    | mg/kg           | 3.0     | 4.1    |                   |
| chloride                   | Cl1-                   | mg/kg           | 3.7     | 0.6    |                   |
| sulfate                    | SO42-                  | mg/kg           | 91      | 7.7    |                   |
| phosphate                  | PO <sub>4</sub> 3-     | mg/kg           | 2.2     | 8.2    |                   |
| Other Tests                |                        |                 |         |        |                   |
| ammonium                   | NH41+                  | mg/kg           | ND      | ND     |                   |
| nitrate                    | NO <sub>3</sub> 1-     | mg/kg           | 148     | 5.5    |                   |
| sulfide                    | S2-                    | qual            | na      | na     |                   |
| Redox                      |                        | mV              | па      | na     |                   |

Electrical conductivity in millisiemens/cm and chemical analysis were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

#### CLOSURE

Our services have been performed with the usual thoroughness and competence of the engineering profession. No other warranty or representation, either expressed or implied, is included or intended.

Please call if you have any questions.

Respectfully Submitted, HDR Engineering, Inc.

Leobardo Solis

Enc: Table 1

12-0612SCS\_Rpt\_IB-rev00\_LS

Steven R. Fox, P.E.





#### Falling Head Percolation Data Sheet - Field Copy

| Project: Shubin Nadal / Van Nuy | ys.       | Job No. | 12069-01         |
|---------------------------------|-----------|---------|------------------|
| Test Hole No. H-3               | Tested by | : CD    | Date: 6-27-12    |
| Depth of Hole as Drilled: 12.5' | Before Te | st: 9'  | After Test: 8.4' |

| Reading<br>No. | Time           | Time<br>Interval<br>(Min) | Total<br>Depth of<br>Hole (Ft) | Initial<br>Water<br>Level<br>(Ft) | Final<br>Water<br>Level<br>(Ft) | ▲In<br>Water<br>Level<br>(Ft) | Comments |
|----------------|----------------|---------------------------|--------------------------------|-----------------------------------|---------------------------------|-------------------------------|----------|
| 1              | 8:00           | 30                        | 9.0                            | 3.10                              | 4.38                            | 1.28                          |          |
| 2              | 8:30           | 30                        | 9.0                            | 3.07                              | 4.23                            | 1.16                          |          |
| 3              | 9:00           | 30                        | 9.0                            | 2.82                              | 4.09                            | 1.27                          |          |
| 4              | 9:30           | 30                        | 8.7                            | 2.90                              | 4.08                            | 1.18                          |          |
| 5              | 10:00          | 30                        | 8.7                            | 2.84                              | 4.03                            | 1.19                          |          |
| 6              | 10:30          | 30                        | 8.4                            | 3.58                              | 4.44                            | 0.86                          |          |
| 7              | 11:00          | 30                        | 8.4                            | 3.41                              | 4.32                            | 0.91                          |          |
| 8              | 11:30<br>12:00 | 30                        | 8.4                            | 3.14                              | 4.19                            | 1.05                          |          |
| 9              | 12:00          | 30                        | 8.4                            | 3.72                              | 4.54                            | 0.82                          |          |
| 10             | 12:30          | 30                        | 8.4                            | 3.26                              | 4.17                            | 0.91                          |          |
| 11             | 1:00           | 30                        | 8.4                            | 3.16                              | 4.12                            | 0.96                          |          |
| 12             | 1:30<br>2:00   | 30                        | 8.4                            | 3.36                              | 4.36                            | 1.00                          |          |

## Falling Head Percolation Data Sheet - Field Copy

| Project: Shubin Nadal / Van Nu | ys         | Job No. | 12069-01          |
|--------------------------------|------------|---------|-------------------|
| Test Hole No. H-6              | Tested by: | CD      | Test Hole No. H-3 |
| Depth of Hole as Drilled: 7.5' | Before Tes | st: 4'  | After Test: 3.5'  |

| Reading<br>No. | Time          | Time<br>Interval<br>(Min) | Total<br>Depth of<br>Hole (Ft) | Initial<br>Water<br>Level<br>(Ft) | Final<br>Water<br>Level<br>(Ft) | ▲In<br>Water<br>Level<br>(Ft) | Comments |
|----------------|---------------|---------------------------|--------------------------------|-----------------------------------|---------------------------------|-------------------------------|----------|
| 1              | 8:20<br>8:50  | 30                        | 4.0                            | 1.67                              | 1.98                            | 0.31                          |          |
| 2              | 8:50<br>9:20  | 30                        | 4.0                            | 1.78                              | 2.02                            | 0.26                          |          |
| 3              | 9:20<br>9:50  | 30                        | 4.0                            | 1.91                              | 2.15                            | 0.24                          |          |
| 4              | 9:50<br>10:20 | 30                        | 3.9                            | 1.88                              | 2.13                            | 0.25                          |          |
| 5              | 10:20         | 30                        | 3.7                            | 2.01                              | 2.20                            | 0.19                          |          |
| 6              | 10:50         | 30                        | 3.5                            | 2.04                              | 2.24                            | 0.20                          |          |
| 7              | 11:20         | 30                        | 3.5                            | 1.84                              | 2.03                            | 0.19                          |          |
| 8              | 11:50         | 30                        | 3.5                            | 1.64                              | 1.86                            | 0.22                          |          |
| 9              | 12:20         | 30                        | 3.5                            | 1.76                              | 2.01                            | 0.25                          |          |
| 10             | 12:50         | 30                        | 3.5                            | 1.93                              | 2.12                            | 0.19                          |          |
| 11             | 1:20          | 30                        | 3.5                            | 1.74                              | 1.95                            | 0.21                          |          |
| 12             | 1:50          | 30                        | 3.5                            | 1.86                              | 2.06                            | 0.20                          |          |



```
Project Name = USGS 2011, Seismic Design Parameters- 7600 Tyrone Ave, Van Nuys, California Conterminous 48 States 2005 ASCE 7 Standard
Latitude = 34.2094
Longitude = -118.4423
Spectral Response Accelerations Ss and S1
Ss and S1 = Mapped Spectral Acceleration Values
Site Class B - Fa = 1.0 ,Fv = 1.0
Data are based on a 0.01 deg grid spacing
Period Sa
(sec) (g)
0.2 1.754 (Ss, Site Class B)
```

Conterminous 48 States
2005 ASCE 7 Standard
Latitude = 34.2094
Longitude = -118.4423
Spectral Response Accelerations SMs and SM1
SMs = Fa x Ss and SM1 = Fv x S1
Site Class D - Fa = 1.0 ,Fv = 1.5

Period Sa (sec) (g) 0.2 1.754 (SMs, Site Class D) 1.0 0.918 (SM1, Site Class D)

1.0 0.612 (S1, Site Class B)

Conterminous 48 States
2005 ASCE 7 Standard
Latitude = 34.2094
Longitude = -118.4423
Design Spectral Response Accelerations SDs and SD1
SDs = 2/3 x SMs and SD1 = 2/3 x SM1
Site Class D - Fa = 1.0 ,Fv = 1.5

Period Sa (sec) (g) 0.2 1.169 (SDs, Site Class D) 1.0 0.612 (SD1, Site Class D) \*\*\* Deaggregation of Seismic Hazard at One Period of Spectral Accel. \*\*\*

\*\*\* Data from U.S.G.S. National Seismic Hazards Mapping Project, 2008 version \*\*\*
PSHA Deaggregation. %contributions. site: Van\_Nuys long: 118.442 W., lat: 34.209 N.
Vs30(m/s) = 760.0 (some WUS atten. models use Site Class not Vs30).

NSHMP 2007-08 See USGS OFR 2008-1128, dM=0.2 below

Return period: 2475 yrs. Exceedance PGA =0.7716 g. Weight \* Computed\_Rate\_Ex 0.404E-03

#Pr[at least one eq with median motion>=PGA in 50 yrs]=0.00023
#This deaggregation corresponds to Mean Hazard w/all GMPEs

|      |      |        | EPSILON>2 |        |       |       | -2 <eps<-1< th=""><th>EPS&lt;-2</th></eps<-1<> | EPS<-2 |
|------|------|--------|-----------|--------|-------|-------|------------------------------------------------|--------|
|      |      |        | 0.329     |        |       |       |                                                |        |
|      |      |        | 0.665     |        |       |       |                                                |        |
|      |      |        | 0.633     |        |       |       |                                                |        |
|      |      |        | 0.059     |        |       |       |                                                |        |
|      |      |        | 0.594     |        |       |       |                                                |        |
|      |      |        | 0.097     |        |       |       |                                                |        |
|      |      |        | 0.479     |        |       |       |                                                | 0.000  |
| 12.9 | 5.80 | 0.132  | 0.132     | 0.000  | 0.000 | 0.000 | 0.000                                          |        |
| 6.9  | 6.01 | 1.162  | 0.526     | 0.636  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 12.8 | 6.01 | 0.183  | 0.183     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 7.3  | 6.21 | 1.828  | 0.828     | 0.975  | 0.025 | 0.000 | 0.000                                          | 0.000  |
| 13.8 | 6.23 | 0.235  | 0.828     | 0.003  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 8.3  | 6.44 | 3.629  | 2.130     | 1.409  | 0.090 | 0.000 | 0.000                                          | 0.000  |
| 13.7 | 6.48 | 3.027  | 1.881     | 0.931  | 0.215 | 0.000 | 0.000                                          | 0.000  |
| 7.4  | 6.61 | 5.251  | 2.256     | 2.841  | 0.154 | 0.000 | 0.000                                          | 0.000  |
| 13.6 | 6.61 | 20.569 | 7.644     | 10.013 | 2.912 | 0.000 | 0.000                                          | 0.000  |
| 6.7  | 6.77 | 3.527  | 1.513     | 1.869  | 0.144 | 0.000 | 0.000                                          | 0.000  |
| 13.3 | 6.77 | 24.494 | 6.218     | 13.672 | 4.604 | 0.000 | 0.000                                          | 0.000  |
| 22.1 | 6.78 | 0.085  | 0.085     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 6.9  | 6.97 | 2.179  | 0.770     | 1.294  | 0.115 | 0.000 | 0.000                                          | 0.000  |
| 13.4 | 6.95 | 11.569 | 2.722     | 6.077  | 2.761 | 0.009 | 0.000                                          | 0.000  |
| 21.5 | 6.99 | 0.180  | 0.168     | 0.012  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 31.6 | 7.06 | 0.055  | 0.055     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 9.3  | 7.19 | 1.344  | 0.560     | 0.720  | 0.065 | 0.000 | 0.000                                          | 0.000  |
| 13.4 | 7.20 | 6.938  | 2.027     | 3.323  | 1.581 | 0.008 | 0.000                                          | 0.000  |
| 21.9 | 7.15 | 0.188  | 0.152     | 0.037  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 31.4 | 7.18 | 0.172  | 0.172     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 9.4  | 7.34 | 1,464  | 0.553     | 0.814  | 0.097 | 0.000 | 0.000                                          | 0.000  |
| 12.6 | 7.36 | 5.699  | 1.147     | 3 157  | 1.360 | 0.035 | 0.000                                          | 0.000  |
| 28.4 | 7.35 | 0.121  | 0.117     | 0.004  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 31.7 | 7.34 | 0.083  | 0.083     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 9.4  | 7,51 | 0.111  | 0.037     | 0.063  | 0.010 | 0.000 | 0.000                                          | 0.000  |
| 12.8 | 7.52 | 1.295  | 0.281     | 0.641  | 0.361 | 0.011 | 0.000                                          | 0.000  |
| 29.0 | 7.60 | 0.082  | 0.082     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 20 6 | 7 70 | 0 060  | 0.058     | 0 002  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 47.0 | 7.77 | 0.069  | 0.069     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |
| 47.1 | 7.98 | 0.161  | 0.161     | 0.000  | 0.000 | 0.000 | 0.000                                          | 0.000  |

Summary statistics for above PSHA PGA deaggregation, R=distance, e=epsilon: Contribution from this GMPE(%): 100.0

Mean src-site R= 12.2 km; M= 6.75; eps0= 1.23. Mean calculated for all sources.

Modal src-site R= 13.3 km; M= 6.77; eps0= 1.05 from peak (R,M) bin MODE R\*= 13.3km; M\*= 6.76; EPS.INTERVAL: 1 to 2 sigma % CONTRIB = 13.672

```
Principal sources (faults, subduction, random seismicity having > 3% contribution)
                                                    epsilon0 (mean values).
Source Category:
                               % contr. R(km)
                                                  M
California B-faults Char
                                 62.85
                                          12.6
                                                 6.90
                                                         1.13
California B-faults GR
                                 26.07
                                          12.7
                                                 6.70
                                                         1.34
CA Compr. crustal gridded
                                           7.4
                                                 6.01
                                                         1.49
                                 10.80
Individual fault hazard details if its contribution to mean hazard > 2%:
                                % contr.
                                          Rcd(km) M
                                                      epsilon0 Site-to-src azimuth
Fault ID
(d)
                                  2.10
Hollywood Char
                                          13.1
                                                 6.61
                                                         2.04
                                                                 151.8
                                  4.26
                                           5.8
                                                 6.78
                                                         1.36
Verdugo Char
                                                                  41.8
Sierra Madre (San Fernando) Char
                                  2.88
                                           9.4
                                                 6.60
                                                         1.93
                                                                 -11.0
Northridge Char
                                                 6.78
                                                                  26.0
                                 32.43
                                          13.3
                                                         0.81
Santa Susana, alt 1 Char
                                  2.58
                                          13.0
                                                 6.81
                                                         2.19
                                                                 -34.9
Santa Monica Connected alt 1 Cha
                                  5.97
                                          12.3
                                                 7.31
                                                         0.70
                                                                 172.3
Santa Monica Connected alt 2 Cha
                                                                 150.5
                                  3,93
                                          11.7
                                                 7.35
                                                         0.86
Sierra Madre Connected Char
                                  3.11
                                           9.4 7.26
                                                         1.39
                                                                 -11.0
Verdugo GR
                                                                  48.5
                                  2.81
                                           7.5
                                                 6.65
                                                         1.41
Northridge GR
                                 14.60
                                          13.6
                                                 6.67
                                                         1.06
                                                                 -29.7
#*******End of deaggregation corresponding to Mean Hazard w/all GMPEs *******#
PSHA Deaggregation. %contributions. site: Van Nuys long: 118.442 W., lat: 34.209 N.
 Vs30 (m/s) = 760.0 (some WUS atten. models use Site Class not Vs30).
NSHMP 2007-08 See USGS OFR 2008-1128. dM=0.2 below
Return period: 2475 yrs. Exceedance PGA =0.7716
                                                g. Weight * Computed Rate Ex
0.143E-03
#Pr[at least one eq with median motion>=PGA in 50 yrs]=0.00020
#This deaggregation corresponds to Boore-Atkinson 2008
DIST(KM) MAG(MW) ALL EPS EPSILON>2 1<EPS<2 0<EPS<1 -1<EPS<0 -2<EPS<-1 EPS<-2
          5.41
                  0.019
                           0.019
                                   0.000
                                            0.000
                                                     0.000
                                                              0.000
                                                                      0.000
    7.0
    7.0
          5.61
                  0.035
                           0.035
                                   0.000
                                            0.000
                                                     0.000
                                                             0.000
                                                                      0.000
                                                   0.000
                                                             0.000
                                                                      0.000
    7.0
          5.80
                 0.055
                          0.055
                                   0.000
                                            0.000
          6.02
                           0.122
                                   0.004 0.000
                                                     0.000
                                                             0.000
                                                                      0.000
    6.3
                  0.125
    6.6
          6.21
                  0.223
                           0.207
                                   0.016 0.000
                                                   0.000
                                                             0.000
                                                                      0.000
                                   0.000
                           0.021
                                           0.000
                                                   0.000
                                                             0.000
                                                                      0.000
   13.7
          6.26
                 0.021
    8.1
          6.44
                0.473
                           0.442
                                   0.031
                                           0.000
                                                   0.000
                                                             0.000
                                                                    0.000
                                                   0.000
                                                             0.000
                                                                      0.000
   13.4
          6.48
                  1.035
                           0.431
                                   0.412
                                           0.191
    7.4 6.59 0.611
                           0.522
                                   0.089
                                            0.000
                                                   0.000
                                                             0.000
                                                                      0.000
                                                            0.000
                                                                      0.000
   13.4
          6.62
                  8.974
                           2.181
                                   4.245
                                            2.548
                                                   0.000
   22.2
          6.58
                0.020
                           0.020
                                   0.000
                                           0.000
                                                     0.000
                                                             0.000
                                                                      0.000
    6.8
                 0.829
                                                   0.000
                                                             0.000
                                                                     0.000
          6.75
                           0.531
                                   0.298
                                            0.000
                                                             0.000
                                                                      0.000
   13.3
          6.76
                10.987
                          1.892
                                   5.652
                                            3.443
                                                    0.000
          6.77
                                   0.000 0.000
                                                     0.000
                                                             0.000
                                                                     0.000
   22.3
                 0.051
                           0.051
    7.0
          6.97
                 0.458
                           0.243
                                  0.214
                                            0.001
                                                   0.000
                                                             0.000
                                                                      0.000
                                            2.011
                                                   0.009
                                                            0.000
                                                                      0.000
   13.3
          6.94
                 5.594
                           0.951
                                   2.623
   22.5
                           0.075
                                   0.000 0.000
                                                   0.000 0.000
                                                                    0.000
          6.99
                0.076
```

0.060

0.195

0.712

0.060

0.000

0.155

0.950

0.003

0.000

0.001

0.347

0.000

0.000

0.000

0.008

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.060

0.351

2.018

0.062

31.0

9.2

13.7

23.7

7.08

7.19

7.18

7.17

| 32.1 | 7.20 | 0.073 | 0.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|------|------|-------|-------|-------|-------|-------|-------|-------|
| 9.4  | 7.34 | 0.379 | 0.185 | 0,193 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12.9 | 7.35 | 1.847 | 0.438 | 1.077 | 0.332 | 0.000 | 0.000 | 0.000 |
| 28.9 | 7.35 | 0.073 | 0.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 32.1 | 7.34 | 0.048 | 0.048 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 9.4  | 7.51 | 0.029 | 0.012 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 |
| 13.7 | 7.52 | 0.372 | 0.117 | 0.202 | 0.053 | 0.000 | 0.000 | 0.000 |
| 28.9 | 7.59 | 0.051 | 0.051 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 47.0 | 7.57 | 0.018 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 28.6 | 7.78 | 0.046 | 0.044 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 |
| 47.0 | 7.77 | 0.069 | 0.069 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 47.1 | 7.98 | 0.141 | 0.141 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 47.1 | 8,20 | 0.018 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|      |      |       |       |       |       |       |       |       |

Summary statistics for above PSHA PGA deaggregation, R=distance, e=epsilon: Contribution from this GMPE(%): 35.3

Mean src-site R= 13.2 km; M= 6.82; eps0= 1.02. Mean calculated for all sources. Modal src-site R= 13.3 km; M= 6.76; eps0= 0.81 from peak (R,M) bin

MODE R\*= 13.3km; M\*= 6.76; EPS.INTERVAL: 1 to 2 sigma % CONTRIB.= 5.652

```
Principal sources (faults, subduction, random seismicity having > 3% contribution)
Source Category:
                                                       epsilon0 (mean values).
                                 % contr. R(km)
                                                    M
California B-faults Char
                                   25.58
                                            13.2
                                                   6.87
                                                            0.94
California B-faults GR
                                    8.53
                                            13.1
                                                   5.71
                                                            1.11
Individual fault hazard details if its contribution to mean hazard > 2%:
Fault ID
                                 % contr.
                                            Rcd(km) M
                                                          epsilon0 Site-to-src azimuth
(d)
Hollywood Char
                                    0.79
                                          13.1
                                                   6.62
                                                            2.00
                                                                     151.8
                                          5.8
                                                   6.80
Verdugo Char
                                    0.84
                                                            1.64
                                                                      41.8
Sierra Madre (San Fernando) Char
                                    0.54
                                             9.4
                                                   6.63
                                                            2.14
                                                                     -11.0
Northridge Char
                                                   6.78
                                                            0.60
                                                                     26.0
                                   17.07
                                            13.3
                                            13.0
Santa Susana, alt 1 Char
                                   0.77
                                                  6.82
                                                            2.24
                                                                     -34.9
Santa Monica Connected alt 1 Cha
                                   1.93
                                            12.3
                                                  7.30
                                                            0.84
                                                                     172.3
Santa Monica Connected alt 2 Cha
                                            11.7
                                                   7.35
                                                            1.18
                                                                     150.5
                                    0.84
Sierra Madre Connected Char
                                    0.80
                                             9.4
                                                  7.26
                                                            1.56
                                                                     -11.0
Verdugo GR
                                             6.9 6.68
                                                                      48.5
                                    0.30
                                                            1.87
Northridge GR
                                    6.38
                                            13.5
                                                   6.68
                                                            0.84
                                                                     -29.7
#*******End of deaggregation corresponding to Boore-Atkinson 2008
```

PSHA Deaggregation. %contributions. site: Van Nuys long: 118.442 W., lat: 34.209 N. Vs30(m/s) = 760.0 (some WUS atten. models use Site Class not Vs30).

NSHMP 2007-08 See USGS OFR 2008-1128. dM=0.2 below

Return period: 2475 yrs. Exceedance PGA = 0.7716 g. Weight \* Computed Rate Ex 0.850E-04

#Pr[at least one eq with median motion>=PGA in 50 yrs]=0.00000 #This deaggregation corresponds to Campbell-Bozorgnia 2008

| DIST (KM) | MAG (MW) | ALL EPS | EPSILON>2 | 1 <eps<2< th=""><th>0<eps<1< th=""><th>-1<eps<0< th=""><th>-2<eps<-1< th=""><th>EPS&lt;-2</th></eps<-1<></th></eps<0<></th></eps<1<></th></eps<2<> | 0 <eps<1< th=""><th>-1<eps<0< th=""><th>-2<eps<-1< th=""><th>EPS&lt;-2</th></eps<-1<></th></eps<0<></th></eps<1<> | -1 <eps<0< th=""><th>-2<eps<-1< th=""><th>EPS&lt;-2</th></eps<-1<></th></eps<0<> | -2 <eps<-1< th=""><th>EPS&lt;-2</th></eps<-1<> | EPS<-2 |
|-----------|----------|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|--------|
| 7.0       | 5.05     | 0.042   | 0.042     | 0.000                                                                                                                                              | 0.000                                                                                                             | 0.000                                                                            | 0.000                                          | 0.000  |
| 7.0       | 5,21     | 0.147   | 0.147     | 0.000                                                                                                                                              | 0.000                                                                                                             | 0.000                                                                            | 0.000                                          | 0.000  |
| 7.0       | 5.41     | 0.248   | 0.248     | 0.000                                                                                                                                              | 0.000                                                                                                             | 0.000                                                                            | 0.000                                          | 0.000  |
| 7.0       | 5.60     | 0.293   | 0.269     | 0.024                                                                                                                                              | 0.000                                                                                                             | 0.000                                                                            | 0.000                                          | 0-000  |
| 12.3      | 5.61     | 0.012   | 0.012     | 0.000                                                                                                                                              | 0.000                                                                                                             | 0.000                                                                            | 0.000                                          | 0.000  |
|           |          |         |           |                                                                                                                                                    |                                                                                                                   |                                                                                  |                                                |        |

| 7.0  | 5.80 | 0.268 | 0,222 | 0.047 | 0.000 | 0.000 | 0.000 | 0.000 |
|------|------|-------|-------|-------|-------|-------|-------|-------|
| 12.5 | 5.81 | 0.021 | 0.021 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6.8  | 6.01 | 0.333 | 0.277 | 0.056 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12.5 | 6.01 | 0.035 | 0,035 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 7.2  | 6.21 | 0.549 | 0.446 | 0.102 | 0.000 | 0.000 | 0.000 | 0.000 |
| 13.8 | 6.23 | 0.053 | 0.053 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 8.0  | 6.43 | 1.071 | 0.772 | 0.299 | 0.000 | 0.000 | 0.000 | 0.000 |
| 14.3 | 6.47 | 0,626 | 0.510 | 0.117 | 0.000 | 0.000 | 0.000 | 0.000 |
| 7.3  | 6.61 | 2.356 | 1.060 | 1.274 | 0.021 | 0.000 | 0.000 | 0.000 |
| 13.6 | 6.62 | 5,236 | 2.908 | 2.328 | 0.000 | 0.000 | 0.000 | 0.000 |
| 7.0  | 6.78 | 0.993 | 0.451 | 0.531 | 0.011 | 0.000 | 0.000 | 0.000 |
| 13.5 | 6.79 | 2.771 | 1.463 | 1.308 | 0.000 | 0.000 | 0.000 | 0.000 |
| 21.3 | 6.83 | 0.012 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6.6  | 6.96 | 0.603 | 0.247 | 0.349 | 0.007 | 0.000 | 0.000 | 0.000 |
| 13.5 | 6.95 | 1.848 | 0.813 | 0.994 | 0.040 | 0.000 | 0.000 | 0.000 |
| 20.9 | 7.00 | 0.029 | 0.028 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
| 31.3 | 7.06 | 0.020 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 9.0  | 7.19 | 0.313 | 0.168 | 0.140 | 0.006 | 0.000 | 0.000 | 0-000 |
| 13.1 | 7.21 | 1.611 | 0.520 | 0.882 | 0.209 | 0.000 | 0.000 | 0.000 |
| 20.9 | 7.15 | 0.036 | 0.031 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 |
| 31.3 | 7.20 | 0.029 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 9.4  | 7.34 | 0.321 | 0.171 | 0.150 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12.7 | 7.37 | 0.851 | 0.294 | 0.460 | 0.096 | 0.000 | 0.000 | 0.000 |
| 28.1 | 7.35 | 0.011 | 0.011 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
| 31.2 | 7.33 | 0.014 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 9.4  | 7.51 | 0.023 | 0.012 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12.3 | 7.53 | 0.252 | 0.066 | 0.141 | 0.044 | 0.000 | 0.000 | 0.000 |
|      |      |       |       |       |       |       |       |       |

Summary statistics for above PSHA PGA deaggregation, R=distance, e=epsilon: Contribution from this GMPE(%): 21.0

Mean src-site R= 11.4 km; M= 6.71; eps0= 1.58. Mean calculated for all sources. Modal src-site R= 13.6 km; M= 6.62; eps0= 1.71 from peak (R,M) bin

MODE R\*= 13.9km; M\*= 6.61; EPS.INTERVAL: 1 to 2 sigma % CONTRIB.= 2.908

```
Principal sources (faults, subduction, random seismicity having > 3% contribution)
                               % contr. R(km)
                                                 M epsilon0 (mean values).
Source Category:
California B-faults Char
                               11.90
                                        12.2 6.89
                                                       1.56
California B-faults GR
                                 5.95
                                         12.1
                                              6.69
                                                       1.66
CA Compr. crustal gridded
                                 3.20
                                          7.1
                                                6.09
                                                       1.50
Individual fault hazard details if its contribution to mean hazard > 2%;
Fault ID
                               % contr. Rcd(km) M
                                                     epsilon0 Site-to-src azimuth
(d)
                                                     2,15
Hollywood Char
                                  0.50
                                         13.1
                                                6.60
                                                                151.8
                                 1.38
                                         5.8 6.78
                                                      1.41
Verdugo Char
                                                               41.8
Sierra Madre (San Fernando) Char
                                 0.88
                                       9.4 6.59 2.00
                                                                -11.0
Northridge Char
                                 4.68
                                         13.3 6.78 1.37
                                                                26.0
                                       13.0
                                              6.80
Santa Susana, alt 1 Char
                                 0.55
                                                      2.33
                                                                -34.9
Santa Monica Connected alt 1 Cha
                                               7.31 1.25
                                                                172.3
                                 0.85
                                         12.3
Santa Monica Connected alt 2 Cha
                                 1.05
                                         11.7
                                                7.35 1.03
                                                                150.5
Sierra Madre Connected Char
                                 0.71
                                         9.4
                                                7.25
                                                       1.57
                                                                -11.0
Verdugo GR
                                 1.25
                                         7.7
                                                6.65
                                                       1.35
                                                                48.5
```

13.7

6.67 1.54

-29.7

2.28

Northridge GR

#\*\*\*\*\*\*\*End of deaggregation corresponding to Campbell-Bozorgnia 2008 \*\*\*\*\*\*\*#

PSHA Deaggregation. %contributions. site: Van\_Nuys long: 118.442 W., lat: 34.209 N. Vs30(m/s) = 760.0 (some WUS atten. models use Site Class not Vs30).

NSHMP 2007-08 See USGS OFR 2008-1128. dM=0.2 below

Return period: 2475 yrs. Exceedance PGA =0.7716 g. Weight \* Computed\_Rate\_Ex 0.176E-03

#Pr[at least one eq with median motion>=PGA in 50 yrs]=0.00048

#This deaggregation corresponds to Chiou-Youngs 2008

|          |      |                                        | esponds to |       |       |       | Out makes and |       |
|----------|------|----------------------------------------|------------|-------|-------|-------|---------------|-------|
| DIST(KM) |      | the second of the second of the second | EPSILON>2  |       |       |       |               |       |
| 7.0      | 5.05 | 0.291                                  |            | 0.000 |       |       |               |       |
| 7.0      |      |                                        | 0.601      |       |       | 0.000 |               |       |
| 12.2     | 5.21 | 0.028                                  |            | 0.000 |       | 0.000 | 0.000         | 0.000 |
| 7.0      | 5.40 | 0.620                                  | 0.545      | 0.075 | 0.000 | 0.000 | 0.000         | 0.000 |
| 12.5     | 5.41 | 0.055                                  | 0.055      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
| 7.0      | 5.60 | 0.594                                  | 0.474      | 0.121 | 0.000 | 0.000 | 0.000         | 0.000 |
| 12.7     | 5.60 | 0.084                                  | 0.084      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
| 7.0      | 5.80 | 0.549                                  | 0.410      | 0.139 | 0.000 | 0.000 | 0.000         | 0.000 |
| 13.0     | 5.80 | 0.111                                  | 0.111      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
| 7.0      | 6.01 | 0.704                                  |            |       | 0.000 | 0.000 | 0.000         | 0.000 |
| 12.9     | 6.01 | 0.145                                  | 0.145      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
| 7.5      | 6.20 | 1.056                                  |            | 0.354 |       | 0.000 | 0.000         | 0.000 |
| 13.8     | 6.22 | 0.156                                  | 0.155      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
| 8.3      | 6.44 | 1.868                                  | 1.249      | 0.619 | 0.000 | 0.000 | 0.000         | 0.000 |
| 13.8     | 6.47 | 1.159                                  | 0.796      | 0.340 | 0.023 | 0.000 | 0.000         | 0.000 |
| 7.3      | 6.61 | 2.794                                  | 1.141      | 1.637 | 0.016 | 0.000 | 0.000         | 0.000 |
| 13.7     | 6.60 | 7.876                                  | 3.052      | 4.460 | 0.364 | 0.000 | 0.000         | 0.000 |
| 7.1      | 6.78 | 1.413                                  | 0.572      | 0.814 | 0.026 | 0.000 | 0.000         | 0.000 |
| 13.3     | 6.77 | 9.279                                  | 2.415      | 5.702 | 1.162 | 0.000 | 0.000         | 0.000 |
| 21.4     | 6.83 | 0.031                                  | 0.031      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
| 7.0      | 6.97 | 1.047                                  | 0.291      | 0.699 | 0.056 | 0.000 | 0.000         | 0.000 |
| 13.5     | 6.96 | 4.343                                  |            | 2.496 |       |       |               | 0.000 |
| 20.9     | 7.00 | 0.064                                  | 0.053      | 0.011 | 0.000 | 0.000 | 0.000         | 0.000 |
| 9.2      | 7.19 | 0.750                                  | 0.216      | 0.469 | 0.065 | 0.000 | 0.000         | 0.000 |
| 13.2     | 7.20 | 2.845                                  | 0.678      | 1.347 | 0.820 | 0.000 | 0.000         | 0.000 |
| 21.0     | 7.15 | 0.092                                  | 0.062      | 0.030 | 0.000 | 0.000 | 0.000         | 0.000 |
| 31.1     | 7.17 | 0.043                                  | 0.043      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
| 9.4      | 7.34 | 0.765                                  | 0.197      | 0.471 | 0.097 | 0.000 | 0.000         | 0.000 |
| 12.5     | 7.35 | 3,401                                  | 0,486      | 1.747 | 1.134 | 0.035 | 0.000         | 0.000 |
| 27.5     | 7.35 | 0.036                                  | 0.033      | 0.003 | 0.000 | 0.000 | 0.000         | 0.000 |
| 9.4      | 7.51 | 0.059                                  | 0.013      | 0.036 | 0.010 | 0.000 | 0.000         | 0.000 |
| 12.6     | 7.52 | 0.672                                  | 0.098      | 0,298 | 0.264 | 0.011 | 0.000         | 0.000 |
| 28.6     | 7.75 | 0.023                                  | 0.023      | 0.000 | 0.000 | 0.000 | 0.000         | 0.000 |
|          |      |                                        |            |       |       |       |               |       |

Summary statistics for above PSHA PGA deaggregation, R=distance, e=epsilon: Contribution from this GMPE(%): 43.7

Mean src-site R= 11.7 km; M= 6.72; eps0= 1.23. Mean calculated for all sources. Modal src-site R= 13.3 km; M= 6.77; eps0= 1.11 from peak (R,M) bin MODE R\*= 13.3km; M\*= 6.76; EPS.INTERVAL: 1 to 2 sigma % CONTRIB.= 5.702

Principal sources (faults, subduction, random seismicity having > 3% contribution)
Source Category: % contr. R(km) M epsilon0 (mean values).

| California B-faults Char           | 25.37    | 12.3     | 6.93   | 1.12      |             |         |
|------------------------------------|----------|----------|--------|-----------|-------------|---------|
| California B-faults GR             | 11.59    | 12.7     | 6.71   | 1.34      |             |         |
| CA Compr. crustal gridded          | 6.68     | 7.7      | 5.93   | 1.45      |             |         |
| Individual fault bazard details in | its con  | tributio | n to n | ean hazar | i > 2%:     |         |
| Fault ID (d)                       | contr.   | Rcd(km   | ) M    | epsilon0  | Site-to-src | azimuth |
| Hollywood Char                     | 0.82     | 13.1     | 6.60   | 2.00      | 151.8       |         |
| Verdugo Char                       | 2.04     | 5.8      | 6,78   |           | 41.8        |         |
| Sierra Madre (San Fernando) Char   | 1.47     | 9.4      | 6.59   | 1.82      | -11.0       |         |
| Northridge Char                    | 10.68    | 13.3     | 6.79   | 0.91      | 26.0        |         |
| Santa Susana, alt 1 Char           | 1.26     | 13.0     | 6.81   | 2.10      | -34.9       |         |
| Santa Monica Connected alt 1 Cha   | 3.19     | 12.3     | 7.31   | 0.47      | 172.3       |         |
| Santa Monica Connected alt 2 Cha   | 2.04     | 11.7     | 7.35   | 0.64      | 150.5       |         |
| Sierra Madre Connected Char        | 1.60     | 9.4      | 7.26   | 1.23      | -11.0       |         |
| Verdugo GR                         | 1.25     | 7.5      | 6.65   | 1.37      | 48.5        |         |
| Northridge GR                      | 5.94     | 13.8     | 6.66   | 1.12      | -29.7       |         |
| #******End of deaggregation con    | respondi | ng to Ch | iou-Yo | ungs 2008 | ****        | ****#   |
|                                    |          |          |        | -         |             |         |

\*\*\*\*\*\*\*\*\*\*\*\*\* Southern California \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*



#### APPENDIX F

#### GENERAL EARTHWORK AND GRADING SPECIFICATIONS

#### 1.0 General

- 1.1 Intent: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).
- 1.2 Geotechnical Consultant: Prior to commencement of work, the owner shall employ a geotechnical consultant. The geotechnical consultant shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed, bottoms of all "remedial removal" areas, all key bottoms, and benches made on sloping ground to receive fill.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

1.3 The Earthwork Contractor: The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications.

The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified.

#### 2.0 Preparation of Areas to be Filled

2.1 <u>Clearing and Grubbing</u>: Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed.

- 2.2 Processing: Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.
- 2.3 Overexcavation: In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading.
- 2.4 <u>Benching</u>: Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill.
- 2.5 Evaluation/Acceptance of Fill Areas: All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.

#### 3.0 Fill Material

- 3.1 General: Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.
- 3.2 Oversize: Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 12 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.
- 3.3 Import: If importing of fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

#### 4.0 Fill Placement and Compaction

- 4.1 <u>Fill Layers</u>: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.
- 4.2 <u>Fill Moisture Conditioning</u>: Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-91).
- 4.3 <u>Compaction of Fill</u>: After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557-91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.

- 4.4 <u>Compaction of Fill Slopes</u>: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-91.
- 4.5 <u>Compaction Testing</u>: Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).
- 4.6 Frequency of Compaction Testing: Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.
- 4.7 <u>Compaction Test Locations</u>: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided.

#### 5.0 Subdrain Installation

Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

#### 6.0 Excavation

Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.

#### 7.0 Trench Backfills

- 7.1 Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations.
- 7.2 Bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum 90 percent of maximum from 1 foot above the top of the conduit to the surface, except in traveled ways (see Section 7.6 below).
- 7.3 Jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.
- 7.4 Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.
- 7.5 Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.
- 7.6 Trench backfill in the upper foot measured from finish grade within existing or future traveled way, shoulder, and other paved areas (or areas to receive pavement) should be placed to a minimum 95 percent relative compaction.





# DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES

#### Power System Integrated Support Services

#### ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

**GEORGE FEAUSTLE** 

PROJECT:

7600 TYRONE AVE

REPORT NO.: C12054

#### TABLE OF CONTENTS

| SECTION       |                                        | PAGE            |
|---------------|----------------------------------------|-----------------|
| COVER LETTER, | coc,                                   | 100001 - 100005 |
| ATTACHMENT 1  | VOC<br>EPA METHOD 8260B                | 200000 - 200007 |
| ATTACHMENT 2  | METALS/HG<br>EPA METHOD 6010B/7471     | 300000 - 300009 |
| ATTACHMENT 3  | TEPH/MOTOR OIL/DRO<br>EPA METHOD 8015M | 400000 – 400004 |
| ATTACHMENT 4  | GRO<br>EPA METHOD 8015B                | 500000 - 500003 |
| ATTACHMENT 5  | PCBs<br>EPA METHOD 8082                | 600000 - 600003 |
| ATTACHMENT 6  | PESTICIDES<br>EPA METHOD 8081          | PENDING         |
| ATTACHMENT 7  | SVOC<br>EPA METHOD 8270C               | 800000 - 800032 |

#### DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12054 COC 13-1321 Page 1 of 1 w/ attachments

#### ENVIRONMENTAL LABORATORY DATA REPORT

#### 7600 TYRONE AVE, VAN NUYS Soil Samples

Soil samples from 7600 Tyrone Ave, Van Nuys, were submitted to the Environmental Laboratory on May 28, 2013 for the determination of their Volatile Organic Compounds (VOC), Metals, Semi-Volatile Organic Compounds (SVOC), Total Extractable Petroleum Hydrocarbons (TEPH) including Motor Oil (MO) and Diesel Range Organic (DRO), Chlorinated Pesticides, Polychlorinated Biphenyls (PCBs), and Gasoline Range Organics (GRO) content.

Testing information including tests requested and test methods are listed below. All quality assurance data indicate that the results for these samples are of acceptable quality.

| Analysis<br>Requested | Method         | Results               | Analyzed<br>by    |
|-----------------------|----------------|-----------------------|-------------------|
| VOC                   | EPA 8260 B     | Attachment #1         | Environmental Lab |
| Metals                | EPA 6010B/7471 | Attachment #2         | Environmental Lab |
| TEPH/Diesel/Motor Oil | EPA 8015M      | Attachment #3         | Environmental Lab |
| GRO                   | EPA 8015B      | Attachment #4         | Environmental Lab |
| PCB                   | EPA 8082       | Attachment #5         | Weck Laboratories |
| Pesticides            | EPA 8081       | Attachment #6 PENDING | Weck Laboratories |
| SVOC                  | EPA 8270 C     | Attachment #7         | Weck Laboratories |

An updated version of this report will be delivered upon completion of pesticide data.

If you have any questions, or if further information is required, please contact Mr. Jeremy Stoa at (213) 367-7266 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 6/6/2013

Work Order No.: AHJ17

Job Card No.: J95550

Copies to: G. Feaustle

N. Liu

K. Han

J. Stoa

FileNet

Test Performed by: Environmental Lab

Weck Laboratories

Report By: JS Date: 6/06/1

Checked by: The Date: 61:

11 6 11

Interim Laboratory Manager

Environmental Laboratory

Kevin Han

APPROVED BY:

Environme | Laboratory 1630 N. Main Street, Bldg. 7, 3rd Flr. Los Angeles, CA. 90012 (213) 367-7248/7399

Department of Water and Po r City of Los Angeles

**Chain of Custody Record** 

COC#: 13-1321

Report C#

Page Loid

ICH TOESED WON A

|         | -7285 FAX<br>le Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Turor     | le ideolos        | ety 7600 Typone | AVE, Van Nous                  | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refri | g#. LIS<br>of Fleld Pe | L4 Shersonnel: | elf              | Bin#.<br>o. of Field Test: | -              | LT                     |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|----------------|------------------|----------------------------|----------------|------------------------|
| Chem    | Lab use only<br>Y LOG NUMBERS<br>duplicates use 1 or X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 2 10    | (24 Hr)           | Sample Location | . No Octobromatic Co. octobrom | Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A) Co |                        |                | Anal<br>Requ     | uired (SNSN                | Test<br>Result | Analyst(s)<br>Assigned |
|         | ~ LN 06205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/20/     | 13 0800           |                 |                                | 585/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5     | SIE                    | SOIL           | THE 22 ME        | tak/Tett cc                | SVOCS          |                        |
| 2 321-2 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         | 0862              | APCHIVE         |                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11    | 1                      | 11             | (ARCHIVE)        | 1                          |                |                        |
| 3 BZ1-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1080              |                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     | 44                     | 11             | L                |                            |                |                        |
| + B19-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | 0182              |                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33    | 5130                   | 生              | CCPS (2031)      | 4)+As(60                   | 08)            |                        |
| 5 -2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         | 0812              | ARCHIVE         |                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13    | 11                     | 1              | (ARCHIE)         |                            |                |                        |
| 6 4-3   | 8 662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0         | 1180              |                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3     | 11                     |                | V                |                            |                |                        |
| 2 B1-1  | 100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11        | 0825              |                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 111                    | 11             | Izad (           |                            |                | 1                      |
| 8 -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         |                   | ARCHINE         | 11011                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11    | 11/1                   | 11             | CARCHIVE         |                            |                |                        |
| -       | 3' 062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13        | 0830              | R               | USH                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     | VVV                    | V              |                  | V ,                        |                |                        |
| 10 B22  | The second secon | 14        | 0880              |                 | 00.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F     | 3                      | <b>第501</b>    | T-22 Map         | S/TPHKE/S                  | Svocs .        |                        |
| 11      | 2' 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing       |                   | ARCHIVE         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 11                     | 11             | (ARCHIVE)        | 1                          | -              |                        |
| 12 V -  | 3 062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6         | 0854              |                 |                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | 1 - 1                  |                | -                | 4                          | 1 .5           | BELOB)                 |
| 13 B25  | -1 062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17        | OPO               |                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =     | F 328                  | 屋              |                  | s/TOHCC.                   | Svos/V         | OCSPER                 |
| 14      | 2 062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18        | 0902              | ARCHNE          |                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _     | 111                    | 111            | ARCHIUE          | , ,                        | /              | 1(808)                 |
| 15      | 3 062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19        | 690               | į l             |                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 11                     | VI,            | 1                | •                          |                |                        |
| 16 164  | -1' VOGZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 201       | 0918              |                 |                                | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | SIE                    | NEW.           | Pb G             | (8010                      |                | The House of           |
| Г       | Date & Time<br>Stamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | uester Ga         |                 | Des kedrgànization<br>Tel.     | Div. LDW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | UA 2                   | SWIECK         | Analyst:Approved |                            | DateDate       |                        |
| 21      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pr        | 1-16.             |                 | Printed Name                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        | 10             | Signature        |                            | Time           | Date                   |
| 3- 132  | ت<br>4 ق                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3       | -4 Hrs<br>1Day    | V KEISTYN DEAT  | KE (ALTA ZUVIRON)              | MENTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )     | Sampledo               | 40             | Ba               | _                          | 1300           | 1 5/28/                |
| COC13-  | ₹ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .   = 1   | AWKs              | _ K.Dest=       |                                | Y THE STATE OF THE |       | Reilyddisi             | _              | lle              |                            | 1330           | 5/28                   |
| 5       | Chen LineOC Form (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SY: E     | specify S<br>WEEK | Received by     | NGWEN                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Recuived i             | עני            | t                |                            | 1335           | 5/28/                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECO SECO | ,                 |                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                |                  | -2                         |                |                        |

LKRG EH DW

Environme 1 Laboratory 1630 N. Main Street, Bldg. 7, 3rd Flr. Los Angeles, CA. 90012 (213) 367-7248/7399

# Department of Water and Pour City of Los Angeles

# **Chain of Custody Record**

| COC#:     | 13-132) | Page 2 of 4 |
|-----------|---------|-------------|
| Report C# | JC#     | WO#         |

| (  | 213) 367-72<br>Sample                        | 85 FAX              | Tu   | ema             | Pens                      | netu                            |          | Re<br>Ini | efrig | #<br>of Fiel | d Perso      | _ Sh  | Bin#-<br>No. of Field Test: | -       |                        |
|----|----------------------------------------------|---------------------|------|-----------------|---------------------------|---------------------------------|----------|-----------|-------|--------------|--------------|-------|-----------------------------|---------|------------------------|
| C  | Chem Lat.<br>HEMISTRY L<br>(For sample dupli | OG NUMBERS          | Samp | le Date         | (24 Hr)<br>Sample<br>Time | Sample Location and Description |          | atives    | Vo.   | Type         |              | atrix | Required                    |         | Analyst(s)<br>Assigned |
|    | BI-ZI                                        | 106221              | 5/2  | 1/13            | 0912                      | AROHIVE                         | 53%      | IGZ :     | 3     | Sta          | eve s        | OL    | LEAL (60/08) F              |         |                        |
| 2  | 1-3                                          | 06222               | -    | 1_              | 0914                      |                                 | -        |           | 1     | 1            | 1            | 1     | (AKOHYE) [                  |         |                        |
| 3  | B3-1"                                        | 106223              | -    | 1               | 09120                     |                                 | -        | 1         | V     | *            | 4            | 1     | - 4                         |         |                        |
| 1  | 1-2-                                         | 106224              | 1    | -               | The second second second  | ARCHIVE                         | -        | 1         | 3     | 9-           | D/E          | 1     | Pb-1222 (1010B)5            |         |                        |
| 5  | 4-3                                          | 06725               | -    | -               | 0924                      |                                 | -        | 1         | 1     | 1            | 11           | 1     | CARSTINE)                   |         |                        |
| 6  | B2-1,                                        | 06226               | -    | -               | 0930                      |                                 | -        |           | *     | Y            | 4            | +     | 1                           |         |                        |
| 12 | -2                                           | 06227               |      | -               |                           | APCHVE                          | -        | -         | +     | 1            | +++          | +     | (ARCHIVE)                   |         |                        |
| 1  | N-3                                          |                     |      | -               | 0934                      |                                 | +        |           | Y     | 1            | W            | 7     | 1111-1111                   | 1       | 1                      |
| 1  | B26-1                                        | 56229               | 9    | -               | 0240                      |                                 | ++       | -         | 7     |              | YOU          | -     | FZN=bls/TPHC/VCS            | /SVOCS/ | PCBS                   |
| 1  | 10 1-2                                       |                     | 1    | -               | -                         | ARCHIVE                         | +        | -         | H     | -            | 1            | +     | CARCHINE) /                 |         | -                      |
| 7  | 11 V-3                                       | /                   | 1    | -               | 10944                     |                                 | +        |           | 4     | 1            | 4            | +     | - V                         | 7       | -                      |
|    | 121818-                                      | -                   |      | -               | 0950                      |                                 | -1-1     |           | 3     | SI           | 23/2         | +     | OCPS (QUBIA) + AS (GO       | (OB)    | -                      |
|    | 13 -2                                        | 1 -                 |      | -               |                           | 2 ADCHIVE                       | -        | -         | 1     | 10           | H            | +     | (ARCHIVE)                   |         | -                      |
|    | 14 1 -3                                      | 1                   |      | -               | 0950                      |                                 | $\dashv$ | -         | 1     |              | 4            | H     | 10 /4 100)                  |         | -                      |
|    | 15 Blo-                                      | 062                 | 1 .  | 1               | loop                      |                                 | 1        | 1         | 3     | 1            | EVE          | d     | Pb (boloB)                  | -       | +                      |
|    | 16 1 7                                       | 0062                | 6    | 4               | 1/00                      | 2 Active                        |          | <u></u>   | 10    |              | 14           | IN    | (ARCHIVE)                   | -       | -                      |
|    | Da                                           | ate & Time<br>Stamp |      | equest<br>Addre |                           | Tel.                            |          | P(U)      |       | AH           | a EW         | VIED  | Analyst:                    | Date    |                        |
|    | COC#1                                        | .35                 | 盖    | Priori          | ty                        | Printed Name                    |          |           | T     |              | , (          | 2/    | Signature                   | Time    | Date                   |
|    | COC# Labal Here                              | a 8                 | CHE  | 2-4 Hr<br>1Day  |                           | Sampled by:  Relinquished by:   | ۰        |           |       | _            | dy           | de    | Ser .                       | 1300    | 5/28/                  |
|    | \$                                           | ON COC FORM III     |      | 2 Wks           |                           | Relinquished by Deak =          |          |           | 14    | 7            | uisiidd<br>S | Zel   | le                          | 1330    |                        |
|    | - Che                                        | Revision: 08/01/02  | S P  | Speci           | fy.                       | Received by NGWIEN              |          |           | I     | gcei         | ed by        |       | £ .                         | 1335    | 5/28/                  |

Environme I Laboratory
1630 N. Main Street, Bldg. 7, 3rd Flr.

1630 N. Main Street, Bldg. 7, 3r Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX

### Department of Water and Po er City of Los Angeles

# **Chain of Custody Record**

coc#: 13-132/

Page 3 of

| (213) 367-7285 FAX  Sample Location: Tupon Property |            |            |       | Re                | efrig               | #                                        |          | JC#  |              | (A)    |        |                 |                    |          |      |                       |
|-----------------------------------------------------|------------|------------|-------|-------------------|---------------------|------------------------------------------|----------|------|--------------|--------|--------|-----------------|--------------------|----------|------|-----------------------|
| CHEMIST                                             | Lab use of | UMBERS     | Sampl | ons<br>e Dale     | (24 Hr) .<br>Sample | Sample Location and Description          | Presorva | 12 m | At 1827 W. a | ntaine | Size M | - Sec. 1        | nalysis<br>equired | 1.00     |      | nalyst(s)<br>Assigned |
|                                                     |            | 36237      |       |                   |                     | 100 2000 100 100 100 100 100 100 100 100 |          | te   | 3            | 3 50   | NE S   | IL POCE         | otbs)              |          |      |                       |
| 2 B8-1                                              |            | 6238       | 1     | 1                 | 1010                |                                          | 16       | =    | 3            | 9      | 315    | 1 Pble          |                    |          |      |                       |
| 3 / -2                                              |            | 16239      |       |                   | 1012                | ARCHIVE                                  |          |      | 11           | 1      | II     | Corectina       | -                  |          | . 1  |                       |
| 11-                                                 | 3 1        | 06240      |       |                   | 1014                | *                                        |          |      | J            | de     | 1      | 1               | V                  | ,        |      |                       |
| 5 B29-                                              | -11        | 06241      |       |                   | 1020                |                                          |          |      | 3            |        |        | TPH di          | कर् +वा            | SNOC     | 5    |                       |
| 6-1-                                                | 2          | 06242      |       |                   | 1022                | APCHAE                                   |          |      | 1            |        |        | 1 (ARUNY        | ) ~                | /        | -    |                       |
| 1 V -                                               |            | 06243      |       |                   | 1024                |                                          |          |      | V            | V      | V      | Pb (b           | doB)               |          |      |                       |
| 0B5-                                                |            | 06244      |       | -                 | 1030                | 7 9                                      |          |      | 3            | 1      | 11     | 3/65            | (KD                | )        |      |                       |
|                                                     |            | 06245      |       | _                 | 1032                | ARCHINE                                  |          |      | 1            | V      |        | CARCHIN         | EV                 |          |      |                       |
| 10 1                                                | 3:         | 06246      |       | -                 | 1034                |                                          |          |      | 1            | W      | 1      | See 101         | V                  | -        | -    |                       |
| 1187-                                               | ·r         | 06247      | -     |                   | 1040                |                                          |          |      | 1            |        |        | Plo (lo         | (8910              |          |      |                       |
| 12   -                                              | 2          | 06245      | 2     | 1                 | 1047                | ARCHNE                                   |          |      |              |        | 111    | CARCAH          | VE)/               |          |      |                       |
| 13 1                                                | 3'         | 0624       | 9     |                   | 1044                | ł                                        | -        |      | 1            |        |        | 11              | A                  |          |      | -                     |
| 14B20                                               | -1'        | 06250      | 2     |                   | 105                 |                                          |          |      | 1            |        |        | CCPs(e          | 08A)+A             | s(60) DE |      |                       |
|                                                     | -2'        | 0625       | 100   | 11                | 105                 | 2 ARCHNE                                 | 1        | M    | 1            | 11     | 11     | KARCH           | (SV)               |          |      |                       |
| 16 1                                                | -3'        | 10625      | 2     | V                 | 105                 | l                                        |          | /    | A            | 1      | 1 X    | V               | 1                  |          |      |                       |
| ¥                                                   | Date &     |            |       | equeste<br>Addres | A                   | restantion Tel.                          |          | Fax  | 1            | Hta    | ZIV    | Analys<br>Appro | t:                 |          | Date |                       |
| #2000#                                              |            | weeks      |       | Priorit           | У                   | Printed Name                             |          |      | 1            |        | . /    | Signatur        | re                 |          | Time | Date                  |
| >> COC# Label Here                                  | Marrie .   |            |       | 2-4 Hrs<br>1Day   | e .                 | Sampled by:                              |          |      | 1-           | 1      | id by: | ulb             | e                  | 1        | 300  | 5/24/1                |
| × .                                                 | AD         | oc form m  | 1     | 2 Wks             |                     | Relinquished by:                         |          |      |              |        | Red    | Fill            | De.                |          | 1330 | 5/28/                 |
| -                                                   |            | : 08/01/02 | TEG L | Specif            | fy                  | Received by T NGWEN                      |          |      | R            | tecep  | ed by  | to              |                    |          | 1335 | 5/28/                 |

Environme | Laboratory

1630 N. Main Street, Bldg. 7, 3rd Flr.

Los Angeles, CA. 90012 (213) 367-7248/7399 Department of Water and Power

City of Los Angeles

# **Chain of Custody Record**

COC#: [3-132]

Page Lof A

| EMISTRY LO         | USE ONLY<br>OG NUMBERS<br>ales use 1 or X) | Sample | Date            | (24 Hr)<br>Sample<br>Time | Sample Location and Description | Presurvativ |           | Contain<br>Type |           | imple<br>latrix | Analysis<br>Required • | Test .<br>Result | Analyst(s)<br>Assigned |
|--------------------|--------------------------------------------|--------|-----------------|---------------------------|---------------------------------|-------------|-----------|-----------------|-----------|-----------------|------------------------|------------------|------------------------|
|                    | N06253                                     |        |                 |                           |                                 | 100         | 3         | S               | 1         | 3010            | Pb (COOLOB)            |                  |                        |
| -2-                | 06254                                      | 1      | 1               | 1102                      | APCHINE                         | 1           | 1         | 1.1             | 1         | 11              | (ARCHIVE)              |                  |                        |
| 1-3'               | 06255                                      |        |                 | 110                       |                                 |             |           |                 | 11        |                 | CANCEL VE XXXX         |                  |                        |
| 1-01               | 06256                                      |        |                 | Mo                        |                                 |             |           |                 |           |                 | //                     |                  |                        |
| 1-2'               | 86257                                      |        |                 |                           | ARCHNE                          |             |           |                 |           |                 | -APCHIVE               | V                |                        |
| 1 -3               | 06258                                      |        |                 | 1114                      |                                 |             |           |                 |           |                 |                        |                  |                        |
| 330-1              | 06259                                      | 1      |                 | 1130                      |                                 |             | 1         |                 |           | -               | MHdisdoi 1510          | 45               |                        |
| 1 -2'              | 06260                                      | 11     | 2               | 1132                      | ARCHNE                          |             |           | 1               |           |                 | KARONY /               |                  |                        |
| V-3                | 06261                                      |        |                 | 1134                      |                                 |             |           |                 |           |                 | - J                    |                  |                        |
| BU-1'              | 86267                                      |        |                 | 1210                      |                                 |             |           |                 |           |                 | Pb(GOTOB).             |                  |                        |
| 1-2                | 06263                                      |        |                 | 1212                      | ARCHIVE                         |             |           | 1               |           |                 | CARCHIVE)              |                  |                        |
| V -3               | 106264                                     |        |                 | 1244                      |                                 | 1           | 1         | M               | 1         | V               | V                      |                  |                        |
| 3 R12-1            | Tn -                                       |        |                 |                           |                                 | -           |           |                 |           |                 |                        |                  |                        |
| 1 /2               | 1 to                                       | 129/   | 13              | -                         | +                               | 1           |           |                 |           |                 |                        |                  |                        |
| 5 Bh-1             | 1.                                         | . 1.7  | /               |                           |                                 |             |           |                 |           |                 |                        |                  |                        |
| -                  | 2 2                                        |        |                 | 1                         |                                 |             |           |                 |           |                 | 4-7- 1                 | III III          |                        |
| 14                 | te & Time<br>Stamp                         |        | queste          |                           | Organization Tel.               |             | wp<br>ax/ | AU              | AZM       | ina             | Analyst:Approved:      | Date             |                        |
| >> COC# Label Here | ın m                                       |        | Priority        |                           | Printed Name                    |             |           |                 | 1         | 2/              | Signature              | Time             | Da                     |
| abel H             | PM 1:35<br>CHFM LAB                        | F      | 2-4 Hrs<br>1Day | -                         | Sampled by:                     |             |           | Samu            | Sale Sale | de              | She                    | 1300             | 5/20/                  |
| TP I               | LA:                                        | 1      | 2 Wks           |                           | Relinquished by:                |             |           | RALIN           | wisb 1    | by              | 10                     | -1               |                        |
| 2 0                | ni Lab ÇQÇ Form III.<br>Jevision Del/01/02 |        | 4Wks            |                           | Relinquished by:                |             |           | 1               | 12/2      | de              | 10-                    | 1330             | \$/20                  |

## **ATTACHMENT #1**

# VOLATILE ORGANIC COMPOUNDS (VOC)

EPA METHOD 8260 B

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |  |
|-------------------|--------------|------------------|------------------|--------------------|--|
| LN06217           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-1 |  |
| LN06219           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-3 |  |
| LN06229           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-1 |  |
| LN06231           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-3 |  |
| LN06335           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-1 |  |
| LN06337           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-3 |  |
| LN06341           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-1 |  |

| Compounds                     | MDL   | PQL    | LN06217<br>Amount | LN06219<br>Amount | LN06229<br>Amount | LN06231<br>Amount | LN06335<br>Amount | LN06337<br>Amount | LN06341<br>Amount |
|-------------------------------|-------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                               | ug/kg | ug/kg  | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             | ug/kg             |
| Acetone                       | 32    | 160,0  | nd                |
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd                |
| Benzene                       | 26    | 130.0  | nd                |
| Bromobenzene                  | 26    | 130.0  | nd                |
| Bromochloromethane            | 24    | 120.0  | nd                |
| Bromodichloromethane          | 22    | 110.0  | nd                |
| Bromoform                     | 23    | 115.0  | nd                |
| Bromomethane                  | 20    | 100.0  | nd                |
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd                |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd                |
| Butylbenzene                  | 29    | 145.0  | nd                |
| sec-Butylbenzene              | 27    | 135.0  | nd                |
| tert-Butylbenzene             | 29    | 145.0  | nd                |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd                |
| Carbon disulfide              | 116   | 580.0  | nd                |
| Carbon Tetrachloride          | 32    | 160.0  | nd                |
| Chlorobenzene                 | 28    | 140.0  | nd                |
| Chloroethane                  | 42    | 210.0  | nd                |
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd                |
| Chloroform                    | 30    | 150.0  | nd                |
| Chloromethane                 | 70    | 350.0  | nd                |
| 2-Chloratoluene               | 27    | 135.0  | nd                |
| 4-Chlorotoluena               | 28    | 140.0  | nd                |
| Dibromochloromethane          | 25    | 125.0  | nd                |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd                |
| 1,2-Dibromoethane             | 23    | 115.0  | nd                |
| Dibromomethane                | 33    | 165.0  | nd                |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd                |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd                |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd                |
| Dichlorodifluoromethane       | 37    | 185.0  | nd                |
| 1,1-Dichloroethane            | 29    | 145.0  | nd                |
| 1,2-Dichloroethane            | 22    | 110.0  | nd                |
| 1,1-Dichloroethene            | 28    | 140.0  | nd                |
| cis-1,2-Dichloroethene        | 26    | 130.0  | nd                |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd                |
| 1,2-Dichloropropane           | 22    | 110.0  | nd                |
| 1,3-Dichloropropane           | 21    | 105,0  | nd                |
| 2,2-Dichloropropane           | 38    | 190.0  | nd                |
| 1,1-Dichloropropene           | 27    | 135.0  | nd                |
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd                |
| trans-1,3-Dichloropropene     | 29    | 145.0  | nd                |
| Dilsopropyl ether (DIPE)      | 26    | 130.0  | nd                |
| Ethylbenzene                  | 30    | 150.0  | nd                |
| Hexachlorobutadiene           | 44    | 220.0  | nd                | าก็การ            | nd                | nd                | nd                | nd                | nd                |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix; Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |  |
|-------------------|--------------|------------------|------------------|--------------------|--|
| LN06217           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-1 |  |
| LN06219           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-3 |  |
| LN06229           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-1 |  |
| LN06231           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-3 |  |
| LN06335           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-1 |  |
| LN06337           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-3 |  |
| LN06341           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-1 |  |

|                               |       |       | LN06217 | LN06219 | LN06229 | LN06231 | LN06335 | LN06337 | LN06341 |
|-------------------------------|-------|-------|---------|---------|---------|---------|---------|---------|---------|
| Compounds                     | MDL   | PQL   | Amount  |
|                               | ug/kg | ug/kg | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   |
| 2-Hexanone                    | 21    | 105.0 | nd      |
| Isopropylbenzene              | 33    | 165.0 | nd      |
| p-Isopropyltoluene            | 28    | 140.0 | nď      | nd      | nd      | nd      | nd      | nd      | nd      |
| Methyl-t-butyl ether (MTBE)   | 23    | 115,0 | nd      |
| Methylene chloride            | 31    | 155.0 | nd      |
| lodomethane                   | 20    | 100.0 | nd      |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd      |
| Naphthalene                   | 30    | 150.0 | nd      |
| Propylbenzene                 | 30    | 150.0 | nd      |
| Styrens                       | 33    | 165.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd .    |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd      |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd      |
| Tetrachloroethylene           | 27    | 135.0 | nd      |
| Toluene                       | 25    | 125.0 | nd      |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd      |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd      |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd      |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd      |
| Trichloroethylene             | 24    | 120,0 | nd      |
| Trichlorofluoromethane        | 35    | 175.0 | nd      |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd      |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd      |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd      |
| Vinyl acetate                 | 52    | 260.0 | nd      |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd      |
| m & p-Xylene                  | 75    | 375.0 | nd      |
| o-Xylene                      | 28    | 140.0 | nd      |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J-Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |             | Quality Cont | rol Data |        |        |        |        |        |
|----------------------------|-------------|--------------|----------|--------|--------|--------|--------|--------|
| 3.00                       | QC Limits   |              |          |        |        |        |        |        |
| Surrogates                 | % Recovery  |              |          |        |        |        |        |        |
| 30 (ug/L each)             | Lower-Upper |              |          |        |        |        |        |        |
| SURR: Bromofluorobenzene   | 74 - 121    | 104.0%       | 103.7%   | 102.7% | 103.3% | 102.3% | 103.3% | 102.7% |
| SURR: Dibromofluoromethane | 80 - 120    | - 97.0%      | 96.0%    | 95.0%  | 96.3%  | 95.3%  | 95.3%  | 95.3%  |
| SURR: Toluene-d8           | 81 - 117    | 93.7%        | 92.3%    | 90.0%  | 92.3%  | 92.3%  | 92.3%  | 92.3%  |

Comment

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN06343           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-3 |
|                   |              |                  | 12               |                    |
|                   |              |                  |                  |                    |
|                   |              |                  | - 1              |                    |
|                   |              | -                |                  |                    |
|                   | _            | -                |                  |                    |

| Compounds                     | MDL     | PQL     | LN06343<br>Amount |
|-------------------------------|---------|---------|-------------------|
|                               | (ug/kg) | (ug/kg) | (ug/kg)           |
| Acetone                       | 32      | 160.0   | nd                |
| tert-Amyl methyl ether (TAME) | 23      | 115.0   | nd                |
| Benzene                       | 26      | 130.0   | nd                |
| Bromobenzene                  | 26      | 130.0   | nd                |
| Bromochloromethane            | 24      | 120.0   | nd                |
| Bromodichloromethane          | 22      | 110.0   | nd                |
| Bromoform                     | 23      | 115.0   | nd                |
| Bromomethane                  | 20      | 100.0   | nd                |
| 2-Butanone (MEK)              | 26      | 130.0   | nd                |
| tert-Butyl alcohol (TBA)      | 373     | 1865,0  | nd                |
| n-Butylbenzene                | 29      | 145.0   | nd                |
| sec-Butylbenzene              | 27      | 135.0   | nd                |
| tert-Butylbenzene             | 29      | 145.0   | nd                |
| tert-Butyl ethyl ether (ET8E) | 20      | 100.0   | nd                |
| Carbon disulfide              | 116     | 580.0   | nd                |
| Carbon Tetrachloride          | 32      | 160.0   | nd                |
| Chlorobenzene                 | 28      | 140.0   | nd                |
| Chloroethane                  | 42      | 210.0   | nd                |
| 2-Chloroethyl vinyl ether     | 23      | 115.0   | nd                |
| Chloroform                    | 30      | 150.0   | nd                |
| Chloromethane                 | 70      | 350.0   | nd                |
| 2-Chlorotoluene               | 27      | 135.0   | nd                |
| 4-Chlorotoluene               | 28      | 140.0   | nd                |
| Dibromochloromethane          | 25      | 125.0   | nd                |
| 1,2-Dibromo-3-chloropropane   | 31      | 155.0   | nd                |
| 1,2-Dibromoethane (EDB)       | 23      | 115.0   | nd                |
| Dibromomethane                | 33      | 165.0   | nd                |
| 1,2-Dichlorobenzene           | 27      | 135.0   | nd                |
| 1,3-Dichlorobenzene           | 27      | 135.0   | nd                |
| 1,4-Dichlorobenzene           | 33      | 165.0   | nd                |
| Dichlorodifluoromethane       | 37      | 185.0   | nd                |
| 1,1-Dichloroethane            | 29      | 145.0   | nd                |
| 1,2-Dichloroethane            | 22      | 110.0   | nd                |
| 1,1-Dichloroethene            | 28      | 140.0   | nd                |
| cis-1,2-Dichloroethene        | 26      | 130.0   | nd                |
| trans-1,2-Dichloroethene      | 32      | 160.0   | nd                |
| 1,2-Dichloropropane           | 22      | 110.0   | nd                |
| 1,3-Dichloropropane           | 21      | 105.0   | nd                |
| 2,2-Dichloropropane           | 38      | 190.0   | nd.               |
| 1,1-Dichloropropene           | 27      | 135.0   | nd                |
| cis-1,3-Dichloropropene       | 26      | 130.0   | nd                |
| trans-1,3-Dichloropropene     | 29      | 145.0   | nd                |
| Diisopropyl ether (DIPE)      | 26      | 130.0   | nd                |
| Ethylbenzene                  | 30      | 150.0   | nd                |
| Hexachlorobutadiene           | 44      | 220.0   | nd                |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN06343           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-3 |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              | -                |                  |                    |
|                   |              |                  |                  |                    |
|                   |              | _                |                  |                    |

|                             |         |         | LN06343 |  |  |
|-----------------------------|---------|---------|---------|--|--|
| Compounds                   | MDL     | PQL     | Amount  |  |  |
|                             | (ug/kg) | (ug/kg) | (ug/kg) |  |  |
| 2-Hexanone                  | 21      | 105,0   | nd      |  |  |
| Isopropylbenzene            | 33      | 165.0   | nd      |  |  |
| p-Isopropyltoluene          | 28      | 140.0   | nd      |  |  |
| Methyl-t-butyl ether (MTBE) | 23      | 115.0   | nd      |  |  |
| Methylene chloride          | 31      | 155.0   | nd      |  |  |
| Methyl iodide (iodomethane) | 20      | 100.0   | nd      |  |  |
| 4-Methyl-2-pentanone (MIBK) | 19      | 95.0    | nd      |  |  |
| Naphthalene                 | 30      | 150.0   | nd      |  |  |
| Propylbenzene               | 30      | 150.0   | nd      |  |  |
| Styrene (Phenylethylene)    | 33      | 165.0   | nď      |  |  |
| 1,1,1,2-Tetrachloroethane   | 23      | 115.0   | nd      |  |  |
| 1,1,2,2-Tetrachloroethane   | 40      | 200.0   | nd      |  |  |
| Tetrachloroethylene (PCE)   | 27      | 135.0   | nd      |  |  |
| Toluene                     | 25      | 125.0   | nď      |  |  |
| 1,2,3-Trichlorobenzene      | 29      | 145.0   | nd      |  |  |
| 1,2,4-Trichlorobenzene      | 31      | 155.0   | nd      |  |  |
| 1,1,1-Trichloroethane       | 26      | 130.0   | nd      |  |  |
| 1,1,2-Trichloroethane       | 23      | 115.0   | nd      |  |  |
| Trichloroethylene (TCE)     | 24      | 120.0   | nd      |  |  |
| Trichlorofluoromethane      | 35      | 175.0   | nd      |  |  |
| 1,2,3-Trichloropropane      | 22      | 110.0   | nd      |  |  |
| 1,2,4-Trimethylbenzene      | 25      | 125.0   | nd      |  |  |
| 1,3,5-Trimethylbenzene      | 28      | 140.0   | nd      |  |  |
| Vinyl acetate               | 52      | 260.0   | nd      |  |  |
| Vinyl Chloride              | 36      | 180.0   | nd      |  |  |
| m & p-Xylene                | 75      | 375.0   | nd      |  |  |
| o-Xylene                    | 28      | 140.0   | nd      |  |  |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|             | 12 00.02 00.020.                                  |                                                                |
|-------------|---------------------------------------------------|----------------------------------------------------------------|
|             | Quality Control Data                              |                                                                |
| QC Limits   |                                                   |                                                                |
| % Recovery  |                                                   |                                                                |
| Lower-Upper |                                                   |                                                                |
| 74 - 121    | 103.7%                                            |                                                                |
| 80 - 120    | 95.0%                                             |                                                                |
| 81 - 117    | 92.7%                                             |                                                                |
|             | % Recovery<br>Lower-Upper<br>74 - 121<br>80 - 120 | % Recovery<br>Lower-Upper<br>74 - 121 103.7%<br>80 - 120 95.0% |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |   |
|-------------------|--------------|------------------|------------------|--------------------|---|
| Blank             | 5/28/2013    | 5/28/2013        | 6/3/2013         | Method Blank       |   |
|                   | 41           |                  |                  |                    |   |
|                   |              |                  |                  |                    |   |
|                   |              |                  |                  |                    | _ |
|                   |              |                  |                  |                    |   |
|                   |              |                  |                  |                    | _ |
|                   |              |                  |                  |                    |   |

|                               |       |        | Blank  |
|-------------------------------|-------|--------|--------|
| Compounds                     | MOL   | PQL    | Amount |
|                               | ug/kg | ug/kg  | ug/kg  |
| Acetone                       | 32    | 160.0  | nd     |
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd     |
| Benzene                       | 26    | 130.0  | nd     |
| Bromobenzene                  | 26    | 130.0  | nd     |
| Bromochloromethane            | 24    | 120.0  | nd     |
| Bromodichloromethane          | 22    | 110.0  | nd     |
| Bromoform                     | 23    | 115.0  | nd     |
| Bromomethane                  | 20    | 100.0  | nd     |
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd     |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd     |
| Butylbenzene                  | 29    | 145.0  | nd     |
| sec-Butylbenzene              | 27    | 135.0  | nd     |
| tert-Butylbenzene             | 29    | 145.0  | nd     |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd     |
| Carbon disulfide              | 116   | 580.0  | nd     |
| Carbon Tetrachloride          | 32    | 160.0  | nd     |
| Chlorobenzene                 | 28    | 140.0  | nd     |
| Chloroethane                  | 42    | 210.0  | nd     |
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd     |
| Chloroform                    | 30    | 150.0  | nd     |
| Chloromethane                 | 70    | 350.0  | nd     |
| 2-Chlorotoluene               | 27    | 135.0  | nd     |
| 4-Chlorotoluene               | 28    | 140.0  | nd     |
| Dibromochloromethane          | 25    | 125.0  | nd     |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd     |
| 1,2-Dibromoethane             | 23    | 115.0  | nd     |
| Dibromomethane                | 33    | 165.0  | nd     |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd     |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd     |
| Dichlorodifluoromethane       | 37    | 185.0  | nd     |
| 1,1-Dichloroethane            | 29    | 145.0  | nd     |
| 1,2-Dichloroethane            | 22    | 110.0  | nd     |
| 1,1-Dichloroethene            | 28    | 140.0  | nd     |
| ds-1,2-Dichloroethene         | 26    | 130.0  | nd     |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd     |
| 1,2-Dichloropropane           | 22    | 110.0  | nd     |
| 1,3-Dichloropropane           | 21    | 105.0  | nd     |
| 2,2-Dichloropropane           | 38    | 190.0  | nd     |
| 1,1-Dichloropropene           | 27    | 135.0  | nd     |
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd     |
| trans-1,3-Dichloropropene     | 29    | 145.0  | nd     |
| Disopropyl ether (DIPE)       | 26    | 130.0  | nd     |
| Ethylbenzene                  | 30    | 150.0  | nd     |
|                               |       |        |        |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| Blank             | 5/28/2013    | 5/28/2013        | 6/3/2013         | Method Blank       |
|                   |              |                  |                  |                    |
|                   | 4.           |                  | - N.             |                    |
|                   |              |                  | - 9              |                    |
|                   |              |                  | 1                |                    |
|                   |              |                  |                  |                    |
|                   |              | -                |                  |                    |

|                               |       |       | Blank  |
|-------------------------------|-------|-------|--------|
| Compounds                     | MDL   | PQL   | Amount |
|                               | ug/kg | ug/kg | ug/kg  |
| Hexachlorobutadiene           | 44    | 220.0 | nd     |
| 2-Hexanone                    | 21    | 105.0 | nd     |
| Isopropylbenzene              | 33    | 165.0 | nd     |
| p-Isopropyltoluene            | 28    | 140.0 | nd     |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd     |
| Methylene chloride            | 31    | 155.0 | nd     |
| lodomethane                   | 20    | 100.0 | nd     |
| Methyl isobutyl ketone (MIBK) | 19    | 95,0  | nd     |
| Naphthalene                   | 30    | 150.0 | nd     |
| Propylbenzene                 | 30    | 150.0 | nd     |
| Styrene                       | 33    | 165.0 | nd     |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd     |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd     |
| Tetrachloroethylene           | 27    | 135.0 | nd     |
| Toluene                       | 25    | 125.0 | nd     |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd     |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd     |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd     |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd     |
| Trichloroethylene             | 24    | 120.0 | nd     |
| Trichlorofluoromethane        | 35    | 175.0 | nd     |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd     |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd     |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd     |
| Vinyl acetale                 | 52    | 260.0 | nd     |
| Vinyl Chloride (Chloroethene) | 38    | 180.0 | nd     |
| m & p-Xylene                  | 75    | 375.0 | nd     |
| o-Xylene                      | 28    | 140.0 | nd     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            | QC Limits   | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
| Surrogates                 | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper |                      |  |
| SURR: Bromofluorobenzene   | 74 - 121    | 102.0%               |  |
| SURR: Dibromofluoromethane | 80 - 120    | 96,7%                |  |
| SURR: Toluene-d8           | 81 - 117    | 92.7%                |  |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

#### Quality Assurance Report

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED:

6/3/13

ANALYTICAL METHOD:

**USEPA 8260** 

BATCH #: LN06217 LN LN06217 LN06219 LN06229 LN06231 LN06335 LN06337 LN06341 LN06343

LAB SAMPLE I.D.: LN06217

UNIT:

ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 25.3 | 84.3 | 30.0                   | 25.9 | 86.3 | 2.3 %  | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 29.9 | 99.7 | 30.0                   | 30.5 | 102  | 2.3 %  | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 30.8 | 103  | 30.0                   | 31.3 | 104  | 0.97 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 30.6 | 102  | 30.0                   | 31.5 | 105  | 2.9 %  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.7 | 119  | 30.0                   | 36.6 | 122  | 2.5 %  | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

6/3/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LAB LCS I.D.:

Q8087

LOT NUMBER:

114

DATE OF SOURCE:

UNIT: ug/kg

| ANALYTE               | LCS RESULT<br>ug/kg | TRUE VALUE<br>ug/kg | % RECOVERY | Advisory Range |
|-----------------------|---------------------|---------------------|------------|----------------|
| 1,1,2-Trichloroethane | 29.9                | 30                  | 99.7       | 70 - 130       |
| 1,2-Dichloroethane    | 32.1                | 30                  | 107.0.     | 70 - 130       |
| 1,4-Dichlorobenzene   | 31.3                | 30                  | 104.3      | 70 - 130       |
| Benzene               | 28.9                | 30                  | 96.3       | 70 - 130       |
| Bromoform             | 33                  | 30                  | 110.0      | 70 - 130       |
| Carbon Tetrachloride  | 27                  | 30                  | 90.0       | 70 - 130       |
| Tetrachloroethylene   | 28.2                | 30                  | 94.0       | 70 - 130       |
| Trichloroethylene     | 27.2                | 30                  | 90.7       | 70 - 130       |
| XÁ.                   |                     |                     |            |                |
| - <u> </u>            |                     |                     |            | 1              |
|                       |                     |                     |            |                |
|                       |                     |                     |            |                |
| 1                     |                     |                     |            |                |
| 92.0<br>0 x           |                     |                     |            |                |
|                       |                     |                     |            |                |
| 3                     |                     |                     |            |                |

# **ATTACHMENT #2**

METALS/MERCURY
EPA METHOD 6010B/7471

COC 13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 6010B

Sample Matrix: SOIL

LABORATORY DATE DATE DATE

PROJECT: 7600 TYRONE

| LABORATORY   | DATE    | DATE           | DAIL     | 250 052 | 10000 | 27.1  | 333380           | SILESS INC       |                  |                  |         | 17 18 18 24      |
|--------------|---------|----------------|----------|---------|-------|-------|------------------|------------------|------------------|------------------|---------|------------------|
| LOG NO.      | SAMPLED | RECEIVED       | ANALYZED |         |       |       | SAMPLE I         | DESCRIPTIO       | N                | (中)              |         |                  |
| EN06205      | 5/28/13 | 5/28/13        | 5/31/13  |         |       | 7600  | TYRONE,          | B21-1            |                  |                  |         |                  |
| LN06207      | 5/28/13 | 5/28/13        | 6/3/13   |         |       | 7600  | TYRONE,          | B21-3            |                  | 10               |         |                  |
| LN06214      | 5/28/13 | 5/28/13        | 6/3/13   |         |       | 7600  | TYRONE,          | B22-1            |                  |                  |         |                  |
| LN06216      | 5/28/13 | 5/28/13        | 6/3/13   |         |       |       | TYRONE,          |                  | 1000             |                  |         |                  |
| LN06217      | 5/28/13 | 5/28/13        | 6/4/13   |         |       |       | TYRONE,          |                  |                  |                  |         |                  |
| LN06219      | 5/28/13 | 5/28/13        | 6/4/13   |         |       | 7600  | TYRONE,          | B25-3            |                  |                  |         |                  |
| £, .         |         |                |          |         |       |       |                  |                  |                  |                  |         |                  |
| <u> </u>     | LIMIT   | LIMIT          |          |         | T     | 1     | 1 NO COOL        | 12100000         | 7370/014         | TATOCOLO         | LN06217 | 7310/01/         |
| METAL        | (mg/kg) | STLC<br>(mg/l) | METHOD   | MDL     | RL    | D. F. | LN06205<br>mg/kg | LN06207<br>mg/kg | LN06214<br>mg/kg | LN06216<br>mg/kg | mg/kg   | LN06219<br>mg/kg |
| Antimony     | 500     | 15             | 6010     | 1.0     | 5.0   | 100   | 4.6J             | 3.73             | 2.95             | 3.6J             | 3.3J    | 4.25             |
| Arsenic      | 500     | 5              | 6010     | 2.6     | 13.0  | 100   | ND               | ND               | ND               | ND               | ND      | ND               |
| Barium       | 10000   | 100            | 6010     | 3.7     | 18.5  | 100   | 263              | 254              | 170              | 201              | 194     | 281              |
| Beryllium    | 75      | 0.75           | 6010     | 0.7     | 3.5   | 100   | ND               | ND               | ND               | ND               | ND      | ND               |
| Cadmium      | 100     | 1              | 6010     | 0.6     | 3.0   | 100   | 3.4              | 3.0J             | 2.6J             | 2.4J             | 2.42J   | 3.0J             |
| Chromium (T) | 500     | 5              | 6010     | 1.4     | 7.0   | 100   | 22               | 22.5             | 20               | 18               | 16.4    | 23               |
| Cobalt       | 8000    | 80             | 6010     | 1.0     | 5.0   | 100   | 17               | 16               | 10               | 14               | 13,5    | 16               |
| Copper       | 2500    | 25             | 6010     | 1.6     | 8.0   | 100   | 22               | 18               | 15               | 15               | 13.5    | 1.9              |
| Lead         | 1000    | 5              | 6010     | 0.9     | 4.5   | 100   | 18               | 14               | 48               | - 11             | 10.5    | 13               |
| Molybdenum   | 3500    | 350            | 6010     | 0.3     | 1.5   | 100   | ND               | ND               | ND               | ND               | ND      | ND               |
| Nickel       | 2000    | 20             | 6010     | 0.6     | 3.0   | 100   | 22               | 24               | 16               | 18               | 16.6    | 24               |
| Selenium     | 100     | 1              | 6010     | 1.6     | 8.0   | 100   | ND               | ND               | ND               | ND               | ND      | ND               |
| Silver       | 500     | 5              | 6010     | 1.5     | 7.5   | 100   | ND               | ND               | 7.5J             | ND               | ND      | ND               |
| Thallium     | 700     | 7              | 6010     | 1.5     | 7.5   | 100   | ND               | ND               | ND               | ND               | ND      | ND               |
| Vanadium     | 2400    | 24             | 6010     | 1.8     | 9.00  | 100   | 42               | 34               | 26               | 28               | 28      | 37               |
| Zinc         | 5000    | 250            | 6010     | 1.9     | 9.50  | 100   | 77               | 61               | 191              | 48               | 48      | 60               |
| Mercury      | 20      | 0.2            | 7471     | 0.0200  | 0.100 | 100   | 0.024            | 0.015            | 0.042            | 0.013            | 0.009   | 0.013            |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

<sup>\*\* -</sup> exceed TTLC limit

<sup>\* -</sup> exceed 10x STLC limit

J - concentration above MDL and below RL

#### ANALYTICAL RESULT FOR METALS

#### TTLC (Total Threshold Limit Concentration)

#### EPA Method 6010B Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY   | DATE    | DATE     | DATE     |        |       |                                         |          |             |     |         |     |        |
|--------------|---------|----------|----------|--------|-------|-----------------------------------------|----------|-------------|-----|---------|-----|--------|
| LOG NO.      | SAMPLED | RECEIVED | ANALYZEE |        | NA.   | Mark.                                   | SAMPLE I | DESCRIPTION |     | den all |     | 73.24  |
| LN06229      | 5/28/13 | 5/28/13  | 6/5/13   |        |       |                                         | TYRONE,  | 146.6       |     |         |     | -      |
| LN06231      | 5/28/13 | 5/28/13  | 6/5/13   | -      |       | 7600                                    | TYRONE,  | B26-3       | -   |         |     |        |
|              | -       |          |          |        |       | _                                       | _        | 71          |     |         | 119 |        |
|              |         |          |          |        |       | *************************************** |          |             |     |         |     |        |
| *1-          |         |          |          |        |       |                                         |          |             |     |         | -   | 15,240 |
| Va.          |         |          |          |        |       |                                         |          |             |     |         |     |        |
|              | LIMIT   | LIMIT    |          |        |       | T.                                      |          |             |     |         |     |        |
|              | TTLC    | STLC     |          | 1-1    |       |                                         | LN06229  | LN06231     |     | 1       |     |        |
| METAL        | (mg/kg) | (mg/l)   | METHOD   | MDL    | RL    | D. F.                                   | mg/kg    | mg/kg       |     | -11-    |     |        |
| Antimony     | 500     | 15       | 6010     | 1.0    | 5.0   | 100                                     | 1.3J     | 3.1J        | - 1 | -       | -   |        |
| Arsenic      | 500     | 5        | 6010     | 2.6    | 13.0  | 100                                     | ND       | ND          |     |         |     |        |
| Barium       | 10000   | 100      | 6010     | 3.7    | 18.5  | 100                                     | 61       | 195         |     |         |     | -      |
| Beryllium    | 75      | 0.75     | 6010     | 0.7    | 3.5   | 100                                     | ND       | ND          |     |         |     |        |
| Cadmium      | 100     | 1        | 6010     | 0.6    | 3.0   | 100                                     | 1.13     | 2.9J        |     |         |     |        |
| Chromium (T) | 500     | 5        | 6010     | 1.4    | 7.0   | 100                                     | 7.8      | 18          |     |         |     |        |
| Cobalt       | 8000    | 80       | 6010     | 1.0    | 5.0   | 100                                     | 5.5      | 15          |     |         |     |        |
| Copper       | 2500    | 25       | 6010     | 1.6    | 8.0   | 100                                     | 11.6     | 13          |     |         |     |        |
| Lead         | 1000    | 5        | 6010     | 0.9    | 4.5   | 100                                     | 6.0      | .11.        |     |         |     |        |
| Molybdenum   | 3500    | 350      | 6010     | 0.3    | 1.5   | 100                                     | ND       | ND          |     |         |     |        |
| Nickel       | 2000    | 20       | 6010     | 0.6    | 3.0   | 100                                     | 9.3      | 20          |     |         |     |        |
| Selenium     | 100     | 1        | 6010     | 1.6    | 8.0   | 100                                     | ND       | ND          |     |         |     |        |
| Silver       | 500     | 5        | 6010     | 1.5    | 7.5   | 100                                     | ND       | ND          |     |         |     | *124   |
| Thallium     | 700     | 7        | 6010     | 1.5    | 7.5   | 100                                     | ND       | ND          |     |         |     | 211    |
| Vanadium     | 2400    | 24       | 6010     | 1.8    | 9.00  | 100                                     | 18       | 31          |     |         |     |        |
| Zinc         | 5000    | 250      | 6010     | 1.9    | 9.50  | 100                                     | 26       | 56          |     |         |     |        |
| Mercury      | 20      | 0.2      | 7471     | 0.0200 | 0.100 | 100                                     | 0.021    | 0.012       |     |         |     |        |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

<sup>\*\* -</sup> exceed TTLC limit

<sup>\* -</sup> exceed 10x STLC limit

J - concentration above MDL and below RL

13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration) EPA Method 6010B

Sample Matrix: SOIL

PROJECT: 7600 TYRONE

| LABORATORY | DATE    | DATE     | DATE     | <b>新花</b> 英 | 45.5 |       |           |            |         |         |         | 10      |
|------------|---------|----------|----------|-------------|------|-------|-----------|------------|---------|---------|---------|---------|
| LOG NO.    | SAMPLED | RECEIVED | ANALYZED | 1.00        |      |       | SAMPLE I  | DESCRIPTIO | N       | 1000    |         |         |
| LN06208    | 5/28/13 | 5/28/13  | 5/30/13  |             |      | 7600  | TYRONE,   | B19-1      |         |         |         |         |
| LN06210    | 5/28/13 | 5/28/13  | 5/30/13  |             |      | 7600  | TYRONE,   | B19-3      |         |         |         |         |
| LN06232    | 5/28/13 | 5/28/13  | 6/4/13   |             |      | 7600  | TYRONE,   | B18-1      |         |         |         |         |
| LN06234    | 5/28/13 | 5/28/13  | 6/4/13   |             |      | 7600  | TYRONE,   | B18-3      |         |         |         |         |
| LN06250    | 5/28/13 | 5/28/13  | 6/4/13   |             |      | 7600  | TYRONE,   | B20-1      |         |         |         |         |
| LN06252    | 5/28/13 | 5/28/13  | 6/4/13   |             |      | 7600  | TYRONE, J | B20-3      |         |         |         |         |
| W.         | LIMIT   | LIMIT    |          |             |      |       |           |            |         |         |         |         |
| -          | TTLC    | STLC     |          |             |      |       | LN06208   | LN06210    | LN06232 | LN06234 | LN06250 | LN06252 |
| METAL      | (mg/kg) | (mg/l)   | METHOD   | MDL         | RL   | D. F. | mg/kg     | mg/kg      | mg/kg   | mg/kg   | mg/kg   | mg/kg   |
| Arsenic    | 500     | 5        | 6010     | 2.6         | 13.0 | 100   | ND        | ND         | ND      | ND      | ND      | ND      |
| en.        | 1       |          |          |             | 1 1  |       |           |            |         |         |         |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

Method: 6010 Matrix: Soil

Project: 7600 TYRONE

| LABORATORY<br>LOG NO. | DATE SAMPLED | DATE<br>RECEIVED | DATE<br>ANALYZED |                  |     |       | SAMPLE I | DESCRIPTIO | N.      |         |         |         |
|-----------------------|--------------|------------------|------------------|------------------|-----|-------|----------|------------|---------|---------|---------|---------|
| LN06211               | 5/28/13      | 5/28/13          | 5/30/13          |                  |     |       | 760      | 0 TYRONE   | B1-1    |         |         |         |
| LN06213               | 5/28/13      | 5/28/13          | 5/30/13          |                  |     |       | 760      | 0 TYRONE   | B1-3    |         |         |         |
| LN06220               | 5/28/13      | 5/28/13          | 5/30/13          |                  |     |       | 760      | 0 TYRONE   | B4-1    |         |         |         |
| LN06222               | 5/28/13      | 5/28/13          | 5/30/13          |                  |     |       | 760      | TYRONE     | B4-3    |         |         |         |
| LN06223               | 5/28/13      | 5/28/13          | 5/30/13          | 7600 TYRONE B3-1 |     |       |          |            |         |         |         |         |
| EN06225               | 5/28/13      | 5/28/13          | 5/30/13          | 2000 - 111 -     |     |       |          |            |         |         |         |         |
|                       | LIMIT        | LIMIT            |                  |                  |     |       |          |            |         |         |         |         |
|                       | TTLC         | STLC             |                  |                  |     |       | LN06211  | LN06213    | LN06220 | LN06222 | LN06223 | LN06225 |
| METAL                 | (mg/kg)      | (mg/1)           | METHOD           | MDL              | RL  | D. F. | mg/Kg    | mg/Kg      | mg/Kg   | mg/Kg   | mg/K.g  | mg/Kg   |
| Lead                  | 1000         | 5                | 6010             | 0.9              | 4.5 | 100   | 9.8      | 12.0       | 11.0    | 12.0    | 12.0    | 12.0    |
| N.E                   |              |                  |                  |                  |     |       | 1        |            |         |         |         |         |

| LABORATORY<br>LOG NO. | DATE SAMPLED | DATE<br>RECEIVED | DATE ANALYZED |     |     |       | SAMPLE I | DESCRIPTIO | N.      |         |         |         |
|-----------------------|--------------|------------------|---------------|-----|-----|-------|----------|------------|---------|---------|---------|---------|
| LN06226               | 5/28/13      | 5/28/13          | 5/30/13       |     |     |       | 760      | TYRONE     | B2-1    |         |         |         |
| LN06228               | 5/28/13      | 5/28/13          | 5/30/13       |     |     |       | 760      | TYRONE     | B2-3    |         |         |         |
| LN06235               | 5/28/13      | 5/28/13          | 5/30/13       |     |     |       | 7600     | TYRONE     | B6-1    |         |         |         |
| LN06237               | 5/28/13      | 5/28/13          | 6/3/13        |     |     | 1     | 7600     | TYRONE     | B6-3    |         |         |         |
| LN06238               | 5/28/13      | 5/28/13          | 6/3/13        |     |     | 1     | 7600     | TYRONE     | B8-1    |         |         |         |
| LN06240               | 5/28/13      | 5/28/13          | 6/3/13        |     |     |       | 7600     | TYRONE     | B8-3    |         |         |         |
| 30                    | LIMIT        | LIMIT            |               |     |     |       |          |            |         |         |         |         |
| St.                   | TTLC         | STLC             |               |     |     |       | LN06226  | LN06228    | LN06235 | LN06237 | LN06238 | LN06240 |
| METAL                 | (mg/kg)      | (mg/l)           | METHOD        | MDL | RL  | D. F. | mg/Kg    | mg/Kg      | nig/Kg  | mg/Kg   | mg/Kg   | mg/Kg   |
| Lead                  | 1000         | 5                | 6010          | 0.9 | 4.5 | 100   | 11.0     | 15.0       | 5.7     | 10.0    | 24.0    | 72.0    |
| 2                     |              |                  |               |     |     |       |          |            |         |         |         |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D.F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

Method: 6010 Matrix: Soil

Project: 7600 TYRONE

| EBANT STOP STORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | White Street, St. In | En 17312 1987 | Branch salas a        | 12-22-07 | 1.751.701.701 | Chine State | WINGS SATES | 8/0359596979797 | NAMES AND ADDRESS OF THE | Distriction by | SPECILINATE | BANGET . |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-----------------------|----------|---------------|-------------|-------------|-----------------|--------------------------|----------------|-------------|----------|
| LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE                 | DATE          | DATE                  |          |               | 1           |             |                 | ra Ser Cons.             |                |             |          |
| LOG NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLED              |               | A PACIFIC PROPERTY OF |          |               |             |             | DESCRIPTION     |                          | <b>经</b> 对是两为  | A TOWN      | STATE OF |
| LN06244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 6/4/13                |          | -             |             | 760         | 00 TYRON        | E B5-1                   |                |             |          |
| LN06246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 6/4/13                |          |               | -           | 760         | 00 TYRON        | E B5-3                   |                |             |          |
| LN06247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 6/4/13                |          |               |             | 760         | 00 TYRON        | E B7-1                   |                | (           |          |
| LN06249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 6/4/13                |          |               |             | 760         | 00 TYRONI       | E B7-3                   |                |             | _        |
| LN06253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 6/4/13                |          |               |             | 760         | 00 TYRONI       | B B9-1                   |                |             |          |
| LN06255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 6/4/13                |          |               |             | 760         | 00 TYRONE       | E B9-3                   |                |             |          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |               | 1                     |          |               |             |             |                 |                          |                |             |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIMIT                | LIMIT         |                       |          |               | -           |             |                 |                          |                | *****       | r        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTLC                 | STLC          | Y-,                   |          |               |             | LN06244     | LN06246         | LN06247                  | LN06249        | LN06253     | LN06255  |
| METAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/kg)              | (mg/l)        | METHOD                | MDL      | RL            | D. F.       | mg/Kg       | mg/Kg           | mg/Kg                    | mg/Kg          | mg/Kg       | mg/Kg    |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                 | 5             | 6010                  | 0.9      | 4.5           | 100         | 52.0        | 11.0            | 50.0                     | 15.0           | 22.0        | 14.0     |
| 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |               |                       |          |               |             |             |                 |                          |                |             |          |
| LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE                 | DATE          | DATE                  |          | 11.3          |             |             | SHOW            |                          |                |             | 300      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                  | 3,000         |                       |          |               | VIVE        |             |                 |                          |                |             | Jan H    |
| LOG NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLED              | RECEIVED      | ANALYZED              | Seattle. | 36.0          | 76          | SAMPLE I    | DESCRIPTIO      | N. T. Teles              |                | SE 35 C. S. | 550.37   |
| LN06256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 5/30/13               |          |               |             | 7600        | TYRONE          | B10-1                    |                |             |          |
| LN06258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 5/30/13               |          |               |             | 7600        | TYRONE          | B10-3                    |                |             |          |
| LN06262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 5/30/13               |          |               |             | 7600        | TYRONE          | B11-1                    |                |             |          |
| :N06264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/28/13              | 5/28/13       | 6/3/13                |          |               |             | 7600        | TYRONE          | B11-3                    |                |             |          |
| 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |               |                       |          |               |             |             |                 |                          |                |             |          |
| g .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |               |                       |          | -             |             | 7           |                 |                          |                |             |          |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |               |                       |          |               |             |             |                 |                          |                |             | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ****                 |               |                       |          |               |             |             |                 |                          |                |             |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIMIT                | LIMIT         |                       |          |               |             |             |                 |                          |                |             |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TTLC                 | STLC          |                       |          | 7             |             | LN06256     | LN06258         | LN06262                  | LN06264        |             |          |
| METAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/kg)              | (mg/l)        | METHOD                | MDL      | RL            | D. F.       | mg/Kg       | mg/Kg           | mg/Kg                    | mg/Kg          |             |          |
| THE RESERVE TO SERVE |                      |               | 31-11-1               | 10000    | -             | -           | 00          | 0 0             | 0.0                      | 0 - 0          |             |          |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                 | 5             | 6010                  | 0.9      | 4.5           | 100         | 15.0        | 15.0            | 13.0                     | 17.0           |             |          |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

<sup>\*\* -</sup> exceed TTLC limit

<sup>\* -</sup> exceed 10x STLC limit

J - concentration above MDL and below RL

COC 13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 6010B
Sample Matrix: SOIL

| LABORATORY   | DATE            | DATE           | D)Aiil   |     |      |       |                    |                    |         |         |         |        |
|--------------|-----------------|----------------|----------|-----|------|-------|--------------------|--------------------|---------|---------|---------|--------|
| LOG NO.      | SAMPLED         | RECEIVED       | ANALYZEL |     |      |       | SAMPLE I           | ESERIPTIO          | VIII.   |         |         |        |
| LN06205 Dup  | 05/28/13        | - 5/28/13      | 5/31/13  | -   |      |       | TYRONE, E          |                    |         |         |         |        |
| LN06217 Dup  | 5/28/13         | 5/28/13        | 6/4/13   | -   |      | 7600  | TYRONE, E          | 325-1              |         |         |         |        |
|              | -               |                |          | -   |      | -     |                    |                    |         |         |         |        |
|              |                 | 1              |          |     |      |       |                    |                    |         |         |         |        |
|              |                 |                |          |     |      |       |                    |                    |         |         |         |        |
|              | LIMIT           | LIMIT          |          |     |      |       |                    |                    |         |         |         |        |
| METAL        | TTLC<br>(mg/kg) | STLC<br>(mg/l) | METHOD   | MDL | RL   | D. F. | LN06205<br>(mg/kg) | LN06217<br>(mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg |
| Antimony     | 500             | 15             | 6010     | 1.0 | 5.0  | 1     | 4.5J               | 3.67               |         |         |         | 11     |
| Arsenic      | 500             | 5              | 6010     | 2.6 | 13.0 | 1     | ND                 | ND                 |         |         |         |        |
| Barium       | 10000           | 100            | 6010     | 3.7 | 18.5 | 1     | 228                | 213                |         |         |         |        |
| Beryllium    | 75              | 0.75           | 6010     | 0.7 | 3.5  | 1     | ND                 | ND                 |         |         |         |        |
| Cadmium      | 100             | 1              | 6010     | 0.6 | 3.0  | 1     | 3.0J               | 2.45               |         |         |         |        |
| Chromium (T) | 2500            | 5              | 6010     | 1.4 | 7.0  | 1     | 20                 | 17                 |         |         |         |        |
| Cobalt       | 8000            | 80             | 6010     | 1.0 | 5.0  | 1     | 16                 | 14                 |         |         |         |        |
| Copper       | 2500            | 25             | 6010     | 1.6 | 8.0  | i     | 20                 | 15                 |         |         |         |        |
| Lead         | 1000            | 5              | 6010     | 0.9 | 4.5  | 1     | 20                 | 11.1               |         |         |         |        |
| Molybdenum   | 3500            | 350            | 6010     | 0.3 | 1.5  | 1     | ND                 | ND                 |         |         |         |        |
| Nickel       | 2000            | 20             | 6010     | 0.6 | 3.0  | 1     | 21                 | 17.5               |         |         |         |        |
| Selenium     | 100             | 1              | 6010     | 1.6 | 8.0  | 1     | ND                 | ND                 |         |         |         |        |
| Silver       | 500             | 5              | 6010     | 1.5 | 7.5  | 1     | ND                 | ND                 |         |         |         | -      |
| Thallium     | 700             | 7              | 6010     | 1.5 | 7.5  | 1     | ND                 | ND                 |         |         |         |        |
| Vanadium     | 2400            | 24             | 6010     | 1.8 | 9.0  | 1     | 38                 | 26                 |         |         |         |        |
| Zinc         | 5000            | 250            | 6010     | 1.9 | 9.5  | 1     | 79                 | 49                 |         |         |         |        |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

#### QA/QC Report

#### I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 05/31/13

ANALYTICAL METHOD

USEPA 6010/7000

BATCH #:

\$TTLCS-7732 LN06205 LN06207 LN06214 LN06216

LAB SAMPLE LD.: BLANK SOIL

UNIT: (Circle One) (mg/kg

mg/kg

mg/L

|              |        |       |     |       | 0.000 |       |      |       | HS/BSD . |             |
|--------------|--------|-------|-----|-------|-------|-------|------|-------|----------|-------------|
| METAL        | SAMPLE | SPIKE | BS  | -%B\$ | SPIKE | BSD   | %BSD | RPD   | % REC    | RPE<br>EIMI |
| Antimony     | 1.0    | 200   | 149 | 74.0  | 200   | 148   | 73.5 | 0.7%  | 14 - 89  | < 30        |
| Arsenic      | ND     | 200   | 194 | 97.0  | 200   | 196   | 98.0 | 1.0%  | 70 - 130 | < 30        |
| Barium       |        | -     |     |       | -     | السار | -    | less: |          | -           |
| Beryllium    | ND     | 200   | 187 | 93.5  | 200   | 188   | 94.0 | 0.5%  | 70 - 130 | < 30        |
| Cadmium      | ND     | 200   | 180 | 90.0  | 200   | 183   | 91.5 | 1.7%  | 70 - 130 | < 30        |
| Chromium (T) | ND     | 200   | 190 | 95.0  | 200   | 191   | 95.5 | 0.5%  | 70 - 130 | < 30        |
| Cobalt       | ND     | 200   | 194 | 97.0  | 200   | 197   | 98.5 | 1.5%  | 70 - 130 | <30         |
| Copper       | ND     | 200   | 193 | 96.5  | 200   | 193   | 96.5 | 0.0%  | 70 - 130 | < 30        |
| Lead         | 5.0    | 200   | 189 | 92.0  | 200   | 189   | 92.0 | 0.0%  | 70 - 130 | < 30        |
| Molybdenum   | 0.5    | 200   | 194 | 96.8  | 200   | 195   | 97.3 | 0.5%  | 70 - 130 | < 30        |
| Nickel       | 1.6    | 200   | 193 | 95.7  | 200   | 195   | 96.7 | 1.0%  | 70 - 130 | < 30        |
| Selenium     | ND     | 200   | 180 | 90.0  | 200   | 181   | 90.5 | 0.6%  | 70 - 130 | < 30        |
| Silver       |        | -     |     |       |       | ***   |      | ***   |          |             |
| Thallium     | ND     | 200   | 105 | 52.5  | 200   | 104   | 52.0 | 1.0%  |          | ***         |
| Vanadium     | 8.5    | 200   | 202 | 96.8  | 200   | 204   | 97.8 | 1.0%  | 70 - 130 | <30         |
| Zinc         | 4.0    | 200   | 175 | 85.5  | 200   | 177   | 86.5 | 1.2%  | 70 - 130 | <30         |

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

#### QA/QC Report

I. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE ANALYZED:

05/30/13

ANALYTICAL

METHOD:

USEPA 6010/7000

BATCH #:

\$TTLCS-77(LN06205 LN06207 LN06214 LN06216)

LAB SAMPLE I.D.:

LN06205

UNIT: (Circle One)

(mg/kg)

|              |        |                         |       |        | (S/)(D) |       |       |        | MSANSIO  |            |
|--------------|--------|-------------------------|-------|--------|---------|-------|-------|--------|----------|------------|
| METAL        | SAMRGE | NO CONTRACTOR OF STREET | MS    | %MS-   | SPIKE   | MSIO  | WMSD: | RPD    | WEG.     | RPD<br>UMI |
| Antimony     | 4.6    | 200                     | 44    | 19.7   | 200     | 44    | 19.7  | 0.0%   | 14 - 89  | < 30       |
| Arsenic      | ND     | 200                     | 180   | 90.0   | 200     | 184   | 92.0  | 2.2%   | 70 - 130 | < 30       |
| Barium       |        | 200                     |       | 1/12-1 | 200     |       | ***   | -      | 70 - 130 | < 30       |
| Beryllium    | ND     | 200                     | 184   | 92.0   | 200     | 185   | 92.5  | 0.5%   | 70 - 130 | < 30       |
| Cadmium      | 3.4    | 200                     | 165   | 80.8   | 200     | 167   | 81.8  | 1.2%   | 70 - 130 | < 30       |
| Chromium (T) | 22     | 200                     | 203   | 90.5   | 200     | 206   | 92.0  | 1.6%   | 70 - 130 | < 30       |
| Cobalt       | 17     | 200                     | 186   | 84.5   | 200     | 189   | 86.0  | 1.8%   | 70 - 130 | <30        |
| Copper       | 22     | 200                     | 205   | 91.5   | 200     | 207   | 92.5  | 1.1%   | 70 - 130 | <30        |
| Lead         | 18     | 200                     | 178   | 80.0   | 200     | 180   | 81.0  | 1.2%   | 70 - 130 | <30        |
| Molybdenum   | ND     | 200                     | 169   | 84.5   | 200     | 171   | 85.5  | 1.2%   | 70 - 130 | <30        |
| Nickel       | 22     | 200                     | 201   | 89.5   | 200     | 205   | 91.5  | 2.2%   | 70 - 130 | < 30       |
| Selenium     | ND .   | 200                     | 171   | 85,5   | 200     | 175   | 87.5  | 2.3%   | 70 - 130 | <30        |
| Silver       |        | 200                     |       |        | 200     |       | man I | ***    | 70 - 130 | <30        |
| Thallium     |        | 200                     | -     |        | 200     |       | -     |        | 70 - 130 | <30        |
| Vanadium     | 42     | 200                     | 231   | 94.5   | 200     | 233   | 95.5  | - 1.1% | 70 - 130 | <30        |
| Zinc         | 77     | 200                     | 248   | 85.5   | 200     | 243   | 83.0  | 3.0%   | 70 - 130 | <30        |
| Mercury      | 0.024  | 0.250                   | 0.298 | 110    | 0.250   | 0.293 | 108   | 1.5%   | 70 - 130 | <30        |

MS = Matrix Spike MSD = Matrix Spike Duplicate %MS = Percent Recovery of Matrix Spike RPD = Relative Percent Difference %MSD = Percent Recovery of Matrix Spike Duplicate

#### II. 'Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 05/31/13

ANALYTICAL

USEPA 6010/7000

SUPPLY SOURCE: VHG

LAB LCS I.D.:

Q8732

LOT NUMBER:

201-0040

UNIT: (Circle One) (mg/kg)

mg/L

| METAL 19     | 10000000000000000000000000000000000000 | TRUE VALUE | Charles of the second of the second | Acceptable Ran |
|--------------|----------------------------------------|------------|-------------------------------------|----------------|
| Antimony     | 64                                     | 80.0       | 80.0                                | 48 - 84        |
| Arsenic      | 405                                    | 400        | 101                                 | 70 - 130       |
| Barium       | 394                                    | 400        | 99                                  | 70 - 130       |
| Beryllium    | 10                                     | 10.0       | 100                                 | 70 - 130       |
| Cadmium      | 10.1                                   | 10.0       | 101                                 | 70 - 130       |
| Chromium (T) | 79                                     | 80.0       | 99                                  | 70 - 130       |
| Cobalt       | 41                                     | 40.0       | 103                                 | 70 - 130       |
| Copper       | 81                                     | 80.0       | 101                                 | 70 - 130       |
| Lead         | 82                                     | 80.0       | 103                                 | 70 - 130       |
| Molybdenum   |                                        | (Migrae)   | ***                                 |                |
| Nickel       | 81                                     | 80.0       | 101                                 | 70 - 130       |
| Selenium     | 186                                    | 200        | 93                                  | 70 - 130       |
| Silver       | 10                                     | 10.0       | 100                                 | 70 - 130       |
| Thallium     | 39                                     | 80.0       | 49                                  | 70 - 130       |
| Vanadium     | 89                                     | 80.0       | 111                                 | 70 - 130       |
| Zinc         | 180                                    | 200        | 90                                  | 70 - 130       |

水(江水 Analyst: YC

300009

### **ATTACHMENT #3**

TOTAL EXTRACTABLE PETROLEUM
HYDROCARBONS (TEPH)
MOTOR OIL (MO)
DIESEL RANGE ORGANIC (DRO)

EPA METHOD 8015M

#### ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

| SAMPLE LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPI            | LE DESCI         | RIPTION          | INST_<br>ID      | RUN              | BATCH           |
|----------------|-----------------|--------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|
| LN06205        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B21-1            | GC Agilent       | 05               | 3113            |
| LN06207        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B21-3            | GC Agilent       | 05               | 3113            |
| LN06214        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B22-1            | GC Agilent       | 05               | 3113            |
| LN06216        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B22-3            | GC Agilent       | 0.5              | 3113            |
| LN06217        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B25-1            | GC Agilent       | 05               | 3113            |
| LN06219        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B25-3            | GC Agilent       | 05               | 3113            |
| LN06229        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B26-1            | GC Agilent       | 05               | 3113            |
|                |                 | MDL / PQL<br>mg/kg | MB<br>mg/kg       | LN06205<br>mg/kg | LN06207<br>mg/kg | LN06214<br>mg/kg | LN06216<br>mg/kg | LN06217<br>mg/kg | LN06219<br>mg/kg | LN0622<br>mg/kg |
| Dilution !     | Factor          |                    | 1                 | 1                | 1                | 1                | 1                | 1                | 1                | 1               |
| TEPH (C9       | - C36)          | 4/20               | ND                | 12.6 J           | ND               | 12.6 J           | ND               | 12.5 J           | ND               | 4.4 J           |
| DRO (C10       | - C28)          | 29 / 145           | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND              |
| MOTOR          | OIL             | 35 / 175           | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND              |
| Quality        | Control D       | ata_               | МВ                |                  |                  |                  |                  |                  |                  |                 |
| Surrogate/In   | ternal Std.     | % ACP              | % RC              | % RC             | % RC             | % RC             | % RC             | % RC             | % RC             | % RC            |
| 1-Chloroocta   | adecane         | (60 - 140)         | 90.5%             | 87.5%            | 79.5%            | 77.5%            | 97.5%            | 99.5%            | 79.5%            | 104%            |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

#### ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE:<br>RECEIVED  | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMP             | LE DESCF         | UPTION           | INST.<br>ID      | RUN | BATCH |
|-------------------|-----------------|--------------------|-------------------|------------------|------------------|------------------|------------------|------------------|-----|-------|
| LN06231           | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B26-3            | GC Agilent       | 060 | 209   |
| LN06241           | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B29-1            | GC Agilent       | 060 | 209   |
| LN06243           | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B29-3            | GC Agilent       | 060 | 209   |
| LN06259           | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B30-1            | GC Agilent       | 060 | 209   |
| LN06261           | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B30-3            | GC Agilent       | 060 | 209   |
| Dilution I        | Zontow          | MDL / PQL<br>mg/kg |                   | LN06231<br>mg/kg | LN06241<br>mg/kg | LN06243<br>mg/kg | LN06259<br>mg/kg | LN06261<br>mg/kg |     |       |
| 7                 |                 | 1/00               |                   | 1                |                  | 417              | 10.77            | 10.47            | -   |       |
| TEPH (C9          |                 | 4/20               |                   | ND               | 12.6 J           | 4.1 J            | 12.7 J           | 12.4 J           | ×   | _     |
| DRO (C10          | -               | 29 / 145           | -                 | ND               | ND               | ND               | ND               | ND               |     |       |
| MOTOR             | OIL             | 35 / 175           |                   | ND               | ND               | ND               | ND               | ND               |     |       |
| Quality           | Control D       | ata                |                   |                  | ,                |                  |                  |                  |     |       |
| Surrogate/Int     | ternal Std.     | % ACP              |                   | %RC              | % RC             | % RC             | %RC              | % RC             |     |       |
| 1-Chloroocta      | decane          | (60 - 140)         | -                 | 102%             | 71.5%            | 110%             | 105%             | 115%             |     |       |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

#### I. Sample Duplicate

| SAMPLE<br>LOG NO | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE<br>EXTRACTED | DATE<br>ANALYZED        | SAMPLE DESCRIPTION           | INST.<br>ID | RUN BATGH                             |
|------------------|-----------------|--------------------|-------------------|-------------------------|------------------------------|-------------|---------------------------------------|
| LN06216 DUP      | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13                | 7600 TYRONE, B22-3           | GC Agilent  | 053113                                |
|                  |                 |                    |                   | 1 1000                  | 2501                         |             |                                       |
|                  |                 |                    |                   | Lary .                  |                              |             | · · · · · · · · · · · · · · · · · · · |
|                  | -               | 31                 |                   |                         | and the second second second |             | 177741                                |
|                  |                 | MDL / PQL<br>mg/kg |                   | LN06216<br>DUP<br>mg/kg |                              |             |                                       |
| Dilution I       | Factor          |                    |                   | 1                       |                              |             |                                       |
| ТЕРН (С9         | - C36)          | 4/20               |                   | ND                      |                              |             |                                       |
| DRO (C10         | - C28)          | 29 / 145           |                   | ND                      |                              |             |                                       |
| MOTOR            | OIL             | 35 / 175           |                   | ND                      |                              |             |                                       |
| Quality          | Control D       | ata                |                   |                         |                              |             |                                       |
| Surrogate/Int    | ternal Std.     | % ACP              |                   | % RC                    |                              |             |                                       |
| 1-Chloroocta     | decane          | (60 - 140)         |                   | 88.5%                   |                              |             |                                       |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

#### QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No .:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| RUN BATCH | DATE ANALYZED    | SPIKE CONC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RESULT                                                                              | %REC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acceptable Range                                                                                                                                                                                              |
|-----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 053113    | 5/31/2013        | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 209                                                                                 | 74.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130                                                                                                                                                                                                      |
| 053113    | 5/31/2013        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 379                                                                                 | 75.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130                                                                                                                                                                                                      |
| 053113    | 5/31/2013        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436                                                                                 | 87.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130                                                                                                                                                                                                      |
|           |                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                            |
|           |                  | 731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
|           |                  | - 10 TO THE TOTAL THE TOTAL TO THE TOTAL TOT |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                               |
|           |                  | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     | with the same of t |                                                                                                                                                                                                               |
|           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7710141014                                                                                                                                                                                                    |
|           | 053113<br>053113 | 053113     5/31/2013       053113     5/31/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 053113         5/31/2013         280           053113         5/31/2013         500 | 053113     5/31/2013     280     209       053113     5/31/2013     500     379       053113     5/31/2013     500     436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 053113         5/31/2013         280         209         74.6           053113         5/31/2013         500         379         75.8           053113         5/31/2013         500         436         87.2 |

Analysts

J. Yi

Reviewed by

R. Gentallan

# **ATTACHMENT #4**

# GASOLINE RANGE ORGANICS (GRO) EPA METHOD 8015B

#### ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

| SAMPLE          | DATE        | DATE:              | DATE        | E NO             |                    |                  |                  | , Desire!        |                  |                 |
|-----------------|-------------|--------------------|-------------|------------------|--------------------|------------------|------------------|------------------|------------------|-----------------|
| TOGNO           | SAMPLED     | RECEIVED           | BATRACTED   | TANALYZET        | SAM                | PLE DESCRI       | PHON :           | 10.1             | RUNLOG           | DATCH           |
| LN06205         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600.TYR           | ONE, B21-1       |                  | AG gas           | 2013             | 30530           |
| LN06207         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR           | ONE, B21-3       | AG gas           | 2013             | 30530            |                 |
| LN06214         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR           | ONE, B22-1       | AG gas           | 2013             | 30530            |                 |
| LN06216         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRONE, B22-3 |                  |                  | AG gas           | 2013             | 30530           |
| LN06217         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRONE, B25-1 |                  |                  | AG gas           | 2013             | 30530           |
| LN06219         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR           | ONE, B25-3       |                  | AG gas           | 2013             | 30530           |
| LN06229         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRONE, B26-1 |                  |                  | AG gas           | 2013             | 30530           |
|                 |             |                    |             |                  |                    |                  |                  |                  |                  |                 |
|                 |             | MDL / PQL<br>mg/kg | MB<br>mg/kg | LN06205<br>mg/kg | LN06207<br>mg/kg   | LN06214<br>mg/kg | LN06216<br>mg/kg | LN06217<br>mg/kg | LN06219<br>mg/kg | LN0622<br>mg/kg |
| Dilution Facto  | r           | 1                  | 1           | 1                | 1                  | 1                | 1                | 1                | 1                | 1               |
| Gasoline (GRO   | 0)          | 1.1 / 5.5          | ND          | ND               | ND                 | ND               | ND               | ND               | ND               | ND              |
| Quality C       | ontrol Data |                    |             |                  |                    |                  |                  |                  |                  |                 |
| Surrogate/Inter | mal Std.    | % ACP              | % RC        | %RC              | %RC                | %RC              | %RC              | %RC              | %RC              | %RC             |
|                 | enzene-d4   | (70 - 130)         | 109%        | 107%             | 104%               | 108%             | 108%             | 108%             | 107%             | 108%            |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

#### ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

| PAGE<br>CILITRANZE | DATE<br>RECEIVED                                         |                   |                                | SAM                                       | PLE DESCRI                                      | PTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.                   | RUN LOGOBAL                                                         |
|--------------------|----------------------------------------------------------|-------------------|--------------------------------|-------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|
| 05/28/13           | 05/28/13                                                 | 05/29/13          | 05/30/13                       | The state has been delined in             | ONE, B26-3                                      | Mark Wallet Political                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AG gas                                                         | 2013053                                                             |
| 05/28/13           | 05/28/13                                                 | 05/29/13          | 05/30/13                       | 7600 TYR                                  | ONE, B29-1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AG gas                                                         | 2013053                                                             |
| 05/28/13           | 05/28/13                                                 | 05/29/13          | 05/30/13                       | 7600 TYRONE, B29-3                        |                                                 | AG gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2013053                                                        |                                                                     |
| 05/28/13           | 05/28/13                                                 | 05/29/13          | 05/30/13                       | 7600 TYRONE, B30-1                        |                                                 | AG gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20130530                                                       |                                                                     |
| 05/28/13           | 05/28/13                                                 | 05/29/13          | 05/30/13                       | 7600 TYRONE, B30-3                        |                                                 | AG gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2013053                                                        |                                                                     |
|                    | MDL / PQL<br>mg/kg                                       | MB<br>mg/kg       | LN06231<br>mg/kg               | LN06241<br>mg/kg                          | LN06243<br>mg/kg                                | LN06259<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LN06261<br>mg/kg                                               |                                                                     |
| tor                | 1                                                        | 1                 | 1                              | 1                                         | 1                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                              |                                                                     |
| RO)                | 1.1 / 5.5                                                | ND                | ND                             | ND                                        | ND                                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                             |                                                                     |
| Control D          | ata                                                      |                   |                                |                                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·                                                          |                                                                     |
| ternal Std.        | % ACP                                                    | % RC              | %RC                            | %RC                                       | %RC                                             | %RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %RC                                                            |                                                                     |
|                    | (70 - 130)                                               | 109%              | 108%                           | 107%                                      | 107%                                            | 108%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107%                                                           |                                                                     |
| ֡                  | 05/28/13<br>05/28/13<br>05/28/13<br>05/28/13<br>05/28/13 | SAMPLE   RECEIVED | SAMPLED   RECEIVED   EXTRACTED | SAMPLED   RECEIVED   EXTRACTED   ANALYZED | SAMPLED   RECETVED   EXTRACTED   ANALYZED   SAM | MDL / PQL   MB   LN06231   LN06241   LN06243   mg/kg   mg/kg | O5/28/13   O5/28/13   O5/29/13   O5/30/13   7600 TYRONE, B26-3 | SAMPLED   RECEIVED   EXTRACTED   ANALYZED   CAMPLE DESCRIPTION   ED |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

#### QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| SAMPLE  | BATCH    | SAMPLE | SPIKE |      |      |      |       |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS | MSD  | % MSD | RPD  | % ACP  | ACI |
| LN06205 | 20130530 | ND     | 22.0  | 22,4 | 102% | 22.9 | 104%  | 2.2% | 70-130 | 30  |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130530 | 5/29/2013     | 22.0        | 20.9   | 95.0   | 70 - 130         |

Analyzed by

Reviewed by

B. Estrada

R. Gentallan

PA 6/4/13

# **ATTACHMENT #5**

# POLYCHLORINATED BIPHENYLS (PCBs)

EPA Method 8082

# ANALYTICAL RESULT FOR PCBs by EPA600/SR-94/112/8082 (Polychlorinated Biphenyls)

Sample Matrix: Soil (Low Level)

| LABORATORY<br>LOGNO | DATE (    |                    |                    | DATE               |                    | SAMPLE DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RIPTION        |  |                     |
|---------------------|-----------|--------------------|--------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|---------------------|
| LN06217             | 5/28/2013 | 5/28/2013          | 5/30/2013          | 5/31/2013          | 7600 TYRO          | The state of the s | CARLO STORIGHT |  | Mary Control of the |
| LN06219             | 5/28/2013 | 5/28/2013          | 5/30/2013          | 5/31/2013          | 7600 TYRO          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |                     |
| LN06229             | 5/28/2013 | 5/28/2013          | 5/30/2013          | 5/31/2013          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |                     |
| LN06231             | 5/28/2013 | 5/28/2013          | 5/30/2013          | 5/31/2013          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |                     |
|                     |           | a-                 |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |                     |
| PARAMETERS          |           | MDL/PQL<br>(mg/kg) | LN06217<br>(mg/kg) | LN06219<br>(mg/kg) | LN06229<br>(mg/kg) | LN06231<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |                     |
| PCB - 1221          |           | 0.07/0.2           | ND                 | ND                 | ND                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |                     |
| PCB - 1232          |           | 0.07/0.2           | ND                 | ND                 | ND                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |                     |
| PCB - 1242          |           | 0.07/0.2           | ND                 | ND                 | ND                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |                     |
| PCB - 1248          | - 1       | 0.07/0.2           | ND                 | ND                 | ND                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |                     |
| PCB - 1254          |           | 0.07/0.2           | ND                 | ND                 | ND                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |                     |
| PCB - 1260          |           | 0.07/0.2           | ND                 | ND                 | ND                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |                     |
| SURROGATE PARA      | AMETERS   | QC LIMIT           | % Recovery         | % Recovery         | % Recovery         | % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |                     |
| DECACHLOROBIPH      | IENYL     | 70 - 130           | 94                 | 95                 | 98                 | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |                     |

MDL - Method Detection Limit

ND - Not Detected; below method detection limit

Analyst: D. Wong

Reviewed by 185 6/4/13

COC: 13-1321 Page 2 of 3

Project Name:

Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

#### QA/QC Report

I. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

ANALYTICAL METHOD:

USEPA 600/SR-94/112

USEPA 8082

DATE ANALYZED: 06/04/13 BATCH #: 53013 LAB SAMPLE I.D.: LN06364

UNIT:

mollo

| PARAMETERS | SASPIR<br>RESERT | SPIKT<br>CONG | MS   | %Ms | CONC | VASE - | %K(S)). | RDE | MSAIST<br>WREG<br>LIMIT | 3.<br>RPD<br>14ML |
|------------|------------------|---------------|------|-----|------|--------|---------|-----|-------------------------|-------------------|
| PCB-1242   | 0.0              | 25.0          | 20.8 | 83  | 25.0 | 20.3   | 81      | 2%  | 70 - 130                | 30                |
| PCB-1260   | 0.0              | 25.0          | NR   | NR  | 25.0 | NR     | NR      | NR  | 70 - 130                | 30                |

NR = Not reported dut to matrix interference.

MS - Matrix Spike MSD - Matrix Spike Dupllicate %MS - Percent Recovery of Matrix Spike RPD - Relative Percent Difference %MSD - Percent Recovery of Matrix Spike Duplicate

Reviewed by: 126/4/13

COC: 13-1321 Page 3 of 3

Project Name:

Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

#### II. Laboratory Control Check Sample (LCS)

DATE ANALYZED:

06/04/13

ANALYTICAL METHOD: USEPA 600/SR-94/112

| BATCH No.  | 053013  |         |     |        | UNIT: mg/kg | USEPA 8082  |
|------------|---------|---------|-----|--------|-------------|-------------|
|            |         | le Rost |     | - taba |             |             |
|            | HOLLES  |         |     |        | 4           | ACCEPTANCE. |
| PARKETERS  | in conc | RESTOR  | XG. |        | ARD         | Livinara    |
| PCB - 1242 | 25.0    | 19.6    | 78  | NA     | NA          | 80 - 120    |
| PCB - 1260 | 25.0    | 21.9    | 88  | NA     | NA          | 80 - 120    |

Note: Low LCS recovery for 1242 (78%). Although LCS is 2% below acceptance limit, it should have no significant effect on the quality of this batch of analyses.

%RC - Percent Recovery NA - Not Analyzed Batch - ten samples per batch

Reviewed by: 1 6/4/13

# **ATTACHMENT #6**

**PESTICIDES** 

EPA METHOD 8081

## **ATTACHMENT #7**

Semi Volatile Organic Compounds (SVOCs)

**EPA METHOD 8270C** 





#### CERTIFICATE OF ANALYSIS

Client:

LADWP - Environmental Laboratory

1630 North Main Street, Bldg, 7, Rm 311

Los Angeles, CA 90012

Report Date:

06/05/13 16:04

Received Date:

05/30/13 09:50

Turn Around:

5 workdays

Phone:

Fax:

Attention: Kevin Han 213-367-7267

(213) 367-7285

Work Order #:

3E30014 ·

49067-3, COC #13-1321,26

Client Project:

7600 Tyrons Ave, COC #13-1321,26,

WO#

#### NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narretive. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

#### Dear Kevin Han:

Enclosed are the results of analyses for samples received 05/30/13 09:50 with the Chain of Custody document. The samples were received in good condition, at 2.8 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Case Narrative:

Reviewed by:

Kim G Tu Project Manager







#### Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

AND PROPERTY OF THE WAY OF THE PROPERTY OF

Report ID: 3

3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Sampled by: Sample Comments | Lab ID Nat       | rix Date Sampled   |
|-----------|-----------------------------|------------------|--------------------|
| LN06205   | Client                      | 3E30014-01 So    | lid 05/28/13 08:08 |
| LN06207   | Cilent                      | 3E30014-02 Sol   | id 05/28/13 08:04  |
| LN06214   | Client                      | 3E30014-03 Sol   | id 05/28/13 08:50  |
| LN06216   | Client                      | 3E30014-04 Sol   | ld 05/28/13 08:54  |
| LN06217   | Cilent                      | 3E30014-05 Sol   | ld 05/28/13 09:00  |
| LN06219   | Client                      | 3E30014-06 Soli  | id 05/28/13 09:04  |
| LN08229   | Client                      | 3E30014-07 Soli  | d 05/28/13 09:40   |
| LN06231   | Client                      | 3E30014-08 Soli  | d 05/28/13 09:44   |
| LN06241   | Client                      | 3E30014-09 Soli  | d 05/28/13 10:20   |
| LN08243   | Client                      | 3E30014-10 Sofi  | d 05/28/13 10;24   |
| LN06259   | Client                      | 3E30014-11 Soll  | 05/28/13 11:30     |
| LN06261   | Client                      | 3E30014-12 Solid | 05/28/13 11:34     |
| LN06329   | Client                      | 3E30014-13 Solid | 05/28/13 08:30     |
| LN06331   | Client                      | 3E30014-14 Sollo | 05/29/13 08:34     |
| LN08335   | Client                      | 3E30014-15 Solld | 05/29/13 09:00     |
| LN06337   | Client                      | 3E30014-16 Solid | 05/29/13 09:04     |
| LN06338   | Cilent                      | 3E30014-17 Solid | 05/29/13 09:08     |
| LN06340   | Client                      | 3E30014-18 Solid | 05/29/13 09:10     |
| LN06341   | Client                      | 3E30014-19 Solid | 05/29/13 08:30     |
| LN06343   | Client                      | 3E3D014-20 Solid | 05/29/13 09:34     |

ANALYSES

Semivolable Organic Compounds by GC/MS





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Name of the Company o

Report ID: Project ID:

3E30014

Sampled By: Client

Date Received:

05/30/13 09:50

#13-1321,26, WO#

7600 Tyrone Ave, COC Date Reported: 06/05/13 16:04

3E30014-01

LN06205

Sampled: 05/28/13 08:08

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | : 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 16:04 | Analyst: abj |
|----------------------------------|----------------|----------|-----------|---------|-------------|---------------|--------------|
| Analyte                          | Result         | MDL      | MRL       | ML      | Units       | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 1,2-Dichlorobenzene              | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 1,3-Dichlorobenzene              | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 1,4-Dichlombenzene               | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | 1 :           |              |
| 2,4,5-Trichlorophenol            | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4,6-Trichlorophenol            | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | -1            |              |
| 2,4-Dichlorophenol               | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4-Dimethylphenol               | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4-Dinitrophenal                | ND             | 3.6      | 23        | 23      | mg/kg       | 1             |              |
| 2,4-Dinitrotoluene               | ND             | 0.094    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,6-Dinitrotoluene               | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Chloronaphthalene              | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Chlorophenol                   | ND             | 0.094    | 0.47      | 0.47    | mg/kg       | 1.1           |              |
| 2-Methylnaphthalene              | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Methylphenol                   | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Nitroaniline -                 | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 411           |              |
| 2-Nitrophenol                    | NO             | 0.21     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 3 & 4-Methylphenol               | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | -1            |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.4      | 2.3       | 2.3     | mg/kg       | _ 1           |              |
| 3-Nitroaniline                   | ND             | 0.14     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.7       | 4.7     | mg/kg       | 1             |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.066    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 4-Chloro-3-methylphenol          | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | -1            |              |
| 4-Chloroaniline                  | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 4-Nitroanlline                   | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 4-Nitrophenol                    | ND             | 0.14     | 0.47      | 0.47    | mg/kg       | 1             |              |
| Acenaphthene                     | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 4             |              |
| Acenaphthylene                   | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| Aniline                          | ND             | 0.22     | 0.47      | 0.47    | mg/kg       | 1             |              |
| Anthracene                       | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 11            |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.094    | 0.47      | 0.47    | mg/kg       | 1             |              |
| Benzidine                        | ND             | 1.2      | 4.7       | 4.7     | mg/kg       | 1             |              |
| Benzo (a) anthracene             | ND             | 0.066    | 0.47      | 0.47    | mg/kg       | 10            |              |
| Benzo (a) pyrene                 | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| Benzo (b) fluoranthene           | ND             | 0.066    | 0.47      | 0.47    | mg/kg       | t             |              |
| Benzo (g,h,l) perylene           | 0.10           | 0.056    | 0.94      | 0.94    | mg/kg       | 1             | 3            |
| Benzo (k) fluoranthene           | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 4             |              |
| Benzoic acid                     | ND             | 1.8      | 23        | 23      | mg/kg       | 1             |              |
| Benzyl alcohol                   | ND             | 0.13     | 0.47      | 0.47    | mg/kg       | 1             |              |

Page 3 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Report ID:

3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012 D. WONDELLING D. SON WHEELS

Sampled: 05/28/13 08:08

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-01

LN06205

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 16:04 | Analyst: abj |
|-----------------------------|----------------|------------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL        | ML      | Units       | Dilution      | Qualifler    |
| Bis(2-chloroethoxy)methane  | ND             | 0.085      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.47       | 0.47    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.47       | 0.47    | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.47       | 0.47    | mg/kg       | t.            |              |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.47       | 0.47    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.085      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Chrysene                    | ND             | 0.085      | 0.47       | 0.47    | mg/kg       | 1             | 0            |
| Dibenzo (a,h) anthracene    | 0.099          | 0.047      | 0.94       | 0.94    | mg/kg       | 1             | J.           |
| Dibenzofuran                | ND             | 0.085      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.056      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.83       | 2.3        | 2.3     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | .ND            | 0.075      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.47       | 0.47    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.10       | 0.47       | 0.47    | mg/kg       | 4             |              |
| Fluorene                    | ND             | 0.066      | 0.47       | 0.47    | mg/kg       | 11            |              |
| Hexachlorobenzene           | ND             | 0.075      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.085      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.11       | 0.47       | 0.47    | mg/kg       | 1             |              |
| lexachloroethane            | ND             | 0.066      | 0.47       | 0.47    | mg/kg       | 1             |              |
| ndeno (1,2,3-cd) pyrene     | 0.16           | 0.085      | 0.94       | 0.94    | mg/kg       | 1             | 1            |
| sophorone                   | ND             | 0.094      | 0.47       | 0.47    | mg/kg       | 1             |              |
| Vaphihalene                 | ND             | 0.10       | 0.47       | 0.47    | mg/kg       | 1             |              |
| Nitrobenzene                | ND             | 0.10       | 0.47       | 0.47    | mg/kg       | 1             |              |
| V-Nitrosodimethylamine      | ND             | 0.085      | 0.47       | 0.47    | mg/kg       | 1             |              |
| -Nitrosodi-n-propylamine    | ND             | 0.085      | 0.47       | 0.47    | mg/kg       | 1             |              |
| I-Nitrosodiphenylamine      | ND             | 0.066      | 0.47       | 0.47    | mg/kg       | 1             |              |
| entachlorophengi            | 0.39           | 0.15       | 0.47       | 0.47    | mg/kg       | 1             | J            |
| henanthrene                 | ND             | 0.075      | 0.47       | 0.47    | mg/kg       | 1             |              |
| henol                       | ND             | 0.14       | 0.47       | 0.47    | mg/kg       | t             |              |
| yrene                       | ND             | 0.075      | 0.47       | 0,47    | mg/kg       | 1             |              |
| yridine                     | ND             | 0.047      | 0.94       | 0.94    | mg/kg       | 1             |              |
| urr: 2,4,6-Tribromophenol   | 70 %           | Conc:33.0  |            | 40-97   | %           |               |              |
| urr. 2-Fluorobiphenyl       | 75 %           | Conc: 17.7 | 3          | 9-100   | %           |               |              |
| ит: 2-Fluorophenol          | 93 %           | Conc:43.9  |            | 6-115   | %           |               |              |
| ur: Nitrobenzene-d5         | 79 %           | Conc:18.5  |            | 9-105   | %           |               |              |
| urr. Phenol-d5              | 87 %           | Conc:40.7  |            | 6-105   | %           |               |              |
| urr. Terphenyl-d14          | 95 %           | Conc:22.5  |            | 6-106   | %           |               |              |

Page 4 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID:

3E30014 Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported:

05/30/13 09:50 06/05/13 16:04

Los Angeles CA, 90012 

Sampled: 05/28/13 08:04

#13-1321,26, WO#

LN06207 3E30014-02

Sampled By: Client

Matrix: Solld

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 |       | d: 06/01/1 | Self and severy |       | Analyzed: 06/04/13 16:34 |           |  |
|---------------------------------|----------------|-------|------------|-----------------|-------|--------------------------|-----------|--|
| Analyte                         | Result         | MDL   | MRL        | ML              | Units | Dilution                 | Qualifier |  |
| 1,2,4-Trichlorobenzene          | ND             | 0.085 | 0.47       | 0,47            | mg/kg | 1.1                      |           |  |
| 1,2-Dichlorobenzene             | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 1,3-Dichlorobenzene             | ND             | 0.075 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 1,4-Dichlorobenzene             | ND             | 0.11  | 0.47       | 0.47            | mg/kg | 7                        |           |  |
| 2,4,5-Trichlorophenol           | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2,4,6-Trichlorophenol           | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2,4-Dichlorophenol              | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2,4-Dimethylphenol              | ND             | 0.11  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2,4-Dinitrophenol               | ND             | 3.6   | 24         | 24              | mg/kg | 1                        |           |  |
| 2,4-Dinitrotoluene              | ND             | 0.094 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2,6-Dinitrotoluene              | ND             | 0.075 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2-Chloronaphthalene             | ND             | 0.075 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2-Chlorophenol                  | ND             | 0.094 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2-Methylnaphthalene             | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 4                        |           |  |
| 2-Methylphenol                  | ND             | 0.11  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2-Nitroanlline                  | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 2-Nitrophenol                   | ND             | 0.21  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 3 & 4-Methylphenol              | ND             | 0.11  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| 3,3'-Dichlorobenzidine          | ND             | 1.4   | 2.4        | 2.4             | mg/kg | 1                        |           |  |
| 3-Nitroaniline                  | ND             | 0.14  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| ,6-Dinitro-2-methylphenol       | ND             | 1.4   | 4.7        | 4.7             | mg/kg | 1                        |           |  |
| -Bromophenyl phenyl ether       | ND             | 0.066 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| -Chloro-3-methylphenol          | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| -Chloroaniline                  | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| -Chlorophenyl phenyl ether      | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| -Nitroaniline                   | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| -Nitrophenol                    | ND             | 0.14  | 0,47       | 0.47            | mg/kg | 1                        |           |  |
| cenaphthene                     | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| cenaphthylene                   | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| niline                          | ND             | 0.22  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| nthracene                       | ND             | 0.075 | 0.47       | 0.47            | mg/kg | - it                     |           |  |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.094 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| enzidine                        | ND             | 1.2   | 4.7        | 4.7             | mg/kg | 1                        |           |  |
| enzo (a) anthracene             | ND             | 0.066 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| enzo (a) pyrene                 | ND             | 0.075 | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| enzo (b) fluoranthene           | ND             | 0.066 | 0.47       | 0.47            | mg/kg | 4                        |           |  |
| enzo (g,h,l) perylene           | ND             | 0.057 | 0.94       | 0.94            | mg/kg | 1                        |           |  |
| enzo (k) fluoranthene           | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1                        |           |  |
| enzoic acid                     | ND             | 1.8   | 24         | 24              | mg/kg | 1                        |           |  |
| enzyl alcohol                   | ND             | 0.13  | 0.47       | 0.47            | mg/kg | .1                       |           |  |

Page 5 of 48





Sampled: 05/28/13 08:04

Analytical Laboratory Service - Since 1984

LADWP - Environmental Laboratory 1630 North Main Street, Bldg: 7, Rm 311 Los Angeles CA, 90012

Report ID: Project ID:

3E30014

7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-02 LN06207

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared       |      |       |        | 06/04/13 16:34 | Analyst: abj |
|-----------------------------|----------------|----------------|------|-------|--------|----------------|--------------|
| Analyte                     | Result         | N. M. W. H. W. | MRL  | ML    | Units  | Dilution       | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.085          | 0.47 | 0.47  | mg/kg  | 1              |              |
| Bis(2-chloroethyl)ether     | ND             | 0.10           | 0.47 | 0.47  | mg/kg  | *              |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.13           | 0.47 | 0.47  | mg/kg  | .1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11           | 0.47 | 0.47  | mg/kg  | 1              |              |
| Butyl benzyl phthalate      | ND             | 0.14           | 0.47 | 0.47  | mg/kg  | 1              |              |
| Carbazole                   | ND             | 0.085          | 0.47 | 0.47  | mg/kg_ | 1              |              |
| Chrysene                    | , ND           | 0.085          | 0.47 | 0.47  | mg/kg  | 1.             |              |
| Dibenzo (a,h) anthracene    | ND -           | 0.047          | 0.94 | 0.94  | mg/kg  | 1.             |              |
| Dibenzofuran                | ND             | 0.085          | 0.47 | 0.47  | mg/kg  | 1              |              |
| Diethyl phthalate           | ND             | 0.057          | 0.47 | 0.47  | mg/kg  | 1              |              |
| Dimethyl phthalate          | ND             | 0.83           | 2.4  | 2.4   | mg/kg  | 1              |              |
| Di-n-butyl phthalate        | ND             | 0.075          | 0.47 | 0.47  | mg/kg  | 1              |              |
| Di-n-octyl phthalate        | ND             | 0.13           | 0.47 | 0.47  | mg/kg  | -1             |              |
| luoranthene                 | ND             | 0.10           | 0.47 | 0.47  | mg/kg  | 1              |              |
| fluorene                    | ND             | 0.066          | 0.47 | 0.47  | mg/kg  | 1              |              |
| fexachiorobenzene           | ND             | 0,075          | 0.47 | 0.47  | mg/kg  | 1              |              |
| lexachlorobutadiene         | ND             | 0.085          | 0.47 | 0.47  | mg/kg  | 4              |              |
| lexachlorocyclopentadiene   | ND             | 0.11           | 0.47 | 0.47  | mg/kg  | 1              |              |
| exachloroethane             | ND             | 0.066          | 0.47 | 0.47  | mg/kg  | 1              |              |
| ndenc (1,2,3-cd) pyrene     | ND             | 0.085          | 0.94 | 0.94  | mg/kg  | 1              |              |
| ophorone                    | ND             | 0.094          | 0.47 | 0.47  | mg/kg  | 1              |              |
| aphthalene                  | ND             | 0.10           | 0.47 | 0.47  | mg/kg  | 1.1            |              |
| itrobenzene                 | ND             | 0.10           | 0.47 | 0.47  | mg/kg  | - 1            |              |
| Nitrosodimethylamine        | ND             | 0.085          | 0.47 | 0.47  | mg/kg  | 1              |              |
| -Nitrosodi-n-propylamine    | ND             | 0.085          | 0.47 | 0.47  | mg/kg  | 1              |              |
| Nitrosodiphenylamine        | ND             | 0.066          | 0.47 | 0.47  | mg/kg  | 1              |              |
| entachlorophenol            | ND             | 0.15           | 0.47 | 0.47  | mg/kg  | 1              |              |
| nenanthrene                 | ND             | 0.075          | 0.47 | 0.47  | mg/kg  | 1              |              |
| nenol                       | ND             | 0.14           | 0.47 | 0.47  | rng/kg | 1              |              |
| rene                        | ND             | 0.075          | 0.47 | 0.47  | mg/kg  | 1              |              |
| ridine                      | ND             | 0.047          | 0.94 | 0.94  | mg/kg  | 1              |              |
| ur. 2,4,6-Tribramophenal    | 58 %           | Conc: 27,2     | 4    | 0-97  | %      |                |              |
| ur. 2-Fluorabiphenyl        | 64 %           | Conc:15.2      | 35   | 9-100 | %      |                |              |
| nr. 2-Fluorophenol          | 73 %           | Conc:34.2      | 20   | 6-115 | %      |                |              |
| n. Nitrobenzene-d5          | 67 %           | Conc: 15.8     |      | 9-105 | %      |                |              |
| rr: Phenol-d5               | 72 %           | Conc:33.8      |      | 5-105 | %      |                |              |
| rr: Terphenyl-d14           | 73 %           | Conc:17.3      |      | 5-106 | %      |                |              |





Sampled: 05/28/13 08:50

Analytical Laboratory Service - Since 1984

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

#13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-03 LN06214

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 |    | Prepared: 06/01/13 09:40 |       |      | Analyzed: ( | Analyst: abj |          |           |
|---------------------------------|----------------|----|--------------------------|-------|------|-------------|--------------|----------|-----------|
| Analyte                         | -              |    | Result                   | MDL   | MRL  | ML          | Units        | Dilution | Qualifier |
| 1,2,4-Trichlorobenzene          |                | 89 | ND                       | 0.089 | 0.49 | 0.49        | mg/kg        | 4        |           |
| 1,2-Dichlorobenzene             |                |    | ND                       | 0.11  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 1,3-Dichlorobenzene             |                |    | ND                       | 0.079 | 0.49 | 0.49        | mg/kg        | 1        |           |
| 1,4-Dichlarabenzene             |                |    | ND                       | 0.12  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2,4,5-Trichlorophenol           |                |    | ND                       | 0.11  | 0.49 | 0.49        | mg/kg        | Ť        |           |
| 2,4,6-Trichlorophenol           |                |    | ND                       | 0.11  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2,4-Dichlorophenol              |                |    | ND                       | 0.13  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2,4-Dimethylphenol              |                |    | ND                       | 0.12  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2,4-Dinitrophenol               |                |    | ND                       | 3.7   | 25   | 25          | mg/kg        | 1        |           |
| 2,4-Dinitrotoluene              |                |    | ND                       | 0.099 | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2,6-Dinitrotoluene              |                |    | ND .                     | 0.079 | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2-Chloronaphthalene             |                |    | ND                       | 0.079 | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2-Chlorophenol                  |                |    | ND .                     | 0.099 | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2-Methylnaphthalene             |                |    | ND                       | 0.089 | 0.49 | 0.49        | mg/kg        | 1 .      |           |
| 2-Methylphenol                  |                |    | ND                       | 0.12  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 2-Nitroaniline                  |                |    | ND                       | 0.13  | 0.49 | 0,49        | mg/kg        | 1        |           |
| 2-Nitrophenol                   |                |    | ND                       | 0.22  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 8 & 4-Methylphenol              |                |    | ND                       | 0.12  | 0.49 | 0.49        | mg/kg        | 1        |           |
| 3,3'-Dichlorobenzidine          |                |    | ND                       | 1.5   | 2.5  | 2.5         | mg/kg        | 1        |           |
| 3-Nitroaniline                  |                |    | ND -                     | 0.15  | 0.49 | 0.49        | mg/kg        | 1        |           |
| ,6-Dinitro-2-methylphenol       |                |    | ND                       | 1.5   | 4.9  | 4.9         | mg/kg        | 4        |           |
| -Bromophenyl phenyl ether       |                |    | ND                       | 0.069 | 0.49 | 0.49        | mg/kg        | 1        |           |
| -Chloro-3-methylphenol          |                |    | ND                       | 0.11  | 0.49 | 0.49        | mg/kg        | 4        |           |
| -Chloroanlline                  |                |    | ND                       | 0,13  | 0.49 | 0.49        | mg/kg        | 1        |           |
| -Chlorophenyl phenyl ether      |                |    | ND                       | 0.089 | 0.49 | 0.49        | mg/kg        | 1        |           |
| -Nitroaniline                   |                |    | ND                       | 0.13  | 0.49 | 0.49        | mg/kg        | 1        |           |
| -Nitrophenol                    |                |    | ND                       | 0.15  | 0.49 | D.49        | mg/kg        | 1        |           |
| cenaphthene                     |                |    | ND                       | 0.089 | 0.49 | 0.49        | mg/kg        | 1        |           |
| сепарhthylene                   |                |    | ND                       | 0.089 | 0.49 | 0.49        | mg/kg        | 1        |           |
| niline                          |                |    | ND                       | 0.23  | 0.49 | 0.49        | mg/kg        | 4        |           |
| nlhracene                       |                |    | ND                       | 0.079 | 0.49 | 0.49        | mg/kg        | of the   |           |
| zobenzene/1,2-Diphenylhydrazine |                |    | ND                       | 0.099 | 0.49 | 0.49        | mg/kg        | 11       |           |
| enzidine                        |                |    | ND                       | 1.2   | 4.9  | 4.9         | mg/kg        | 1        |           |
| enzo (a) anthracene             |                |    | ND                       | 0.069 | 0.49 | 0.49        | mg/kg        | 1        |           |
| erizo (a) pyrene                |                |    | ND                       | 0.079 | 0.49 | 0.49        | mg/kg        | 1        |           |
| enzo (b) fluoranthene           |                |    | ND                       | 0.069 | 0,49 | 0.49        | mg/kg        | 4        |           |
| enzo (g,h,i) perylene           |                |    | ND                       | 0.059 | 0.99 | 0.99        | mg/kg        | 1        |           |
| enzo (k) fluoranihene           |                |    | ND:                      | 0.13  | 0.49 | 0.49        | mg/kg        | 1        |           |
| enzoic acid                     |                |    | ND                       | 1.9   | 25   | 25          | mg/kg        | 1        |           |
| enzyl alcohol                   |                |    | ND                       | 0.14  | 0.49 | 0.49        | mg/kg        | 1        |           |

Page 7 of 48





Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012 **,指导对面相应的分析的分类外侧的加强的执行者制度的特别的外外的面对对** 

Sampled: 05/28/13 08:50

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Reported: 06/05/13 16:04

3E30014-03

LN06214

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           |     | Batch: W3F0001 |        |              | Prepared: 06/01/13 09:40 |                       |              | Analyzed: 06/04/13 20:08 |          |              |
|-----------------------------|-----|----------------|--------|--------------|--------------------------|-----------------------|--------------|--------------------------|----------|--------------|
| Analyte                     |     | -              |        | ılt MDI      |                          |                       | - Units      |                          |          | Anaiyst: abj |
| Bis(2-chloroethoxy)methane  |     |                | ND     |              |                          |                       | mg/kg        | -                        | Dilution | Qualifier    |
| Bis(2-chloroethyl)ether     |     |                | ND     |              |                          |                       | mg/kg        |                          | 1        |              |
| Bis(2-chloroisopropyl)ether | R.  |                | ND     | 0.14         |                          |                       | mg/kg        | *                        | 1        |              |
| Bis(2-ethylhexyl)phthalate  |     |                | ND     | 0.12         |                          | 0.49                  | mg/kg        |                          | 1        |              |
| Butyl benzyl phthalate      | æ   |                | ND     | 0.15         |                          | 0.49                  | mg/kg        |                          | 1        |              |
| Carbazole                   |     |                | ND     | 0.089        |                          | 0.49                  | mg/kg        |                          | 1        |              |
| Chrysene                    |     |                | ND     | 0.089        |                          | 0.49                  | mg/kg        |                          | 1        |              |
| Dibenzo (a,h) anthracene    |     |                | ND     | 0.049        |                          | 0.99                  | mg/kg        |                          | 1        |              |
| Dibenzofuran                |     |                | ND     | 0.089        |                          | 0.49                  | mg/kg        |                          | 1        |              |
| Diethyl phthalate           |     |                | ND     | 0.059        |                          | 0.49                  | mg/kg        | 10                       | 1        |              |
| Dimethyl phthalate          |     |                | ND :   | 0.87         | 2.5                      | 2.5                   | mg/kg        |                          | 1        |              |
| Di-n-butyl phthalate        |     |                | ND     | 0.079        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Di-n-octyl phthalate        |     |                | ND     | 0.14         | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Fluoranthene                | ō.  |                | ND     | 0.11         | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Fluorene                    | 8   |                | ND     | 0.069        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Hexachlorobenzene           |     |                | ND     | 0.079        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Hexachlorobutadiene         |     |                | ND     | 0.089        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Hexachlorocyclopentadiene   |     |                | ND     | 0.12         | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Hexachloroethane            |     |                | ND     | 0.069        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Indeno (1,2,3-cd) pyrene    |     | 6              | ND     | 0.089        | 0.99                     | 0.99                  | mg/kg        |                          | 1        |              |
| Isophorone                  |     |                | ND     | 0.099        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Naphthalene                 |     |                | ND     | 0.11         | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Nitrobenzene                |     |                | ND     | 0.11         | 0.49                     | 0.49                  | mg/kg        |                          | 4        |              |
| N-Nitrosodimethylamine      |     |                | ND     | 0.089        | 0.49                     | 0.49                  | mg/kg        |                          | 1        | *            |
| N-Nitrosodi-n-propylamine   |     |                | ND     | 0.089        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| N-Nitrosodiphenylamine      |     |                | ND *   | 0.069        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Pentachlorophenol           |     |                | ND     | 0.16         | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Phenanthrene                | 85  |                | ND     | 0.079        | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Phenol                      |     |                | ND     | 0.15         | 0.49                     | 0.49                  | mg/kg        |                          | 1        |              |
| Pyrene :                    |     |                | ND     | 0.079        | 0.49                     | 0.49                  | ing/kg       |                          | 1        | 9.           |
| Pyridine                    |     |                | ND     | 0.049        | 0.99                     | 0.99                  |              |                          | ,        | 20           |
| Surr: 2,4,6-Tribromophenal  |     |                | 62 %   | Conc:30.4    |                          | 0.33<br>0- <b>9</b> 7 | ⊚ mg/kg<br>% |                          | 8        |              |
| Surr: 2-Fluorobiphenyl      | 8   |                | 69 %   | Conc:17.1    |                          | -100                  | %            |                          |          |              |
| Surr. 2-Fluorophenol        | 2   |                | 79 %   | Conc:38.9    |                          | -100<br>-115          |              | 63                       |          |              |
| Surr: Nitrobenzene-d5       |     | œ              | 70 %   | Conc: 17.3   |                          | -113<br>-105          | %            |                          |          |              |
| Surr. Phenol-d5             | 840 |                | 76 %   | Conc. 77.5   |                          |                       | %            |                          |          |              |
| Surr. Terphenyl-d14         |     | 3              | 81 %   | Conc:20.1    |                          | 105                   | %            |                          |          |              |
|                             |     |                | J / /9 | JUIIU, 20. I | 30-                      | 106                   | %            |                          |          | 178          |

Page 8 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: Project ID:

3E30014

7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-04

#13-1321,26, WO#

Sampled: 05/28/13 08:54

LN06216

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | Analyzed: |          | Analyst: abj |           |
|----------------------------------|----------------|----------|------------|---------|-----------|----------|--------------|-----------|
| Analyte                          | Result         | MDL      | MRL.       | ML      | Units     | Dilution |              | Qualifier |
| 1,2,4-Trichlorobenzene           | ND             | 0.088    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 1,2-Dichlorobenzene              | ND -           | 0.11     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 1,3-Dichlorobenzene              | ND             | 0.078    | 0.49       | 0.49    | mg/kg     | - 1      |              |           |
| 1,4-Dichloroberzene              | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2,4,5-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2,4,6-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 4        |              |           |
| 2,4-Dichlorophenol               | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2,4-Dimethylphenol               | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2,4-Dinitrophenol                | ND             | 3.7      | 25         | 25      | mg/kg     | 1        | 7            |           |
| 2,4-Dinitrotoluene               | ND             | 0.098    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2,6-Dinitrotoluene               | ND             | 0.078    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2-Chloronaphthalene              | ND             | 0.07B    | 0.49       | 0.49    | mg/kg     | 7.       |              |           |
| 2-Chiorophenol                   | ND             | 0.098    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2-Methylnaphthalene              | ND             | 0.088    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2-Methylphenol                   | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2-Nitro aniline                  | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 2-Nitrophenol                    | ND             | 0.22     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 3 & 4-Methylphenol               | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 3,3'-Dichlorobenzidine           | ND             | 1.5      | 2.5        | 2.5     | mg/kg     | 1        |              |           |
| 3-Nitroaniline                   | ND             | 0.15     | 0.49       | 0.49    | mg/kg     | ্ৰ       |              |           |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5      | 4.9        | 4.9     | mg/kg     | 4        |              |           |
| 4-Bromophenyl phenyl ether       | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 4-Chloro-3-methylphenol          | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 4-Chloroaniline                  | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 4-Chlorophenyl phenyl ether      | ND             | 0.088    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 4-Nitroanlline                   | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| 4-Nitrophenol                    | ND             | 0.15     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Acenaphthene                     | ND             | 0.088    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Acenaphthylene                   | ND             | 880.0    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Aniline                          | ND             | 0.23     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Anthracene                       | ND             | 0.078    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.098    | 0.49       | 0.49    | mg/kg     | 1        | 0            |           |
| Benzidine                        | ND             | 1.2      | 4.9        | 4.9     | mg/kg     | - 1      |              |           |
| Benzo (a) anthracene             | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Benzo (a) pyrene                 | ND             | 0.078    | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Benzo (b) fluoranthene           | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 0 1      |              |           |
| Benzo (g,h,i) perylene           | ND             | 0.059    | 0.98       | 0.98    | mg/kg     | 1        |              |           |
| Benzo (k) fluoranthene           | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1        |              |           |
| Benzolc acid                     | ND             | 1.9      | 25         | 25      | mg/kg     | 1        |              |           |
| Benzyl alcohol                   | ND             | 0.14     | 0.49       | 0.49    | mg/kg     | 1        |              |           |

Page 8 of 48





Sampled: 05/28/13 08:54

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

LN06218

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| •                           | 361      | mvoiaule  | Organic Co | mpound    | us by GO |         |           |                |              |
|-----------------------------|----------|-----------|------------|-----------|----------|---------|-----------|----------------|--------------|
| Method: EPA 8270C           | Batch: V | V3F0001 = | Prepared   | : 06/01/1 | 3 09:40  | Analy   | zed: 06/0 | 14/13 20:38    | Analyst: abj |
| Analyte                     |          | Result    | MDL        | MRL       | ML       | Units   |           | Dilution       | Qualifier    |
| Bis(2-chloroethoxy)methane  |          | ND        | 0.088      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Bis(2-chloroethyl)ether     |          | ND        | 0.11       | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Bis(2-chloroisopropyl)ether |          | ND        | 0.14       | 0.49      | 0.49     | mg/kg   |           | <sub>2</sub> 1 | 141          |
| Bis(2-ethylhexyl)phthalate  |          | ND .      | 0.12       | 0.49      | 0.49     | mg/kg   |           | .1             |              |
| Buty) benzyl phthalate      |          | ND x      | 0.15       | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Carbazole                   | 15 - 81  | ND        | 0.088      | 0.49      | 0.49     | mg/kg   |           | 1 😑            | N            |
| Chrysene                    |          | ND        | 0.088      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Dibenzo (a,h) anthracene    |          | ND        | 0.049      | 0.98      | 0.98     | mg/kg   |           | 1              | 2            |
| Dibenzofuran                |          | ND        | 0.088      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Diethyl phthalate           |          | ND        | 0.059      | 0.49      | 0.49     | mg/kg   |           | 1 ,            |              |
| Dimethyl phthalate          |          | ND        | 0.86       | 2.5       | 2.5      | ⊩ mg/kg |           | 1              |              |
| Di-n-butyl phthalate        |          | ND        | 0.078      | 0.49      | 0.49     | mg/kg   | 9         | 1              |              |
| Di-n-octyl phthalate        |          | ND        | 0.14       | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Fluoranthene                |          | ND        | 0.11       | 0.49      | 0.49     | mg/kg   |           | 1 🗒            |              |
| Fluorene                    |          | ND        | 0.069      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Hexachiorobenzene           |          | ND        | 0.078      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Hexachlorobutadiene         |          | ND        | 0.088      | 0.49      | 0.49     | mg/kg   | *         | 1              |              |
| Hexachlorocyclopentadiene   |          | ND        | 0.12       | 0.49      | 0.49     | mg/kg   | *         | 1              |              |
| Hexachlomethane             |          | ND        | 0.069      | 0.49      | 0.49     | mg/kg   | 12        | 1              |              |
| Indeno (1,2,3-cd) pyrene    |          | ND        | 0.088      | 0.98      | 0.98     | mg/kg   |           | 1 **           |              |
| Isophorone                  |          | ND        | 0.098      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Naphthalene                 |          | ND        | 0.11       | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Nitrobenzene                |          | ND        | 0.11       | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| N-Nitrosodimethylamine      |          | ND        | 0.088      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| N-Nitrosodi-n-propylamine   |          | ND        | 0.088      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| N-Nitrosodiphenylamine      | 9        | ND        | 0.069      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Pentachlorophenol a         |          | ND        | 0.16       | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Phenanthrene                |          | ND ·      | 0.078      | 0.49      | 0.49     | mg/kg   |           | 1:             |              |
| Phenol                      |          | ND        | 0.15       | 0.49      | 0.49     | mg/kg   |           | 1              | 9            |
| Pyrene                      | (4)      | ND        | 0.078      | 0.49      | 0.49     | mg/kg   |           | 1              |              |
| Pyridine *                  | 28       | ND        | 0.049      | 0.98      | 0,98     | mg/kg   |           | 1              | 5            |
| Sur: 2,4,6-Tribromophenol   |          | 52 %      | Conc:25.5  |           | 40-97    | %       |           | ×              | 2 2          |
| Surr. 2-Fluorobiphenyl      |          | 63 %      | Conc:15.4  | 3         | 39-100   | %       |           | \$             | 2            |
| Surr. 2-Fluorophenol        |          | 71 %      | Conc:35.0  |           | 26-115   | %       |           |                |              |
| Surr. Nitrobenzene-d5       |          | 65 %      | Conc:16.0  | 4         | 19-105   | %       |           |                |              |
| Surr. Phenoi-d5             |          | 70 %      | Сопс:34.3  | 3         | 36-105   | %       | 2         |                |              |
| Surr. Terphenyl-d14         |          | 72 %      | Conc:17.6  | 3         | 36-106   | %       |           |                | 2            |
| want talking at t           |          |           |            |           |          |         |           |                | 4 4          |

Page 10 of 48





(Marting the Contraction of the

Sampled: 05/28/13 09:00

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm-311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported:

05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-05 LN06217

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: \ | V3F0001 | 001 Prepared: 06/01/13 09:40 |      |      |       | Analyzed: 06/04/13 21:08 |           |  |
|----------------------------------|----------|---------|------------------------------|------|------|-------|--------------------------|-----------|--|
| Analyte                          |          | Result  | MDL                          | MRL  | ML   | Units | Dilution                 | Qualifier |  |
| 1,2,4-Trichlorobenzene           |          | ND      | 0.089                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 1,2-Dichlorobenzene              |          | ND      | 0.11                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 1,3-Dichlorobenzene              |          | ND      | 0.079                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 1,4-Dichlorobenzene              |          | ND      | 0.12                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2,4,5-Trichlorophenol            |          | ND      | 0.11                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2,4,6-Trichlorophenol            |          | ND      | 0.11                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2,4-Dichlorophenol               |          | ND      | 0.13                         | 0.50 | 0.50 | mg/kg | 1.3                      |           |  |
| 2,4-Dimelhylphenol               |          | ND      | 0.12                         | 0.50 | 0.50 | mg/kg | 1.                       |           |  |
| 2,4-Dinitrophenol                |          | ND      | 3.8                          | 25   | 25   | mg/kg | 4                        |           |  |
| 2,4-Dinitrotoluene               |          | ND      | 0.099                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2,6-Dinitrotoluene               |          | ND      | 0.079                        | 0:50 | 0.50 | mg/kg | 1                        |           |  |
| 2-Chloronaphthalene              |          | ND      | 0,079                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2-Chlorophenol                   |          | ND      | 0.099                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2-Methylnaphthalene              |          | ND      | 0.089                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2-Methylphenol                   |          | ND      | 0.12                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2-Nitroaniline                   |          | ND      | 0.13                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 2-Nitrophenol                    |          | ND      | 0.22                         | 0.50 | 0.50 | mg/kg | 3.                       |           |  |
| 3 & 4-Methylphenol               |          | ND      | 0.12                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 3,3'-Dichlorobenzidine           |          | ND      | 1.5                          | 2.5  | 2.5  | mg/kg | 1                        |           |  |
| 3-Nitroaniline                   |          | ND      | 0.15                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 4,6-Dinitro-2-methy/phenol       |          | ND      | 1.5                          | 5.0  | 5.0  | mg/kg | 1                        |           |  |
| 4-Bromophenyl phenyl ether       |          | ND      | 0.069                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 4-Chloro-3-methylphenol          |          | ND      | 0.11                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 4-Chloroaniline                  |          | ND      | 0.13                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 4-Chlorophenyl phenyl ether      |          | ND      | 0.089                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 4-Nitroaniline                   |          | ND      | 0.13                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| 4-Nitrophenol                    |          | ND      | 0.15                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| Acenaphthene                     |          | ND      | 0.089                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| Acenaphthylene                   |          | ND      | 0.089                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| Aniline                          |          | ND      | 0.23                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| Anthracene                       |          | ND      | 0.079                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| Azobenzene/1,2-Diphenyihydrazine |          | ND      | 0.099                        | 0.50 | 0.50 | mg/kg | 1 -                      |           |  |
| Benzidine                        |          | ND      | 1.2                          | 5.0  | 5.0  | mg/kg | 1                        |           |  |
| Benzo (a) anthracene             |          | ND      | 0.069                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| Benzo (a) pyrens                 |          | ND      | 0,079                        | 0.50 | 0.50 | mg/kg | 1                        |           |  |
| Benzo (b) fluoranthene           |          | ND      | 0.069                        | 0.50 | 0.50 | mg/kg | 1.7                      |           |  |
| Benzo (g.h,i) perylene           |          | ND      | 0.059                        | 0.99 | 0.99 | mg/kg | 1                        |           |  |
| Benzo (k) fluoranthene           |          | ND      | 0.13                         | 0.50 | 0.50 | mg/kg | 11                       |           |  |
| Benzoic acid                     |          | ND      | 1.9                          | 25   | 25   | mg/kg | -1:-                     |           |  |
| Benzyl alcohol                   |          | ND      | 0.14                         | 0.50 | 0.50 | mg/kg | 1                        |           |  |

Page 11 of 48







LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

What was the second of the sec

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

#13-1321,26, WO#

Date Reported:

06/05/13 16:04

Matrix: Solld

Sampled: 05/28/13 09:00

3E30014-05 LN06217

Sampled By: Client

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 21:08 | Analyst: abj |
|-----------------------------|----------------|------------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL        | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.089      | 0.50       | 0.50    | mg/kg       | 1-            |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyf)ether | ND             | 0.14       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Bls(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.15       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.089      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Chrysene                    | ND             | 0.089      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.050      | 0.99       | 0.99    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.089      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.059      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.87       | 2.5        | 2.5     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.079      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.14       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.11       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.069      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Hexachlorobenzene           | ND             | 0.079      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.089      | 0.50       | 0.50    | mg/kg       | 4             |              |
| Hexachlorocyclopentadiene   | ND             | 0.12       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Hexachloroethane            | ND             | 0.069      | 0.50       | 0.50    | mg/kg       | 1             |              |
| ndeno (1,2,3-cd) pyrene     | ND             | 0.089      | 0.99       | 0.99    | mg/kg       | 1.1           |              |
| sophorone                   | ND             | 0.099      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Naphthalene                 | ND             | 0.11       | 0.50       | 0.50    | mg/kg       | 1             |              |
| Vitrobenzene                | ND             | 0.11       | 0.50       | 0.50    | mg/kg       | 1             |              |
| N-Nitrosodimethylamine      | ND             | 0.089      | 0.50       | 0.50    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.089      | 0.50       | 0.50    | mg/kg       | 1             |              |
| N-Nitrosodiphenylamine      | ND             | 0.069      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Pentachlorophenol           | ND             | 0.16       | 0.50       | 0.50    | mg/kg       | 1             |              |
| henanthrene                 | ND             | 0.079      | 0.50       | 0.50    | mg/kg       | 1             |              |
| Phenol                      | ND             | 0.15       | 0.50       | 0.50    | mg/kg       | 1             | 10.0         |
| Pyrene                      | ND             | 0.079      | 0.50       | 0.50    | mg/kg       | 4             |              |
| vidine                      | ND             | 0,050      | 0.99       | 0.99    | mg/kg       | d             |              |
| urr: 2,4,6-Tribromophenol   | 49 %           | Conc:24.4  | 4          | 10-97   | %           |               |              |
| um: 2-Fluorobiphenyl        | 59 %           | Conc. 14.6 |            | 9-100   | %           |               |              |
| urr. 2-Fluorophenol         | 56 %           | Conc:32.6  |            | 6-115   | %           |               |              |
| urr. Nitrobenzene-d5        | 61 %           | Conc: 15.1 |            | 9-105   | %           |               |              |
| un: Phenol-d5               | 65 %           | Conc:32.3  |            | 5-105   | %           |               |              |
| urr: Terphenyl-d14          | 62 %           | Conc: 15.3 |            | -106    | %           |               |              |
| ent terpolitive t           | OZ. 70         |            | -          |         | 40          |               |              |

Page 12 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

College Management of the control of the Management of the Managem

Los Angeles CA, 90012

Sampled: 05/28/13 09:04

Report ID:

3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-06 LN05219

Sampled By: Client

Project ID:

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | - Analyzed: 0 | 6/04/13 21:39 | Analyst: abj |
|----------------------------------|----------------|----------|------------|---------|---------------|---------------|--------------|
| Analyte                          | Result         | MDL      | MRL        | ML      | Units         | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.080    | 0.45       | 0,45    | mg/kg         | 1             |              |
| 1,2-Dichlorobenzene              | ND             | 0.098    | 0,45       | 0.45    | mg/kg         | 1             |              |
| 1,3-Dichlorobenzene              | ND             | 0.071    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 1,4-Dichlarobenzene              | ND             | 0.11     | 0.45       | 0.45    | mg/kg         | 1             |              |
| 2,4,5-Trichlorophenal            | ND             | 0.098    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 2,4,6-Trichlorophenal            | ND             | 0.098    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 2,4-Dichlorophenol               | ND             | 0.12     | 0.45       | 0.45    | mg/kg         | 1             |              |
| 2,4-Dimethylphenol               | ND             | 0.11     | 0.45       | 0.45    | mg/kg         | 14            |              |
| 2,4-Dinitrophenal                | ND:            | 3.4      | 22         | 22      | mg/kg         | 4             |              |
| 2,4-Dinitrotoluene               | ND             | 0.089    | 0.45       | 0.45    | mg/kg         | 3:            |              |
| 2,6-Dinitrotoluene               | ND             | 0.071    | 0.45       | 0.45    | . mg/kg       | 1             |              |
| 2-Chloronaphthalene              | ND             | 0.071    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 2-Chlorophenol                   | ND             | 0.089    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 2-Methylnaphthalene              | ND             | 0.080    | 0.45       | 0.45    | mg/kg         | 1:            |              |
| 2-Methylphenol                   | ND             | 0.11     | 0.45       | 0.45    | mg/kg         | 1             |              |
| 2-Nitroaniline                   | ND             | 0.12     | 0.45       | 0.45    | mg/kg         | .1            |              |
| 2-Nitrophenol                    | ND             | 0.20     | 0.45       | 0.45    | mg/kg         | 1             |              |
| 3 & 4-Methylphenol               | ND             | 0.11     | 0.45       | 0.45    | mg/kg         | 1             |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.3      | 2.2        | 2.2     | mg/kg         | 1             |              |
| 3-Nitroaniline                   | ND             | 0.13     | 0.45       | 0.45    | mg/kg         | 4             |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.5        | 4.5     | mg/kg         | 1             |              |
| 4-Bromophenyl phenyl ather       | ND             | 0.062    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 4-Chloro-3-methylphenol          | ND             | 0.098    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 4-Chloroaniline                  | ND             | 0.12     | 0.45       | 0.45    | mg/kg         | 1             |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.080    | 0.45       | 0.45    | mg/kg         | 1             |              |
| 4-Nitroaniline                   | ND             | 0.12     | 0.45       | 0.45    | mg/kg         | 1             |              |
| 4-Nitrophenol                    | ND             | 0.13     | 0.45       | 0.45    | mg/kg         | 1             |              |
| Acenaphthene                     | ND             | 0.080    | 0.45       | 0.45    | mg/kg         | 1             |              |
| Acenaphthylene                   | ND             | 0.080    | 0.45       | 0.45    | mg/kg         | 1             |              |
| Aniline                          | ND             | 0.21     | 0.45       | 0.45    | mg/kg         | 4             |              |
| Anthracene                       | ND             | 0.071    | 0.45       | 0.45    | mg/kg         | 1             |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0,089    | 0.45       | 0.45    | mg/kg         | 1             |              |
| Benzidine                        | ND             | 1.1      | 4.5        | 4.5     | mg/kg         | 1             |              |
| Benzo (a) anthracene             | ND             | 0.062    | 0.45       | 0.45    | mg/kg         | 1             |              |
| Benzo (a) pyrene                 | ND             | 0.071    | 0.45       | 0.45    | mg/kg         | t.            |              |
| Benzo (b) fluoranthene           | ND             | 0.062    | 0.45       | 0.45    | mg/kg         | 1             |              |
| Benzo (g,h,i) perylene           | ND             | 0.054    | 0.89       | 0.89    | mg/kg         | 1             |              |
| Benzo (k) fluoranthene           | ND             | 0.12     | 0.45       | 0.45    | mg/kg         | 1             |              |
| Benzoic acid                     | ND             | 1.7      | 22         | 22      | mg/kg         | 1             |              |
| Benzyl alcohol                   | ND             | 0.12     | 0.45       | 0.45    | mg/kg         | 1             |              |

Page 13 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012 CAST THE REPORT OF THE PERSON Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-06 LN06219

Sampled: 05/28/13 09:04

Sampled By: Client

Matrix: Solld

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Ва | tch: W3F0001 | Prepared  | : 06/01/1 | 3 09:40 | Analyzed: | 06/04/13 21:39 | Analyst: ab |
|-----------------------------|----|--------------|-----------|-----------|---------|-----------|----------------|-------------|
| Analyte                     |    | Result       | MOL       | MRL       | ML      | Units     | Dilution       | Qualifier   |
| Bis(2-chloroethoxy)methane  |    | ND           | 0.080     | 0.45      | 0.45    | mg/kg     | 1              |             |
| Bis(2-chloroethyl)ether     |    | ND           | 0.098     | 0.45      | 0.45    | mg/kg     | 1:             |             |
| Bis(2-chloroisopropyl)ether |    | ND           | 0.12      | 0.45      | 0.45    | mg/kg     | 1              |             |
| Bis(2-ethylhexyl)phthalate  |    | ND-          | 0.11      | 0.45      | 0.45    | mg/kg     | -1             |             |
| Butyl benzyl phthalate      |    | ND           | 0.13      | 0.45      | 0.45    | mg/kg     | 1              |             |
| Carbazole                   |    | ND           | 0.080     | 0.45      | 0.45    | mg/kg     | 1              |             |
| Chrysene                    |    | ND           | 0.080     | 0.45      | 0.45    | mg/kg     | 1.1            |             |
| Dibenzo (a,h) anthracene    |    | ND           | 0.045     | 0.89      | 0.89    | mg/kg     | 1              |             |
| Dibenzofuran                |    | ND           | 0.080     | 0.45      | 0.45    | mg/kg     | 1              |             |
| Diethyl phthalate           |    | ND           | 0.054     | 0.45      | 0.45    | mg/kg     | 1              |             |
| Dimethyl phthalate          |    | ND           | 0.79      | 2.2       | 2.2     | mg/kg     | 1              |             |
| Di-n-butyl phthalate        |    | ND           | 0.071     | 0.45      | 0.45    | mg/kg     | . 1            |             |
| Di-n-octyl phthalate        |    | ND           | 0.12      | 0.45      | 0.45    | mg/kg     | 1              |             |
| Fluoranthene                |    | ND           | 0.098     | 0.45      | 0.45    | mg/kg     | 4              |             |
| Fluorene                    | 1  | ND           | 0.062     | 0.45      | 0.45    | mg/kg     | 1              |             |
| Hexachlorobenzene           |    | ND           | 0.071     | 0.45      | 0.45    | mg/kg     | 1              |             |
| Hexachlorobutadiene         |    | ND           | 0.080     | 0.45      | 0.45    | mg/kg     | 4              |             |
| Hexachlorocyclopentadiene   |    | ND .         | 0.11      | 0,45      | 0.45    | mg/kg     | 1              |             |
| dexachloroethane            |    | ND           | 0.062     | 0.45      | 0.45    | mg/kg     | 1              |             |
| ndeno (1,2,3-cd) pyrene     |    | ND           | 0.080     | 0.89      | 0.89    | mg/kg     | 1              |             |
| sophorone                   |    | ND           | 0.089     | 0.45      | 0.45    | mg/kg     | 1              |             |
| Vaphthalene                 |    | ND           | 0.098     | 0.45      | 0.45    | mg/kg     | 1              |             |
| litrobenzene                |    | ND           | 0.098     | 0.45      | 0.45    | mg/kg     | 1              |             |
| I-Nitrosodimethylamine      |    | ND           | 0.080     | 0.45      | 0.45    | mg/kg     | 1              |             |
| l-Nitrosodi-n-propylamine   |    | ND           | 0.080     | 0.45      | 0.45    | mg/kg     | 1              |             |
| I-Nitrosodiphenylamine      |    | ND           | 0.062     | 0.45      | 0.45    | mg/kg     | 1              |             |
| entachiorophenol            |    | ND           | 0.14      | 0.45      | 0.45    | mg/kg     | 1              |             |
| henanthrene                 |    | ND           | 0.071     | 0.45      | 0.45    | mg/kg     | 1              |             |
| henol                       |    | ND           | 0.13      | 0.45      | 0.45    | mg/kg     | 4              |             |
| yrene                       |    | ND           | 0.071     | 0.45      | 0.45    | mg/kg     | 1              |             |
| yridine                     |    | ND           | 0.045     | 0.89      | 0.89    | mg/kg     | 1.             |             |
| urr: 2,4,6-Tribromophenal   |    | 51 %         | Conc:22.8 |           | 10-97   | %         |                |             |
| un: 2-Fluorobiphenyl        |    | 64 %         | Conc:14.3 | 3         | 9-100   | %         |                |             |
| urr: 2-Fluorophenol         |    | 73 %         | Conc:32.8 | 2         | 6-115   | %         |                |             |
| urr: Nitrobenzene-d5        |    | 67 %         | Conc:14.9 | 4         | 9-105   | %         |                |             |
| un: Phenol-d5               |    | 71 %         | Conc:31.9 |           | 5-105   | %         |                |             |
| urr: Terphenyl-d14          |    | 74 %         | Conc:16.5 |           | 5-106   | %         |                |             |

Page 14 of 48





Sampled: 05/28/13 09:40

Analytical Laboratory Service - Since 1984

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-07

LN06229

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method; EPA 8270C                | Batch: W3F0001 |       | 1: 06/01/1 | 4-9 (T) 900 (M) |       | 6/04/13 22:09 | Analyst: abj |
|----------------------------------|----------------|-------|------------|-----------------|-------|---------------|--------------|
| Analyte                          | Result         | MDL   | MRL        | ML              | Units | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 1             |              |
| 1,2-Dichlorobenzene              | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1             |              |
| 1,3-Dichlorobenzene              | ND             | 0.075 | 0.47       | 0.47            | mg/kg | 1             |              |
| 1,4-Dichlorobenzene              | ND             | 0.11  | 0.47       | 0.47            | mg/kg | 1             |              |
| 2,4,5-Trichlorophenol            | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1             |              |
| 2,4,6-Trichlorophenol            | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1             |              |
| 2,4-Dichlorophenol               | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1.            |              |
| 2,4-Dimethylphenol               | ND             | 0.11  | 0.47       | 0.47            | mg/kg | -1            |              |
| 2,4-Dinitrophenol                | ND             | 3.6   | 23         | 23              | mg/kg | 1             |              |
| 2,4-Dinitrotoluene               | ND             | 0.094 | 0.47       | 0.47            | mg/kg | 1             |              |
| 2,6-Dinitrotoluene               | ND             | 0.075 | 0.47       | 0.47            | mg/kg | 1             |              |
| 2-Chloronaphthalene              | ND.            | 0.075 | 0.47       | 0.47            | mg/kg | 1             |              |
| 2-Chlorophenal                   | ND             | 0.094 | 0.47       | 0.47            | mg/kg | 1             |              |
| 2-Methylnaphthalene              | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 1             |              |
| 2-Methylphenol                   | ND             | 0.11  | 0.47       | 0.47            | mg/kg | 1             |              |
| 2-Nitroanlline                   | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1             |              |
| 2-Nitrophenol                    | ND             | 0.21  | 0.47       | 0.47            | mg/kg | 1             |              |
| 3 & 4-Methylphenol               | ND             | 0.11  | 0.47       | 0.47            | mg/kg | 1.1           |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.4   | 2.3        | 2.3             | mg/kg | 1             |              |
| 3-Nitroaniline                   | ND             | 0.14  | 0.47       | 0.47            | mg/kg | 1             |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.4   | 4.7        | 4.7             | mg/kg | 1             |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.066 | 0.47       | 0.47            | mg/kg | 1.            |              |
| 4-Chloro-3-methylphenol          | ND             | 0.10  | 0.47       | 0.47            | mg/kg | 1             |              |
| 4-Chloroaniline                  | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1             |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 1             |              |
| 4-Nitroaniline                   | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1             |              |
| 1-Nitrophenol                    | ND             | 0.14  | 0.47       | 0.47            | mg/kg | 1             |              |
| Acenaphthene                     | ND             | 0.085 | 0.47       | 0.47            | mg/kg | 1             |              |
| Acenaphthylene                   | ND             | 0.085 | 0.47       | 0.47            | mg/kg | t             |              |
| Aniline                          | ND             | 0,22  | 0.47       | 0.47            | mg/kg | 4             |              |
| Anthracene                       | ND             | 0.075 | 0.47       | 0.47            | mg/kg | 1             |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.094 | 0.47       | 0.47            | mg/kg | 1             |              |
| Benzidine                        | ND             | 1.2   | 4.7        | 4.7             | mg/kg | 1             |              |
| Benzo (a) anthracene             | ND             | 0.066 | 0.47       | 0.47            | mg/kg | 1             |              |
| Benzo (a) pyrene                 | ND -           | 0.075 | 0.47       | 0.47            | mg/kg | 1             |              |
| lenzo (b) fluoranthene           | ND             | 0.066 | 0.47       | 0.47            | mg/kg | 1             |              |
| lenzo (g,h,i) perylene           | ND             | 0.056 | 0.94       | 0.94            | mg/kg | 1             |              |
| enzo (k) fluoranthene            | ND             | 0.12  | 0.47       | 0.47            | mg/kg | 1             |              |
| enzoic acid                      | ND             | 1.8   | 23         | 23              | mg/kg | 1             |              |
| lenzyl alcohol                   | ND             | 0.13  | 0.47       | 0.47            | mg/kg | 1             |              |

Page 15 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 05

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-07

LN05229

Sampled: 05/28/13 09:40

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 22:09 | Analyst: abj |
|-----------------------------|----------------|------------|-----------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL       | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1.            |              |
| Chrysene                    | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.047      | 0.94      | 0.94    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.056      | 0.47      | 0.47    | mg/kg       | 3             |              |
| Dimethyl phthalate          | ND             | 0.83       | 2.3       | 2.3     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.47 .    | 0.47    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorobenzene           | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.11       | 0.47      | 0.47    | mg/kg       | 1             |              |
| -lexachloroethane           | NO             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| ndena (1,2,3-cd) pyrene     | ND             | 0.085      | 0.94      | 0.94    | mg/kg       | 1             |              |
| sophorone                   | ND             | 0.094      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Vaphthalene                 | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Nitrobenzene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | - 1           |              |
| N-Nitrosodimethylamine      | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | - 1           |              |
| N-Nitrosodiphenylamine      | ND             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| entachlorophenol            | ND             | 0.15       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Phenanthrene                | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Phenol                      | ND             | 0.14       | 0.47      | 0.47    | mg/kg       | 1             |              |
| yrene                       | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| yridine                     | ND             | 0.047      | 0.94      | 0.94    | mg/kg       | 1             |              |
| urr. 2,4,6-Tribromophenol   | 46 %           | Conc:21.5  |           | 40-97   | %           | 3.00          |              |
| urr. 2-Fluorobiphenyl       | 57 %           | Conc:13.4  | 3         | 9-100   | %           |               |              |
| un: 2-Fluorophenol          | 62 %           | Conc:29.0  | 2         | 6-115   | %           |               |              |
| urr: Nitrobenzene-d5        | 58 %           | Conc:13.7  | 4         | 9-105   | %           |               |              |
| ur: Phenol-d5               | 61 %           | Conc: 28.8 | . 9       | 6-105   | %           |               |              |
|                             | 91 78          | 0010,20,0  |           | 0-100   | 70          |               |              |

Page 18 of 48





Sampled: 05/28/13 09:44

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014 ==

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-08

LN06231

Sampled By: Client

Matrix: Solid

| Semivolatile Organic | Compounds | by GC/MS |
|----------------------|-----------|----------|
|----------------------|-----------|----------|

| Mally and EDA some a             |     |       | Semivolatil | e Organic | Compou     | nds by GC | C/MS   | 61                |    | 20          |
|----------------------------------|-----|-------|-------------|-----------|------------|-----------|--------|-------------------|----|-------------|
| Method: EPA 8270C                |     | Batch | n: W3F0001  |           | red: 06/01 |           |        | 1: 06/04/13 22:39 |    | Ab          |
| Analyte                          |     | *     | Result      |           |            |           | Units  |                   |    | Analyst abj |
| 1,2,4-Trichlorobenzene           |     |       | ND          | 0.07      |            |           |        | Dilution          |    | Qualifier   |
| 1,2-Dichlorobenzene              | - 6 | (4)   | ND          | 0.09      | • • • • •  |           | mg/kg  | -                 |    |             |
| 1,3-Dichlorobenzene              | 100 |       | ND          | 0.06      |            |           |        | 1                 |    |             |
| 1,4-Dichlorobenzene              |     |       | ND          | 0.10      |            |           | mg/kg  | 1                 |    |             |
| 2,4,5-Trichlarophenal            |     |       | ND          | 0.09      |            |           | mg/kg  | 1                 |    |             |
| 2,4,6-Trichlorophenol            |     |       | ND          | 0.094     |            |           | mg/kg  | 1                 |    |             |
| 2,4-Dichlorophenol               |     |       | ND          | 0.11      |            |           | mg/kg  | sec. 1            |    |             |
| 2,4-Dimethylphenol               |     |       | ND          | 0.10      |            | 0.43      | mg/kg  | 1 9               |    |             |
| 2,4-Dinitrophenol                |     | - 2   | ND          | 3.2       | 21         |           | mg/kg  | 1                 |    |             |
| 2,4-Dinitrotoluene               |     |       | ND          | 0.085     |            | 21        | mg/kg  | 1                 |    |             |
| 2,6-Dinitrotoluene               |     | Ti.   | ND          | 0.068     |            | 0.43      | mg/kg  | 1                 |    |             |
| 2-Chloronaphthalene              | #   |       | ND          | 0.068     |            | 0.43      | mg/kg  | 1                 |    |             |
| 2-Chloraphenal                   |     |       | ND :        | 0.085     |            | 0.43      | mg/kg  | 1                 |    |             |
| 2-Methylnaphthalene              |     |       | ND          |           |            | 0.43      | mg/kg  | 1                 |    |             |
| 2-Methylphenai                   |     |       | ND          |           | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| 2-Nitroaniline                   |     |       | ND          | 0.10      | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| 2-Nitrophenol                    |     |       | ND          | 0.11      | 0.43       | 0.43      | rng/kg | 1                 |    |             |
| 3 & 4-Methylphenol               |     |       |             | 0.19      | 0.43       | 0.43      | mg/kg  | 1                 |    | 5           |
| 3,3'-Dichlorobenzidine           |     |       | ND          | 0.10      | 0.43       | 0.43      | mg/kg  | 1                 |    | 18          |
| 3-Nitroaniline                   |     |       | ND          | 1.3       | 2.1        | 2.1       | mg/kg  | 1                 |    |             |
| 4,6-Dinitro-2-methylphenol       |     |       | ND          | 0.13      | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| 4-Bromophenyl phenyl ether       |     |       | ND          | 1.3       | 4.3        | 4.3       | mg/kg  | 1                 |    |             |
| 4-Chloro-3-methylphenol          |     |       | ND          | 0.060     | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| 4-Chloroaniline                  |     |       | ND          | 0.094     | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| 4-Chlorophenyi phenyl ether      |     |       | ND          | 0.11      | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| 4-Nitroaniline                   |     |       | ND          | 0.077     |            | 0.43      | mg/kg  | 1                 |    |             |
| 4-Nitrophenol                    |     |       | ND:         |           | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| Acenaphthene                     |     |       | ND          | 0.13      | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| Acenaphthylene                   |     |       | ND          | 0.077     | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| Aniline                          |     |       | ND          | 0.077     | 0.43       | 0.43      | mg/kg  | 1                 | 2  |             |
| Anthracene                       |     |       | ND          | 0.20      | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| Azobenzene/1,2-Diphenylhydrazine |     |       | ND          | 0.068     | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| Benzidine                        |     |       | ND          | 0.085     | 0.43       | 0.43      | mg/kg  | 1 g               |    |             |
|                                  |     |       | ND          | 1.1       | 4.3        | 4.3       | mg/kg  | 1 8               | *: |             |
| Benzo (a) anthracene             | 12  |       | ND          | 0.060     | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| Benzo (a) pyrene                 |     |       | ND          | 0.068     | 0.43       | 0.43      | mg/kg  | 1                 |    |             |
| Benzo (b) fluoranthene           |     | 1     | ND -        | 0.060     | 0.43       | 0.43      | mg/kg  | 1                 |    | 75          |
| Benzo (g,h,i) perylene           |     |       | ND          | 0.051     | 0.85       | 0.85      | mg/kg  | i 1               |    |             |
| Benzo (k) fluoranthene           |     |       | ND          | 0.11      | 0.43       | 0.43      | mg/kg  | 1                 | 90 |             |
| Benzoic acid                     |     |       | ND          | 1.6       | 21         | 21        | mg/kg  | 1                 |    |             |
| Benzyl alcohol                   |     |       | ND          | 0.12      |            | 0.43      | mg/kg  | 1                 |    |             |
|                                  |     |       |             |           |            |           | פייים  | ,                 |    |             |

Page 17 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

100

3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/28/13 09:44

Report ID: Project ID:

3E30014-08

Project ID: 7600 Tyrone Ave. COC #13-1321,26, VVO# Date Reported:

06/05/13 16:04

LN06231

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 22:39 | Analyst: abj |
|-----------------------------|----------------|-----------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.12      | 0.43       | 0.43    | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.10      | 0.43       | 0.43    | mg/kg       | 1             |              |
| Bulyl benzyl phthalate      | ND             | 0.13      | 0.43       | 0.43    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1.            |              |
| Chrysene                    | ND             | 0.077     | 0.43       | 0,43    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.043     | 0.85       | 0.85    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.051     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.75      | 2.1        | 2.1     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.12      | 0.43       | 0.43    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0,060     | 0.43       | 0.43    | mg/kg       | -1            |              |
| Hexachlorobenzene           | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.10      | 0.43       | 0.43    | mg/kg       | 1             |              |
| Hexachloroethane            | ND             | 0.060     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.077     | 0.85       | 0.85    | mg/kg       | 1             |              |
| fsophorone                  | ND             | 0.085     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Naphthalene                 | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Nitrobenzene                | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 7             |              |
| N-Nitrosodimethylamine      | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 4             |              |
| N-Nitrosodiphenylamine      | ND             | 0.060     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Pentachiorophenol           | ND             | 0.14      | 0.43       | 0.43    | mg/kg       | 1             |              |
| Phenanthrene                | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Phenol                      | ND             | 0.13      | 0.43       | 0.43    | mg/kg       | 1:            |              |
| Pyrene                      | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | 1             |              |
| Pyddine                     | ND             | 0.043     | 0.85       | 0.85    | mg/kg       | 1             |              |
| Surr: 2,4,6-Tribromophenol  | 55 %           | Conc:23.2 |            | 40-97   | %           |               |              |
| Surr. 2-Fluorobiphenyl .    | 66 %           | Conc:14.0 | 3          | 9-100   | %           |               | -00          |
| Surr. 2-Fluorophenol        | 78 %           | Conc:33.3 | 2          | 6-115   | %           |               |              |
| Surr: Nitrobenzene-d5       | 69 %           | Conc:14.6 | 4          | 9-105   | %           |               |              |
| Sur: Phenol-d5              | 76 %           | Conc:32.5 | 31         | 6-105   | %           |               |              |
| Surr: Terphenyl-d14         | 76 %           | Conc:16.3 |            | 6-106   | %           |               |              |
| and the special section is  |                |           |            |         |             |               |              |

Page 18 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012 PREDSHIP AND THE STATE OF THE S Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-09

LN06241

Matrix: Solid

Sampled: 05/28/13 10:20

Sampled By: Client

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | Analyzed: | 06/04/13 23:10 | Analyst: abj |
|----------------------------------|----------------|----------|------------|---------|-----------|----------------|--------------|
| Analyte                          | Result         | MDL      | MRL        | ML      | Units     | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |              |
| 1,2-Dichlorobenzene              | ND             | 0.11     | 0.49       | 0,49    | mg/kg     | 1              |              |
| 1,3-Dichlorobenzene              | ND:            | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |              |
| 1,4-Dichlorobenzene              | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2,4,5-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2,4,6-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2,4-Dichlorophenol               | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              | 0            |
| 2,4-Dimethylphenol               | ND -           | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2,4-Dinitrophenot                | ND             | 3.7      | 25         | 25      | mg/kg     | - 1            |              |
| 2,4-Dinitrotoluene               | ND             | 0.099    | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2,6-Dinitrotoluene               | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | . 1            |              |
| 2-Chloronaphthalene              | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2-Chlorophenol                   | ND             | 0.099    | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2-Methylnaphthalene              | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2-Methylphenol                   | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2-Nitroaniline                   | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 2-Nitrophenol                    | ND             | 0.22     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 3 & 4-Methylphenal               | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.5      | 2.5        | 2.5     | mg/kg     | 1              |              |
| 3-Nitroaniline                   | ND             | 0.15     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5      | 4.9        | 4.9     | mg/kg     | 3              |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 4              |              |
| 4-Chloro-3-methylphenol          | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1              |              |
| 4-Chloroaniline                  | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1.3.1          |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |              |
| 4-Nitroaniline                   | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 111            |              |
| 4-Nitrophenol                    | ND             | 0.15     | 0.49       | 0.49    | mg/kg     | 1              |              |
| Acenaphthene                     | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |              |
| Acenaphthylene                   | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |              |
| Aniline                          | ND             | 0.23     | 0.49       | 0.49    | rng/kg    | 1              |              |
| Anthracene                       | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.099    | 0.49       | 0.49    | mg/kg     | 1              |              |
| Benzidine                        | ND             | 1,2      | 4.9        | 4.9     | mg/kg     | 1              |              |
| Benzo (a) anthracene             | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 1              |              |
| Benzo (a) pyrene                 | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |              |
| Benzo (b) fluoranthene           | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 1              |              |
| Benzo (g.h,l) perylene           | 0.12           | 0.059    | 0.99       | 0.99    | mg/kg     | 1              | J            |
| Benzo (k) fluoranthene           | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              |              |
| Benzoic acid                     | ND             | 1.9      | 25         | 25      | mg/kg     | 1              |              |
| Berizyl alcohol                  | ND             | 0.14     | 0.49       | 0.49    | mg/kg     | 1              |              |

Page 19 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 371

and his is a particular to the control of the contr

Report ID: 3E30014 Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/28/13 10:20

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-09

LN06241

Sampled By: Client

Matrix: Solid

# Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1: | 3 09:40 | Analyzed: 0 | 6/04/13 23:10 | Analyst: ab |
|-----------------------------|----------------|------------|------------|---------|-------------|---------------|-------------|
| Analyte                     | Result         | MDL        | MRL        | ML      | Units       | Dilution      | Qualifier   |
| Bis(2-chloroethoxy)methane  | ND ·           | 0.089      | 0.49       | 0.49    | mg/kg       | 1             |             |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.49       | 0.49    | mg/kg       | 1             |             |
| Bis(2-chloroisopropyi)ether | ND             | 0.14       | 0.49       | 0.49    | mg/kg       | 1             |             |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.49       | 0.49    | mg/kg       | 1             |             |
| Butyl benzyl phthalate      | ND             | 0.15       | 0.49       | 0.49    | mg/kg       | 1             |             |
| Carbazole                   | ND             | 0.089      | 0.49       | 0.49    | mg/kg       | 1             |             |
| Chrysene                    | ND             | 0.089      | 0.49       | 0.49    | mg/kg       | 1             |             |
| Dibenzo (a,h) anthracene    | ND             | 0.049      | 0.99       | 0.99    | mg/kg       | 1             |             |
| Dibenzofuran                | ND :           | 0.089      | 0.49       | 0.49    | mg/kg       | 1             |             |
| Diethyl phthalate           | ND             | 0.059      | 0.49       | 0.49    | mg/kg       | 11            |             |
| Dimethyl phthalate          | ND             | 0.87       | 2.5        | 2.5     | mg/kg       | .1            |             |
| Di-n-butyl phthalate        | ND             | 0.079      | 0.49       | 0.49    | mg/kg       | 1             |             |
| Di-n-octyl phthalate        | ND             | 0.14       | 0.49       | 0.49    | mg/kg       | 1             |             |
| luoranthene                 | ND             | 0.11       | 0.49       | 0.49    | mg/kg       | 1             |             |
| luorene                     | ND             | 0.069      | 0.49       | 0.49    | mg/kg       | i             |             |
| lexachlorobenzene           | ND             | 0.079      | 0.49       | 0.49    | mg/kg       | 1             |             |
| lexachlorobutadiene         | ND             | 0.089      | 0.49       | 0.49    | mg/kg       | 1             |             |
| exachiorocyclopentadiene    | ND             | 0.12       | 0.49       | 0.49    | mg/kg       | 1             |             |
| exachloroethane             | ND             | 0.069      | 0.49       | 0.49    | mg/kg       | 1             |             |
| deno (1,2,3-cd) pyrene      | 0.17           | 0.089      | 0.99       | 0.99    | mg/kg       | 4             | 1           |
| ophorone                    | ND             | 0.099      | 0.49       | 0.49    | mg/kg       | 1             |             |
| aphthalene                  | ND             | 0.11       | 0.49       | 0.49    | mg/kg       | 1             |             |
| itrobenzene                 | ND             | 0.11       | 0.49       | 0.49    | mg/kg       | 1             |             |
| Nitrosodimethylamine        | ND             | 0.089      | 0.49       | 0.49    | mg/kg       | 1             |             |
| -Nitrosodi-n-propytamine    | ND             | 0.089      | 0.49       | 0.49    | mg/kg       | 1             |             |
| Nitrosodiphenylamine        | ND             | 0.069      | 0.49       | 0.49    | mg/kg       | (t)           |             |
| entachlorophenol            | ND             | 0.16       | 0.49       | 0.49    | mg/kg       | 4:            |             |
| nenanthrene                 | ND.            | 0.079      | 0.49       | 0.49    | mg/kg       | 1             |             |
| enol                        | ND             | 0.15       | 0.49       | 0.49    | mg/kg       | 1             |             |
| rene                        | ND             | 0.079      | 0.49       | 0.49    | mg/kg       | 1             |             |
| ridine                      | ND             | 0.049      | 0.99       | 0.99    | mg/kg       | 1             |             |
| nr. 2,4,6-Tribromophenol    | 52 %           | Conc: 25.5 |            | 0-97    | %           |               |             |
| rr: 2-Fluorobiphenyl        | 62 %           | Conc:15.3  |            | -100    | %           |               |             |
| rr: 2-Fluorophenol          | 74 %           | Conc:36.3  |            | 5-115   | %           |               |             |
| rr: Nitrobenzene-d5         | 67 %           | Conc:16.4  |            | 3-105   | %           |               |             |
| rr: Phenat-d5               | 71 %           | Conc:35.2  |            | -105    | %           |               |             |
| m: Terphenyl-d14            | 68 %           | Conc: 16.6 |            | -106    | %           |               |             |

Page 20 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg, 7, Rm 311

Los Angeles CA, 90012 DATE OF THE PROPERTY OF THE PARTY OF THE PAR

Sampled: 05/28/13 10:24

3E30014 Report ID:

Date Received:

05/30/13 09:50

Project ID:

7600 Tyrone-Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-10

LN06243

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared | 1: 06/01/1; | 3 09:40 | Analyzed: | 06/04/13 23:40 | Analyst: abj |
|---------------------------------|----------------|----------|-------------|---------|-----------|----------------|--------------|
| Analyte                         | Result         | MDL      | MRL         | ML      | Units     | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene          | ND             | 0.080    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 1,2-Dichlorobenzene             | ND             | 0.098    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 1,3-Dichlombenzene              | ND             | 0.071    | 0,45        | 0.45    | mg/kg     | 0. 1           |              |
| 1,4-Dichlorobenzene             | ND             | 0.11     | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2,4,5-Trichlorophenol           | DN             | 0.098    | 0.45        | 0,45    | mg/kg     | 1.1            |              |
| 2,4,6-Trichlorophenal           | ND             | 0.098    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2,4-Dichlorophenol              | ND             | 0.12     | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2,4-Dimethylphenol              | ND             | 0.11     | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2,4-Dinitrophenol               | ND             | 3.4      | 22          | 22      | mg/kg     | 1              |              |
| 2,4-Dinitrotoluene              | ND             | 0.089    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2,6-Dinitrotoluene              | ND             | 0.071    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2-Chloronaphthalene             | ND             | 0.071    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2-Chlorophenol                  | ND             | 0.089    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2-Methylnaphthalene             | ND             | 0.080    | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2-Methylphenoi                  | ND             | 0.11     | 0.45        | 0.45    | mg/kg     | 1.             |              |
| 2-Nitroaniline                  | ND             | 0.12     | 0.45        | 0.45    | mg/kg     | 1              |              |
| 2-Nitrophenol                   | ND             | 0.20     | 0.45        | 0.45    | mg/kg     | 1              |              |
| 3 & 4-Methy/phenol              | ND             | 0.11     | 0.45        | 0.45    | mg/kg     | 1              |              |
| 3,3'-Dichlorobenzidine          | ND             | 1.3      | 2.2         | 2.2     | mg/kg     | 1              |              |
| I-Nitroaniline                  | ND             | 0.13     | 0.45        | 0.45    | mg/kg     | 1              |              |
| ,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.5         | 4.5     | mg/kg     | 3              |              |
| -Bromophenyl phenyl ather       | NO             | 0.062    | 0.45        | 0.45    | mg/kg     | 1              |              |
| -Chloro-3-methylphenol          | ND             | 0.098    | 0.45        | 0.45    | mg/kg     | 1              |              |
| -Chloroaniline                  | ND             | 0.12     | 0.45        | 0.45    | mg/kg     | 1              |              |
| -Chlorophenyl phenyl ether      | ND             | 0.080    | 0.45        | 0.45    | mg/kg     | 1              |              |
| -Nitroaniline                   | ND             | 0.12     | 0.45        | 0.45    | mg/kg     | 1              |              |
| -Nitrophenol                    | ND .           | 0.13     | 0.45        | 0.45    | mg/kg     | 1              |              |
| cenaphthene                     | ND             | 0.080    | 0.45        | 0.45    | mg/kg     | 1              |              |
| cenaphthylene                   | ND             | 0.080    | 0.45        | 0.45    | mg/kg     | 1.1            |              |
| nillne                          | NO             | 0.21     | 0.45        | 0.45    | mg/kg     | 1              |              |
| nthracene                       | ND             | 0.071    | 0.45        | 0.45    | mg/kg     | 1              |              |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.089    | 0.45        | 0.45    | mg/kg     | 1.             |              |
| enzidine                        | ND             | 1.1      | 4.5         | 4.5     | mg/kg     | (1)            |              |
| enzo (a) anthracene             | ND             | 0.062    | 0.45        | 0.45    | mg/kg     | 3.1            |              |
| enzo (a) pyrene                 | ND             | 0.071    | 0.45        | U.45    | mg/kg     | 1              |              |
| enzo (b) fluoranthene           | ND             | 0.062    | 0.45        | 0.45    | mg/kg     | 1              |              |
| enzo (g,h,i) perylene           | ND             | 0.054    | 0.89        | 0.89    | mg/kg     | .1             |              |
| enzo (k) fluoranthene           | ND             | 0.12     | 0.45        | 0.45    | mg/kg     | 1              |              |
| enzoic acid                     | ND             | 1.7      | 22          | 22      | mg/kg     | 1              |              |
| enzyl alcohol                   | ND             | 0.12     | 0.45        | 0.45    | mg/kg     | 1              |              |

Page 21 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/28/13 10:24

we deposit the property of the design of

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-10 LN06243

Sampled By: Client

Matrix: Solid

| Semivolatile Organic | Compounds by | GC/MS |
|----------------------|--------------|-------|
|----------------------|--------------|-------|

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 23:40 | Analyst: abj |
|-----------------------------|----------------|------------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL        | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.080      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.098      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.12       | 0.45       | 0.45    | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.45       | 0.45    | mg/kg       | 1             |              |
| Bulyl benzyl phthalate      | ND             | 0.13       | 0.45       | 0.45    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.080      | 0.45       | 0.45    | mg/kg       | 4             |              |
| Chrysene                    | ND             | 0.080      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.045      | 0.89       | 0.89    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.080      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.054      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.79       | 2.2        | 2.2     | mg/kg       | 1.            |              |
| Di-n-butyl phthalate        | ND             | 0.071      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.12       | 0.45       | 0.45    | mg/kg       | ें ।          |              |
| Tuoranthene                 | ND             | 0.098      | 0.45       | 0.45    | mg/kg       | 1             |              |
| luorene                     | ND             | 0.062      | 0.45       | 0.45    | mg/kg       | 1             |              |
| exachlorobenzene            | ND             | 0.071      | 0.45       | 0.45    | mg/kg       | 1             |              |
| exachlorobutadiene          | ND             | 080.0      | 0.45       | 0.45    | mg/kg       | 1             |              |
| exachlorocyclopentadiene    | ND             | 0.11       | 0.45       | 0.45    | mg/kg       | 1             |              |
| exachloroethane             | ND             | 0.062      | 0.45       | 0:45    | mg/kg       | 1             |              |
| deno (1,2,3-cd) pyrene      | ND             | 0.080      | 0.89       | 0.89    | mg/kg       | 1             |              |
| ophorone                    | ND             | 0.089      | 0.45       | 0.45    | mg/kg       | 1             |              |
| aphthalene                  | ND             | 0,098      | 0.45       | 0.45    | mg/kg       | 4             |              |
| trobenzene                  | ND             | 0.098      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Nitrosodimethylamine        | ND             | 0.080      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Nitrosodi-n-propylamine     | ND             | 0.080      | 0.45       | 0.45    | mg/kg       | 1             |              |
| Nitrosodiphenylamine        | ND             | 0.062      | 0.45       | 0.45    | mg/kg       | 1             |              |
| entachlorophenol            | ND             | 0.14       | 0.45       | 0.45    | mg/kg       | 1             |              |
| enanthrena                  | ND             | 0.071      | 0.45       | 0.45    | mg/kg       | 1             |              |
| enol                        | ND             | 0.13       | 0.45       | 0.45    | mg/kg       | 1             |              |
| rene                        | ND             | 0.071      | 0.45       | 0.45    | mg/kg       | 1             |              |
| ridine                      | ND             | 0.045      | 0.89       | 0.89    | mg/kg       | 1             |              |
| rr: 2,4,6-Tribromophenal    | 61 %           | Conc:27.4  |            | 0-97    | %           |               |              |
| rr: 2-Fluorobiphenyl        | 70 %           | Conc: 15.7 |            | 9-100   | %           |               |              |
| rr. 2-Fluorophenol          | 82 %           | Conc:36.6  |            | 6-115   | %           |               |              |
| T. Nitrobenzene-d5          | 74 %           | Conc: 16.5 |            | -105    | %           |               |              |
| T. Phenol-d5                | 78 %           | Conc:34.8  |            | 5-105   | %           |               |              |
| T: Terphenyl-d14            | 79 %           | Conc: 17.6 |            | 5-106   | %           |               |              |

Page 22 of 48



Sampled: 05/28/13 11:30

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Port of the state of the state

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-11

大学是正式医量素等的用数中的点面整个用户的显示。 第一个 LN06259

Sampled By: Client

Matrix: Solid

# Semivolatile Organic Compounds by GC/MS

| Mothed: CD4 nozes                        | ** | Semivolati    | le Organic | Compou     | nds by Go | C/MS   | 9                |    |              |
|------------------------------------------|----|---------------|------------|------------|-----------|--------|------------------|----|--------------|
| Method: EPA 8270C                        | Ba | atch: W3F0001 | Prepai     | red: 06/01 | /13 09:40 |        | d: 06/05/13 00:1 |    |              |
| Analyte                                  |    | Resul         |            |            |           |        |                  |    | Analyst: abj |
| 1,2,4-Trichlorobenzene                   |    | ND            | 0.08       |            |           | Units  | Dilutio          | n  | Qualifier    |
| 1,2-Dichlorobenzene                      |    | ND            | 0.10       |            |           | 5      | . 1              |    |              |
| 1,3-Dichlorobenzene                      |    | ND            | 0.074      |            |           |        | . 1              |    |              |
| 1,4-Dichlorobenzene                      |    | ND            | 0.07       |            |           | mg/kg  | S 1              |    |              |
| 2,4,5-Trichlorophanol                    | 27 | ND            |            |            |           | mg/kg  | :1               |    | 8            |
| 2,4,6-Trichlorophenol                    | W  | ND            | 0.10       |            |           | mg/kg  | 1                |    |              |
| 2,4-Dichlorophenol                       |    | ND            | 0.10       |            |           | mg/kg  | 1                |    |              |
| 2,4-Dimethylphenal                       |    | ND            | 0.12       | 0.46       | 0.46      | mg/kg  | = 1              |    |              |
| 2,4-Dinitrophenol                        |    |               | 0.11       | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 2,4-Dinitrotoluene                       |    | ND            | 3.5        | 23         | 23        | mg/kg  | 1                |    |              |
| 2,6-Dinitrotaluene                       |    | ND            | 0.092      | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 2-Chloronaphthalene                      |    | ND            | 0.074      | 0.46       | 0.46      | mg/kg  | . 1              |    |              |
| 2-Chlorophenol                           |    | ND            | 0.074      | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 2-Methylnaphthalene                      |    | ND            | 0.092      | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 2-Methylphenol                           |    | ND            | 0.083      | 0.46       | 0.46      | rng/kg | 1                |    |              |
| 2-Nitroaniline                           |    | ND            | 0.11       | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 2-Nitrophenol                            |    | ND            | 0.12       | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 3 & 4-Methylphenol                       |    | NĐ            | 0.20       | 0.46       | 0.46      | mg/kg  | 1                |    | €.           |
|                                          |    | ND            | 0.11       | 0.46       | 0.46      | rng/kg | 1                |    |              |
| 3,3'-Dichlorobenzidine<br>3-Nitroaniline |    | ND            | 1.4        | 2.3        | 2.3       | mg/kg  | 1                |    |              |
|                                          |    | ND            | 0.14       | 0.46       | 0.46      | mg/kg  |                  |    |              |
| 4,6-Dinitro-2-methylphenol               |    | ND            | 1.4        | 4.6        | 4.6       | mg/kg  | 1                |    |              |
| 4-Bromophenyl phenyl ether               |    | ND            | 0.065      | 0.46       | 0.46      |        | 1                |    |              |
| 4-Chloro-3-methylphenol                  |    | ND            | 0.10       | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 4-Chloroaniline                          |    | ND            | 0.12       | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 4-Chlorophenyl phenyl ether              |    | ND            | 0.083      | 0.46       | (8        | mg/kg  | 1                |    |              |
| 4-Nitroaniline                           |    | ND            | 0.12       | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| 4-Nitrophenol                            |    | ND            | 0.14       |            | 0.46      | mg/kg  | 1                |    |              |
| Acenaphthene                             | 4  | ND _          | 0.083      | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| Acenaphthylene                           |    | ND            |            | 0.46       | 0.46      | mg/kg  | 1                | 23 |              |
| Aniline                                  |    | ND            | 0.083      | 0.46       | 0.46      | mg/kg  | 1                | -  |              |
| Anthracene                               |    | ND ·          | 0.21       | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| Azobenzene/1,2-Dipheny/hydrazine         |    |               | 0.074      | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| Benzidine                                |    | ND            | 0.092      | 0.46       | 0.46      | mg/kg  | 1                | 12 | 0 0 0        |
| Benzo (a) anthracene                     |    | ND            | 1.2        | 4.6        | 4.6       | mg/kg  | 1                |    |              |
| Benzo (a) pyrene                         |    | ND            |            | 0.46       | 0.46      | mg/kg  | 1                |    | 5            |
| Benzo (b) fluoranthene                   |    | ND            |            | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| Benzo (g,h,i) perylene                   |    | ND            |            | 0.46       | 0.46      | mg/kg  | 1                |    |              |
| Benzo (k) fluoranthene                   |    | ND            |            | 0.92       | 0.92      | mg/kg  | 1                |    |              |
| Benzoic acid                             |    | ND            |            | 0.46 (     | 0.46      | mg/kg  | 1                |    |              |
| Benzyl alcohol                           |    | ND            | 1.8        | 23         | 23        | mg/kg  | 1                |    |              |
|                                          |    | ND            | 0.13 0     |            | ).46      | mg/kg  | 1                |    |              |

Page 23 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

The same that the state of the

Report ID: 3E30014

> 7600 Tyrone Ave, COC #13-1321,25, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-11

Project ID:

LN06259

Sampled: 05/28/13 11:30

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1: | 3 09:40 | Analyzed: 0 | 6/05/13 00:11 | Analyst: abj |
|-----------------------------|----------------|------------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL        | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.46       | 0.46    | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.46       | 0.46    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND.            | 0.14       | 0.46       | 0.46    | mg/kg       | 1             |              |
| Carbazole                   | NO             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |
| Chrysene                    | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1 =           |              |
| Dibenzo (a,h) anthracene    | ND             | 0.046      | 0.92       | 0,92    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.055      | 0.46       | 0.46    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.81       | 2.3        | 2.3     | mg/kg       | 4             |              |
| Di-n-butyl phthalate        | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.46       | 0.46    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.065      | 0.46       | 0.46    | mg/kg       | 1             |              |
| Hexachlorobenzene           | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |
| -lexachlorocyclopentadiene  | ND             | 0.11       | 0.46       | 0.46    | mg/kg       | 1             |              |
| lexachloroethane            | ND             | 0.065      | 0.46       | 0.46    | mg/kg       | 1             |              |
| ndeno (1,2,3-cd) pyrene     | ND             | 0.083      | 0.92       | 0.92    | mg/kg       | 1             |              |
| sophorone                   | ND             | 0.092      | 0.46       | 0.46    | mg/kg       | t             |              |
| laphthalene                 | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |
| litrobenzene                | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |
| I-Nitrosodimethylamine      | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |
| l-Nitrosodi-n-propylamine   | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |
| -Nitrosodiphenylamine       | ND             | 0.065      | 0.46       | 0.46    | mg/kg       | 1             |              |
| entachlorophenol            | ND             | 0.15       | 0.46       | 0.46    | mg/kg       | 1             |              |
| henanthrene                 | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |
| henol                       | ND             | 0.14       | 0.46       | 0.46    | mg/kg       | 1             |              |
| yrene                       | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |
| yridine                     | ND             | 0.046      | 0.92       | 0.92    | mg/kg       | 1             |              |
| urr. 2,4,6-Tribromophenol   | 56 %           | Conc:25.8  |            | 10-97   | %           |               |              |
| urr. 2-Fluorabiphenyl       | 69 %           | Conc: 15.9 |            | 9-100   | %           |               |              |
| urr: 2-Fluorophenal         | 82 %           | Conc:37.9  |            | 6-115   | %           |               |              |
| urr. Nitrobertzene-d5       | 72 %           | Conc: 16.5 |            | 9-105   | %           |               |              |
| ur. Phenol-d5               | 77 %           | Conc:35.4  |            | 8-105   | %           |               |              |
| urr. Terphenyl-d14          | 75 %           | Conc: 17.4 |            | 5-106   | %           |               |              |

Page 24 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID:

3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/28/13 11:34

7600 Tyrone Ave, COC Project ID:

#13-1321,26, WO#

Date Reported: 06/05/13 16:04

3E30014-12

LN06261

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared |      |      |       | 6/05/13 00:41 | Analyst: abj |
|----------------------------------|----------------|----------|------|------|-------|---------------|--------------|
| Analyte                          | Result         | MDL      | MRL  | ML   | Units | Dilution      | Qualifier    |
| 1,2,4-Trichlarobenzene           | ND             | 0.085    | 0.47 | 0.47 | mg/kg | 1             | - Cadamio    |
| 1,2-Dichlorobenzene              | ND             | 0.10     | 0.47 | 0.47 | mg/kg | 1             |              |
| 1,3-Dichlorobenzene              | ND             | 0.075    | 0.47 | 0.47 | mg/kg | 1             |              |
| 1,4-Dichlorobenzene              | ND             | 0.11     | 0.47 | 0.47 | mg/kg | 1             |              |
| 2,4,5-Trichlorophenol            | ND             | 0.10     | 0.47 | 0.47 | mg/kg | 1             |              |
| 2,4,6-Trichlarophenol            | ND             | 0.10     | 0.47 | 0.47 | mg/kg | 1             |              |
| 2,4-Dichlorophenol               | ND             | 0.12     | 0.47 | 0.47 | mg/kg | 1             |              |
| 2,4-Dimethylphenol               | ND             | 0.11     | 0.47 | 0.47 | mg/kg | 1             |              |
| 2,4-Dinitrophenol                | ND             | 3.6      | 24   | 24   | mg/kg | 1             |              |
| 2,4-Dinitrotoluene               | ND             | 0.094    | 0.47 | 0.47 | mg/kg | 1             |              |
| 2,6-Dinitrotoluene               | ND             | 0.075    | 0.47 | 0.47 | mg/kg | 1             |              |
| 2-Chloronaphthalene              | ND -           | 0.075    | 0.47 | 0.47 | mg/kg | 1             |              |
| 2-Chlorophenol                   | ND             | 0.094    | 0.47 | 0.47 | mg/kg | 1             |              |
| 2-Methylnaphthalene              | ND             | 0.085    | 0.47 | 0.47 | mg/kg | 1             |              |
| 2-Methylphenol                   | ND             | 0.11     | 0.47 | 0.47 | mg/kg | 1             |              |
| 2-Nitroanline                    | ND             | 0.12     | 0.47 | 0.47 | mg/kg | 1             |              |
| 2-Nitrophenol                    | ND             | 0.21     | 0.47 | 0.47 | mg/kg | 1             |              |
| 3 & 4-Methylphenol               | ND             | 0.11     | 0.47 | 0.47 | mg/kg | t             |              |
| 3,3'-Dichtorobenzidine           | ND             | 1.4      | 2.4  | 2.4  | mg/kg | 1             |              |
| 3-Nitroaniline                   | - ND           | 0.14     | 0.47 | 0.47 | mg/kg | 1             |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.7  | 4.7  | mg/kg | 4             |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.066    | 0.47 | 0.47 | mg/kg | 1             |              |
| 4-Chloro-3-methylphenol          | ND             | 0.10     | 0.47 | 0.47 | mg/kg | (1)           |              |
| 4-Chloroaniline                  | ND             | 0.12     | 0.47 | 0.47 | mg/kg | 4             |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.085    | 0.47 | 0.47 | mg/kg | 1             |              |
| 4-Nitroaniline                   | ND             | 0.12     | 0.47 | 0.47 | mg/kg | 1             |              |
| 4-Nitrophenol                    | ND             | 0.14     | 0.47 | 0.47 | mg/kg | 1             |              |
| Acenaphthene                     | ND             | 0.085    | 0.47 | 0.47 | mg/kg | 1             |              |
| Acenaphthylene                   | ND             | 0.085    | 0.47 | 0.47 | mg/kg | 1.            |              |
| Anillne                          | ND             | 0.22     | 0.47 | 0.47 | mg/kg | 1             |              |
| Anthracene                       | ND             | 0.075    | 0.47 | 0.47 | mg/kg | 1             |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.094    | 0.47 | 0.47 | mg/kg | 1.            |              |
| Benzidine                        | ND             | 1.2      | 4.7  | 4.7  | mg/kg | 4             |              |
| Benzo (a) anthracene             | ND             | 0.066    | 0.47 | 0.47 | mg/kg | 1             |              |
| Benzo (a) pyrene                 | ND             | 0.075    | 0.47 | 0.47 | mg/kg | 1             |              |
| Benzo (b) fluoranthene           | ND .           | 0.066    | 0.47 | 0.47 | mg/kg | 1             |              |
| Benzo (g,h,i) perylene           | ND             | 0.057    | 0.94 | 0.94 | mg/kg |               |              |
| Benzo (k) fluoranthene           | ND             | 0.12     | 0.47 | 0.47 | mg/kg | 1             |              |
| Benzolc acid                     | ND             | 1.8      | 24   | 24   | mg/kg | 1             |              |
| Benzyl alcohol                   | ND             | 0.13     | 0.47 | 0.47 | mg/kg | 1             |              |

Page 25 of 48





ENERGY PROPERTY OF THE PROPERT

Sampled: 05/28/13 11:34

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 27600 Tyrone Ave, COC 3

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-12

LN06261

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| 11 11 11 11 11 11 11 11     |     | S     | emivolatil | e Organic C | ompoun      | ds by GC | /MS ·          | 9 14             |              |
|-----------------------------|-----|-------|------------|-------------|-------------|----------|----------------|------------------|--------------|
| Method: EPA 8270C           |     | Batch | : W3F0001  | Prepare     | ed: 06/01/1 | 13 09:40 | Analyzed       | : 06/05/13 00:41 | Analyst: abj |
| Analyte                     |     |       | Resul      | t MDL       | MRL         | ML       | Units          | Dilution         |              |
| Bis(2-chloroethoxy)methane  |     |       | ND         | 0.085       |             | 0.47     | rng/kg         | 1                | Qualifier    |
| Bis(2-chloroethyl)ether     |     |       | ND         | 0.10        | 0.47        | 0.47     | mg/kg          | - 1              |              |
| Bis(2-chloroisopropyl)ether |     |       | ND         | 0.13        | 0.47        | 0.47     | mg/kg          | 8 1              |              |
| Bis(2-ethylhexyl)phthalate  |     | 8     | ≥ ND       | 0.11        | 0.47        | 0.47     | mg/kg          | 1                | 8            |
| Butyl benzyl phthalate      |     |       | ND         | 0.14        | 0.47        | 0.47     | mg/kg          |                  |              |
| Carbazole                   |     |       | ND         | 0.085       | 0.47        | 0.47     | mg/kg          | 1.<br>1          |              |
| Chrysene                    |     |       | aND 1      | 0.085       | 0.47        | 0.47     | mg/kg          | '                |              |
| Dibenzo (a,h) anthracene    |     |       | ND         | 0.047       | 0.94        | 0.94     | mg/kg          | 1                |              |
| Dibenzofuran                |     |       | ND         | 0.085       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Diethyl phthalate           |     |       | ND         | 0.057       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Dimethyl phthalate          |     |       | ND         | 0.83        | 2.4         | 2.4      | mg/kg          |                  |              |
| Di-n-butyl phthalate        |     |       | ND         | 0.075       | 0.47        | 0.47     |                | 1                | *            |
| Di-n-octyl phthalate        |     |       | ND         | 0.13        | 0.47        | 0.47     | mg/kg<br>mg/kg | 1                |              |
| Fluoranthene                |     | -     | ND         | 0.10        | 0.47        | 0.47     |                | 1                | 100          |
| Fluorene                    |     |       | ND         | 0.066       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Hexachlorobenzene           |     |       | ND         | 0.075       | 0.47        |          | mg/kg          | 1                |              |
| Hexachlorobutadiene         |     |       | ND         | 0.075       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Hexachlorocyclopentadiene   |     |       | ND         | 0.003       |             | 0.47     | mg/kg          | 1                | 100          |
| Hexachloroethane            |     |       | ND         | 0.066       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Indeno (1,2,3-cd) pyrene    |     |       | ND         | 0.085       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Isophorone                  |     |       | ND "       |             | 0.94        | 0.94     | mg/kg          | 1                |              |
| Naphthalene                 |     |       | ND         | 0.094       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Nitrobenzene                |     |       | ND         | 0.10        | 0.47        | 0.47     | mg/kg          | 1                |              |
| N-Nitrosodimethylamine      |     |       | ND         | 0.10        | 0.47        | 0.47     | mg/kg          | 1                |              |
| N-Nitrosodi-n-propylamine   |     |       |            | 0.085       | 0.47        | 0.47     | mg/kg          | 1                |              |
| N-Nitrosodiphenylamine      |     |       | ND         | 0.085       | 0.47        | 0.47     | mg/kg          | 1 😹              | 0            |
| Pentachlorophenol           |     |       | ND:        | 0.066       | 0.47        | 0.47     | mg/kg          | 1 ×              |              |
| Phenanthrene                |     |       | ND         | 0.15        | 0.47        | 0.47     | mg/kg          | 1                |              |
| Pheno!                      |     |       | ND         | 0.075       | 0.47        | 0.47     | mg/kg          | 1                | 35           |
| Pyrene                      |     |       | ND #       | 0.14        | 0.47        | 0.47     | mg/kg          | 1                |              |
| Pyridine                    |     |       | ND         | 0.075       | 0.47        | 0.47     | mg/kg          | 1                |              |
| Surr: 2,4,6-Tribromophenol  |     |       | ND         | 0.047       | 0.94        | 0.94     | mg/kg          | 1                | 6            |
| Surr. 2-Fluorobiphenyl      | 14  |       | 55 %       | Сопа:26.1   | 40          | L97      | %              |                  | 424          |
| Surr. 2-Fluorophenol        |     |       | 67 %       | Conc: 15.7  | 39-         | 100      | %              |                  |              |
| Surr. Nitrobenzene-d5       | 2.5 |       |            | Сопс:36.9   | 26-         | 115      | %              |                  |              |
| Surr. Phenol-d5             |     |       |            | Conc:16.6   |             | 105      | %              |                  |              |
| Surr: Terphenyl-d14         |     |       |            | Conc:35.5   | 36-         | 105      | %              | 9                |              |
| Sun. Terphanyr-d14          | 20  |       | 76 %       | Conc: 18.0  | 36-         | 106      | %              |                  |              |

Page 26 of 48







LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

# QUALITY CONTROL SECTION

Page 43 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Received: Date Reported:

05/30/13 09:50

06/05/13 16:04

Semivolatile Organic Compounds by GC/MS - Quality Control

| Batch   | W3  | F0001   | - EPA  | 8270C |
|---------|-----|---------|--------|-------|
| GG LCII | BEG | - unu i | - 1017 | 06100 |

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result  | Reporting<br>Limit | Units | Spike     | Source<br>Result | %REC    | % REC | RPD  | RPD | Data<br>Qualifiers |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|-------|-----------|------------------|---------|-------|------|-----|--------------------|
| The state of the s | 7368411 |                    | Othia |           | V 55 m 3         | 1 6 1 1 | -     | 14.5 |     |                    |
| Blank (W3F0001-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                    | -     | Analyzed: | 06/04/13         | 14:03   |       |      |     |                    |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2,4,6-Trichlarophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND      | 2.5                | mg/kg |           |                  |         |       |      |     |                    |
| 2,4-Dinitratoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO      | 0,050              | mg/kg |           |                  |         |       |      |     |                    |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 3 & 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 3,3'-Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND      | 0.25               | mg/kg |           |                  |         |       |      |     |                    |
| 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 4,6-Dinitro-2-methylphenal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND      | 0.50               | mg/kg |           |                  |         |       |      |     |                    |
| 4-Bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| -Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| 4-Chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| I-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| -Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| cenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| Iniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| nlhracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| zobenzene/1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| lenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND      | 0.50               | mg/kg |           |                  |         |       |      |     |                    |
| enzo (a) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| enzo (a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| enzo (b) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| enzo (g,h,i) perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      | 0.10               | mg/kg |           |                  |         |       |      |     |                    |
| enzo (k) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| enzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND      | 2.5                | mg/kg |           |                  |         |       |      |     |                    |
| enzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| s(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| s(2-chloroethyf)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| s(2-chlorolsopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND      | 0.050              | mg/kg |           |                  |         |       |      |     |                    |
| s(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0305  | 0.050              | mg/kg |           |                  |         |       | NR   |     | J                  |

Page 44 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012 R. WHO SHARE THE PROPERTY OF THE PARTY OF TH Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

#### the property of the property of the street of the property of Semivolatile Organic Compounds by GC/MS - Quality Control

| Batch W3F0001 | 17771 8 | DOMAN |
|---------------|---------|-------|
|               |         |       |

| Analyte                    | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %RE   | % REC  | RPD | RPD<br>Limit | Qualifier |
|----------------------------|--------|--------------------|-------|----------------|------------------|-------|--------|-----|--------------|-----------|
| Blank (W3F0001-BLK1)       |        |                    |       | Analyzed:      | 06/04/13         | 14:03 |        |     |              |           |
| Butyl benzyl phthalate     | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Carbazole                  | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Chrysene                   | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Dibenzo (a,h) anthracene   | ND     | 0.10               | mg/kg |                |                  |       |        |     |              |           |
| Dibenzofuran               | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Diethyl phthalate          | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Dimethyl phthalate         | ND     | 0.25               | mg/kg |                |                  |       |        |     |              |           |
| Di-n-butyl phthalate       | 0.0315 | 0.050              | mg/kg |                |                  |       |        | NR  |              | 110       |
| Di-n-octyl phthalate       | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Fluoranthene               | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Fluorene                   | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Hexachlorobenzene          | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Hexachlorobutadiene        | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Hexachlorocyclopentadiene  | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Hexachloroethane           | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Indeno (1,2,3-cd) pyrene   | ND     | 0.10               | mg/kg |                |                  |       |        |     |              |           |
| Isophorone                 | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Naphthalene                | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Nitrobenzene               | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| N-Nitrosodimethylamine     | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| N-Nitrosodi-n-propylamine  | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| N-Nitrosodiphenylamine     | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Pentachlorophenol          | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Phenanthrene               | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Phenol                     | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Pyrene                     | ND     | 0.050              | mg/kg |                |                  |       |        |     |              |           |
| Pyridine                   | ND     | 0.10               | mg/kg |                |                  |       |        |     |              |           |
| Surr: 2,4,6-Tribromophenol | 4.31   |                    | mg/kg | 5.00           |                  | 86    | 40-97  |     |              |           |
| Surr. 2-Fluorobiphenyl     | 2.47   |                    | mg/kg | 2.50           |                  | 99    | 39-100 |     |              |           |
| Surr. 2-Fluorophenol       | 7.19   |                    | mg/kg | 5.00           |                  | 144   | 26-115 |     |              | S-11      |
| Surr: Nitrobenzene-d5      | 2.55   |                    | mg/kg | 2.50           |                  | 102   | 49-105 |     |              | 112       |
| Surr: Phenol-d5            | 5.47   |                    | mg/kg | 5.00           |                  | 109   | 36-105 |     |              | S-11      |
| Surr. Terphenyl-d14        | 2.80   |                    | mg/kg | 2.50           |                  | 112   | 36-106 |     |              | S-11      |
| S (W3F0001-BS1)            |        |                    | -     | Analyzed: 0    | 5/04/13 14       | :33   |        |     | (1)          |           |
| ,2,4-Trichlorobenzene      | 1.94   | 0.050              | mg/kg | 2.50           |                  | 78    | 28-120 | NR  |              |           |
| ,4-Dichlorobenzene         | 1.98   | 0.050              | mg/kg | 2.50           |                  | 79    | 41-98  | NR  |              |           |
| ,4-Dinitrotoluene          | 2.07   | 0.050              | mg/kg | 2.50           |                  | 83    | 43-121 | NR  |              |           |
| -Chlorophenol              |        | 0.050              | mg/kg | 2.50           |                  | 78    | 22-123 | NR  |              |           |
| -Chloro-3-methylphenol     |        | 0.050              | mg/kg | 2.50           |                  | 75    | 26-126 | NR  |              |           |
| -Nitrophenol               |        | 0.050              | mg/kg | 2.50           |                  | 72    | 17-139 | NR  |              |           |
| cenaphthene                |        | 0.050              | mg/kg | 2.50           |                  | 83    | 44-105 | NR  |              |           |
| -Nitrosodi-n-propylamine   |        | 0,050              | mg/kg | 2.50           |                  | 80    | 24-128 | NR  |              |           |
| entachlorophenol           |        | 0.050              | mg/kg | 2.50           |                  | 72    | 20-116 | NR  |              |           |

Page 45 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: = 06/05/13 16:04

Semivolatile Organic Compounds by GC/MS - Quality Control

#### Batch W3F0001 - EPA 8270C

| Analyte                       | Result               | Reporting<br>Limit | Units                          | Spike<br>Level | Source<br>Resuit | %REC | % REC<br>Limits  | RPD | RPD<br>Limit | Da<br>Qualifier |
|-------------------------------|----------------------|--------------------|--------------------------------|----------------|------------------|------|------------------|-----|--------------|-----------------|
| LCS (W3F0001-BS1)             |                      |                    | Oma                            |                |                  |      | Cilino           | RPU | - Little     | Qualifie        |
| Phenol                        | 1.82                 | 0.050              |                                | 771 THE        | d: 06/04/13      |      | 1/4              | -   |              |                 |
| Pyrene                        | 2.13                 | 0.050              | mg/kg                          | 2.50           |                  | 73   | 22-123           | NR  |              |                 |
| Surr. 2,4,6-Tribromophenol    | 3.91                 | บ.บอบ              | mg/kg                          | 2.50           |                  | 85   | 42-118           | NR  |              |                 |
| Surr. 2-Fluorobiphenyl        |                      |                    | mg/kg                          | 5.00           |                  | 78   | 40-97            | - 9 |              |                 |
| Surr. 2-Fluorophenol          | 2.15                 |                    | rng/kg                         | 2.50           |                  | 86   | 39-100           |     |              |                 |
| Surr. Nitrobenzene-d5         | 4.65                 |                    | mg/kg                          | 5.00           |                  | 93   | 26-115           | 28  |              | 120             |
| Surr. Phenol-d5               | 1.99                 |                    | mg/kg                          | 2.50           |                  | 80   | 49-105           | 60  |              |                 |
| Surr. Terphenyl-d14           | 4.22<br>2.35         |                    | mg/kg<br>mg/kg                 | 5,00<br>2,50   |                  | 84   | 36-105           |     |              |                 |
| Matrix Spike (W3F0001-MS1)    |                      | e: 3E3001          |                                |                | 00/04/40         | 94   | 36-106           |     |              |                 |
| 1,2,4-Trichlorobenzene        | 16.2                 |                    |                                |                | 06/04/13 1       |      | 100              |     |              |                 |
| 1,4-Dichlorobenzene           |                      | 0.49               | mg/kg                          | 24.4           | ND               | 66   | 26-124           | NR  | 146          |                 |
| 2,4-Dinitrotoluene            | 16.9                 | 0.49               | mg/kg                          | 24.4           | ND               | 69   | 28-117           | NR  | 1457         |                 |
| 2-Chlorophenol                | 19.2                 | 0.49               | mg/kg                          | 24.4           | ND               | 79   | 26-132           | NR  |              |                 |
| 4-Chloro-3-methylphenol       | 16.4                 | 0.49               | mg/kg                          | 24.4           | ND               | 67   | 24-124           | NR  |              |                 |
| 4-Nitrophenol                 | 15.9                 | 0.49               | mg/kg                          | 24.4           | ND               | 65   | 5-153            | NR  |              |                 |
| Acenaphthene                  | 17.6                 | 0.49               | mg/kg                          | 24.4           | ND               | 72   | 0.6-139          | NR  |              |                 |
| N-Nitrosodi-n-propylamine     | 17.6                 | 0.49               | mg/kg                          | 24.4           | ND               | 72   | 33-117           | NR  |              |                 |
|                               | 16.5                 | 0.49               | mg/kg                          | 24.4           | ND               | 68   | 20-128           | NR  |              |                 |
| Pentachlorophenol Phenol      | 16.9                 | 0.49               | mg/kg                          | 24.4           | 0.394            | 68   | 7-125            | NR  | 12           |                 |
|                               | 15.8                 | 0.49               | mg/kg                          | 24.4           | ND               | 65   | 40-120           | NR  |              |                 |
| Pyrene                        | 20.1                 | 0.49               | mg/kg                          | 24.4           | ND               | 83 🖟 | 22-148           | NR  |              |                 |
| Surr. 2,4,6-Tribromophenol    | 34.6                 |                    | mg/kg                          | 48.8           |                  | 71   | 40-97            |     |              | - 2             |
| Surr. 2-Fluorobiphenyl        | 17. <b>3</b>         |                    | mg/kg                          | 24.4           |                  | 71   | 39-100           |     |              |                 |
| Surr: 2-Fluorophenol          | 35.6                 |                    | mg/kg                          | 48.8           |                  | 73   | 26-115           |     |              |                 |
| Surr. Nitrobenzene-d5         | 16.1                 |                    | mg/kg                          | 24.4           |                  | 66   | 49-105           |     |              |                 |
| Surr. Phenol-d5               | 34.3                 |                    | mg/kg                          | 48.8           |                  | 70   | 36-105           |     |              |                 |
| urr. Terphenyl-d14            | 21.4                 |                    | mg/kg                          | 24.4           |                  | 88   | 36-106           |     |              |                 |
| trix Spike Dup (W3F0001-MSD1) | Source:              | 3E30014-           | 01 A                           | nalyzed: 0     | 6/04/13 15       | :33  |                  |     |              | -               |
| 2,4-Trichlorobenzene          | 14.9                 | 0.48               | mg/kg                          | 23.9           | ND               | 62   | 26-124           | 8   | 30           | -               |
| 4-Dichlorobenzene             | 15.5                 | 0.48               | mg/kg                          | 23.9           | ND               |      | 28-117           | 9   | 30           |                 |
| 4-Dinitrotoluene              | 15.8                 | 0.48               | mg/kg                          | 23.9           | ND               |      | 26-132           | 19  | 30           |                 |
| Chlorophenol                  | 15.3                 | 0.48               | mg/kg                          | 23.9           | ND               |      | 24-124           | 7   | 30           |                 |
| Chloro-3-methylphenol         | 14.4                 | 0.48               | mg/kg                          | 23.9           | ND               | 60   | 5-153            | 10  | 30           |                 |
| Nitrophenol                   | 13.6                 | ).48               | mg/kg                          | 23.9           | ND               |      | 0.6-139          | 25  | 30           | 4               |
| enaphthene                    | 16.0                 | .48                | mg/kg                          | 23.9           | ND               |      | 33-117           | 10  | 30           |                 |
| Nitrosodi-n-propylamine       | 14.2 0               |                    | mg/kg                          | 23.9           | ND               |      | 20-128           | 15  | 30           | 8               |
| ntachlorophenol               | 12.3 0               |                    | mg/kg                          |                | 0.394            |      | 7-125            | 31  | 30           | MS-05           |
| enol                          |                      |                    | mg/kg                          | 23.9           | ND.              |      | 10-120           | 9   | 30           | 1410-00         |
| rene                          |                      |                    | mg/kg                          | 23.9           | ND               |      | 22-148           | 25  | 30           |                 |
| rr: 2,4,6-Tribromophenol      | 27.8                 |                    | ng/kg                          | 47.8           |                  |      | 40-97            | 20  | 30           |                 |
|                               |                      |                    | ng/kg                          | 23.9           |                  |      | 39-100           |     |              |                 |
| π. 2-Flucrobiphenyl           | 14.9                 |                    |                                |                |                  | WE L | 79-100           |     |              |                 |
|                               |                      |                    |                                |                |                  |      |                  | *   |              |                 |
| π. 2-Flucrobiphenyl           | 14.9<br>31.0<br>14.6 | e = 1              | ng/k <b>g</b><br>ng/k <b>g</b> | 47.8<br>23.9   |                  | 65 2 | 25-115<br>19-105 | *   |              |                 |

Page 46 of 48

Weck Laboratories, Inc 14859 East Clark Avenue, City of Industry, California 91745-1398 (626) 336-2139 FAX (626) 336-2634

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety www.wecklabs.com



Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory
1630 North Main Street, Bldg. 7, Rm 311
Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

Semivolatile Organic Compounds by GC/MS - Quality Control

Batch W3F0001 - EPA 8270C

| file.                           |        | Reporting  |       | Spike     | Source   |       | % REC  |     | RPD   | Data       |
|---------------------------------|--------|------------|-------|-----------|----------|-------|--------|-----|-------|------------|
| Analyte                         | Result | Limit      | Units | Level     | Result   | %REC  | Limita | RPD | Limit | Qualifiers |
| Matrix Spike Dup (W3F0001-MSD1) | Source | e: 3E30014 | -01   | Analyzed: | 06/04/13 | 15:33 |        |     |       |            |
| Surr: Terphenyl-d14             | 15.7   |            | mg/kg | 23.9      |          | 66    | 35-106 | 7   |       |            |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID:

3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

#### Notes and Definitions

\$-11 Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

MS-05 The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS

and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration.

NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

MRL Method Reporting Limit

NR Not Reportable

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Page 48 of 48

# DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES

# Power System Integrated Support Services

# ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

GEORGE FAEUSTLE

PROJECT:

7600 TYRONE AVE

REPORT NO.:

C12055 (Revised and Updated)

# TABLE OF CONTENTS

| SECTION                                            | PAGE             |
|----------------------------------------------------|------------------|
| COVER LETTER, COC,                                 | 100001 - 100003  |
| ATTACHMENT 1 VOC<br>EPA METHOD 8260B               | 200001 - 200007  |
| ATTACHMENT 2 METALS/HG<br>EPA METHOD 6010B/        | 300001 200000    |
| ATTACHMENT 3 TEPH/MOTOR OIL/DR<br>EPA METHOD 8015M | 80 400001 400004 |
| ATTACHMENT 4 GRO EPA METHOD 8015B                  | 500001 - 500003  |
| ATTACHMENT 5 PCBs EPA METHOD 8082                  | 600001 - 600003  |
| ATTACHMENT 6 PESTICIDES<br>EPA METHOD 8081         | 700001- 700023   |
| ATTACHMENT 7 SVOC<br>EPA METHOD 8270C              | 800001 - 800024  |

# DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12055 COC 13-1326 Page 1 of 1 w/ attachments Updated and Revised

# ENVIRONMENTAL LABORATORY DATA REPORT

7600 TYRONE AVE, VAN NUYS Soil Samples

Soil samples from 7600 Tyrone Ave, Van Nuys, were submitted to the Environmental Laboratory on May 29, 2013 for the determination of their Volatile Organic Compounds (VOC), Metals, Semi-Volatile Organic Compounds (SVOC), Total Extractable Petroleum Hydrocarbons (TEPH) including Motor Oil (MO) and Diesel Range Organic (DRO), Chlorinated Pesticides, Polychlorinated Biphenyls (PCBs), and Gasoline Range Organics (GRO) content.

Testing information including tests requested and test methods are listed below. All quality assurance data indicate that the results for these samples are of acceptable quality.

| Analysis<br>Requested | Method         | Results       | Analyzed<br>by    |
|-----------------------|----------------|---------------|-------------------|
| VOC                   | EPA 8260 B     | Attachment #1 | Environmental Lab |
| Metals                | EPA 6010B/7471 | Attachment #2 | Environmental Lab |
| TEPH/Diesel/Motor Oil | EPA 8015M      | Attachment #3 | Environmental Lab |
| GRO                   | EPA 8015B      | Attachment #4 | Environmental Lab |
| PCB                   | EPA 8082       | Attachment #5 | Weck Laboratories |
| Pesticides            | EPA 8081A      | Attachment #6 | Weck Laboratories |
| SVOC                  | EPA 8270 C     | Attachment #7 | Weck Laboratories |

This report has been updated to include Pesticide Analyses (EPA 8081A- Attachment #6). The report was also revised as the MDL for Mercury Analysis in the original report was listed in parts per billion (ug/kg) instead of parts per million (mg/kg).

Additionally, please not that VOC analyses in Attachment #1 include results for this project from COC-1321 as well.

If you have any questions, or if further information is required, please contact Mr. Jeremy Stoa at (213) 367-7266 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 6/6/2013

Work Order No.: AHJ17 Job Card No.: J95550

Copies to: G. Faeustle

N. Liu K. Han

J. Stoa FileNet Test Performed by: Environmental Lab

Weck Laboratories

Report By: JS/LK Date: Checked by: JM ( Date:

Date: \_6/14/13 Date: \_\_6/14/13

APPROVED BY:

Kevin Han

Date

Interim Laboratory Manager Environmental Laboratory

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arialyst(s) Assigned Assigned Date 5/21/13 5/29/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Page Lof Z<br>WO# 4-#15 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result Result Result Result PHGE SWOOD SWO | v)              |
| 13.2.6<br>  Sinf.   13.55.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Company of the contract of the | 1,43/R=solts    |
| COC#:   3- Report C# 205 Refright CASH Shiftled of Field Personnel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prince Value of State | Campies Panding |
| Department of Water and Pt. Tr. City of Los Angeles Chain of Custody Record  Chain of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PREMINE HOLD  PREMINE HOLD  PREMINE HOLD  PREMINE HOLD  PREMINE HOLD  PREMINE HOLD  PRINTED NAME  Sampled by:  Printed Name  Printed Name  Printed Name  NG-1007  Reingusting y:  Reingusting  | Salah           |
| Sample<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *               |
| 7, 3rd Ftr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C # RECO BY: ENV. CHEM LAS 66.32.23 C 66.32.24 C 66.32. | 平红              |
| Environme   Labo 1630 N. Main Street, Bldg. Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7248/7399 (213) 367-7285 FAX Sample Location: Chem Lab use only Street Get englished to the street of | HOMINALINATION BY GWOAL STEEL OF STEEL  | 717             |

PHU MOCS SWCS / RRS BOW Analyst(s) Assigned 5/24/B 5/12/13 (5882) Date 1545 . Page Zof. 2 Harber 122 TRHC/VOCS/SVICE SVICE Test Result 1040 Time 1000 1030 Date BOIDS Date #OM No. of Field Test MARCO SOIL COPEROBIAN+AS Bin#. THEZO CHILL Required Analysis T22 M=tals T22 Notes coc#: 13-1326 (ARCHIVE) (ARCHIVE) SPORTINE Y (HOCHIE) Approved: Organization/Div. LADUSP ALESZIVIEM. Analyst: Signature PERSE ARCHINE ABLD PERFING X Shelf Initial of Beld Rersonner Matrix 350亿 Received by 7 D 100 1352 Chain of Custody Record Department of Water and Pour Sample Location and Description SALWER +3'samples Sampled by: Neste (AUTA) Printed Name City of Los Angeles \* To lot and the 2/5 supples · Desyn (ACA) Requester 6. Frank | K. Dreak 6532 APLHINE/HOLD ARCHINE/HOLD ARTHY ADD 0902 AVHIVE/HOLD APCHINE ARD Received by Sample Location: Theoriz Property OHENISTRY LOG NUMBERS | Sample Dale | Sample 2480 9950 BORD! 1823-1 LNO6330 5/21/13 0822 4180 000 Bob DEBU 07.80 0160 0838 6834 Specify 1630 N. Main Street, Bldg. 7, 3rd Flr. Address Priority ELIVITORIME I Laboratory 2-4 Hrs 1Day 2 Wks 4Wks 06333 04530 06343 06347 Date Settine A. Stetil Los Angeles, CA. 90012 06331 06334 06341 06332 06335 26336 06239 82230 06337 ENA" RECD BY: (213) 367-7248/7399 (213) 367-7285 FAX Choin Leb COC Form #1 Revision: 08/01/02 1 17 67 AVW EIOZ 3 12828-LADWP >> COC# Label Here <<

# **ATTACHMENT #1**

# VOLATILE ORGANIC COMPOUNDS (VOC)

EPA METHOD 8260 B

COC 13-1321 COC 13-1326

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description                       |
|-------------------|--------------|------------------|------------------|------------------------------------------|
| LN06217           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-1                       |
| LN06219           | 5/28/2013    | 5/28/2013        |                  | 7600 TYRONE, B25-3                       |
| LN06229           |              | 5/28/2013        |                  | 7600 TYRONE, B26-1                       |
| LN06231           |              | 5/28/2013        |                  | 7600 TYRONE, B26-3                       |
| LN06335           |              | 5/29/2013        |                  | 7600 TYRONE, B27-1                       |
| LN06337           |              | 5/29/2013        |                  | 7600 TYRONE, B27-3                       |
| LN06341           |              | 5/29/2013        |                  | 7600 TYRONE, B27-3<br>7600 TYRONE, B28-1 |

| Compounds                     | MDI          | L PQ                   | LN062<br>L Amou |                      |       |       |                 |         |            |
|-------------------------------|--------------|------------------------|-----------------|----------------------|-------|-------|-----------------|---------|------------|
|                               | ug/k         |                        |                 |                      | ug/kg |       | Amount<br>ug/kg |         |            |
| 8 8                           |              | •                      |                 | W 45111.5            | ognig | dg/kg | ayrky           | ug/kg   | ug/kg      |
| Acetone                       | 32           | 160,                   | 0 nd            | nd                   | nd    | nd    | nd              | nď      | - 1        |
| tert-Amyl methyl ether (TAME) | ≈ <b>2</b> 3 | 115.                   | 0 nd            | nd                   | nd    | nd    | nd              | * nd    | nd         |
| Benzene                       | 26           | 130.0                  | 0 пd            | nd                   | nd    | nd    | nd              | nd      | nd         |
| Bromobenzene                  | 26           | 130.0                  | ) nd            | nd                   | nď    | nd    | nd              |         | nď         |
| Bromochloromethane            | 24           | 120.0                  | ) nd            | nd                   | nd    | nd    | nd              | nd<br>d | nd         |
| Bromodichloromethane          | 22           | 110.0                  | ) nd            | nd                   | nd    | nd    | nd              | nd      | nd         |
| Bromoform                     | 23           | 115.0                  |                 | nd                   | nd    | nd    | nd              | nd      | nd         |
| Bromomethane                  | 20           | 100.0                  |                 | nd                   | nd    | nd =  |                 | nd<br>  | nd         |
| Methyl ethyl ketone (MEK)     | 26           | 130.0                  |                 | nd                   | nd    | nd    | nd              | nd      | nd         |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0                 |                 | nd                   | nd    | nd    | nd              | nd      | nd         |
| Butylbenzene                  | 29           | 145.0                  | nd              | лd                   | nd    |       | nd              | nd      | лd         |
| sec-Butylbenzene              | 27           | 135.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| tert-Butylbenzene             | 29           | 145.0                  | nd              | nd                   |       | nd    | nd              | nd      | nd         |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| Carbon disulfide              | 116          | 580.0                  | лd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| Carbon Tetrachloride          | 32           | 160.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| Chlorobenzene                 | 28           | 140.0                  | nd              |                      | nd    | nď    | nd              | nd      | nd         |
| Chloroethane                  | 42           | 210.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| 2-Chloroethyl vinyl ether     | 23           | 115.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| Chloroform                    | 30           | 150.0                  |                 | nd                   | nd    | nd    | nd              | nd      | nd         |
| Chloromethane                 | 70           | 350.0                  | nd ⊞<br>nd      | nd                   | nd    | nd    | nd              | nd      | n <b>d</b> |
| 2-Chlorotoluene               | 27           | 135.0                  |                 | nd                   | пd    | nd    | nd              | nd      | nd         |
| 4-Chlorotoluene               | 28           | 140.0                  | nd<br>nd        | nd                   | пd    | nď    | nd              | nd      | nd         |
| Dibromochloromethane          | 25           | 125.0                  |                 | nd                   | nd    | nd =  | nd              | nd 👵    | nd         |
| 1,2-Dibromo-3-chloropropane   | 31           | 1 <b>5</b> 5.0         | nd<br>nd        | nd                   | nd    | nd    | nd              | nd      | nd         |
| 1,2-Dibromoethane             | 23           | 115.0                  |                 | nd                   | пd    | nd    | nd              | nd      | nd         |
| Dibromomethane                | 33           | 165.0                  | · nd            | nd                   | nd    | nd    | nd              | nd      | nd         |
| 1,2-Dichlorobenzene           | 27           | 135.0                  | nd              | uq                   | nd    | nd    | nd              | nd      | nd         |
| 1,3-Dichlorobenzene           | 27           | 135.0                  | nd<br>d         | nd                   | nd    | nd    | nd              | nd      | nd         |
| 1,4-Dichiorobenzene           | 33           |                        | nď              | nd                   | nd    | nd    | nd              | nd      | nd         |
| Dichlorodifluoromethane       | 37           | 165.0<br>18 <b>5.0</b> | nd              | nd                   | nd    | пď    | nd              | nd      | nd         |
| 1,1-Dichloroethane            | 29           |                        | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| 1,2-Dichloroethane            | 29           | 145.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nď         |
| 1,1-Dichloroethene            | 28           | 110.0                  | nd '            | nd                   | nd    | nd    | л <b>d</b>      | nd      | nd         |
| cis-1,2-Dichloroethene        | 26           | 140.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| trans-1,2-Dichlorgethene      | 32           | 130.0                  | nd              | nd                   | nd.   | ла    | nd              | nd      | nd         |
| 1,2-Dichloropropane           | 22           | 160.0                  | nd              | nd                   | nd    | nd    | nd .            | nd      | nd         |
| 1,3-Dichloropropane           | 21           | 110.0                  | nd              | nd                   | nď    | nd    | nď              | nd      | nd         |
| 2,2-Dichloropropane           |              | 105.0                  | nd              | nd                   | nd    | nd    | nd              | nd      | nd         |
| 1,1-Dichloropropene           | 38<br>27     | 190.0                  | nd              | nd                   | nd    | nd    | nd·             |         | nd         |
| cis-1,3-Dichloropropene       |              | 135.0                  | nd              |                      | nd    | лd    | nd              |         | nd         |
| trans-1,3-Dichloropropene     | 26<br>20     | 130.0                  | nd              |                      | nd    | nd    | กd              |         | nd         |
| Diisopropyl ether (DIPE)      | 29           | 145.0                  | nd              |                      | nd    | nd    | nd              | 4       | nd         |
| Ethylbenzene                  | 26           | 130.0                  | nd *            |                      | nd    | nd    |                 | ٠,      | nd         |
| Hexachlorobutadiene           | 30           | 150.0                  | nd              |                      | nd    | nd r  | nd r            |         | id         |
|                               | 44           | 220.0                  | nd ·            | nd r                 | nd    | nd r  |                 |         | id         |
|                               |              |                        |                 | <b>^ ^ ^ ^ . .</b> . | 80    |       |                 |         |            |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soll

PROJECT: 7600 TYRONE

LN06341

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |  |
|-------------------|--------------|------------------|------------------|--------------------|--|
| LN06217           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-1 |  |
| LN06219           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-3 |  |
| LN06229           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-1 |  |
| LN06231           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-3 |  |
| LN06335           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-1 |  |
| LN06337           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-3 |  |

7600 TYRONE, B28-1

5/29/2013 | 5/29/2013 | 6/3/2013

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN06217<br>Amount<br>ug/kg | LN06219<br>Amount<br>ug/kg | LN06229<br>Amount<br>ug/kg | LN06231<br>Amount<br>ug/kg | LN06335<br>Amount<br>ug/kg | LN06337<br>Amount<br>ug/kg | LN06341<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 2-Hexanone                    | 21           | 105.0        | nd                         |
| Isopropylbenzene              | 33           | 165.0        | nd                         |
| p-Isopropyltoluene            | 28           | 140.0        | nd                         |
| Methyl-t-butyl ether (MTBE)   | 23           | 115.0        | nd                         |
| Methylene chloride            | 31           | 155.0        | nd                         |
| lodomethane                   | 20           | 100.0        | nd                         |
| Methyl Isobutyl ketone (MIBK) | 19           | 95.0         | nd                         |
| Naphthalene                   | 30           | 150.0        | nd                         |
| Propylbenzene                 | 30           | 150,0        | nd                         | nd                         | nd -                       | nd                         | nd                         | nd                         | nd                         |
| Styrene                       | 33           | 165.0        | nd                         |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         | nd                         |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                         |
| Tetrachloroethylene           | 27           | 135.0        | nd                         | nd                         | nď                         | nd                         | nd                         | nd                         | nd                         |
| Toluene                       | 25           | 125.0        | nd                         |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                         |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd                         |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd                         |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                         |
| Trichloroethylene             | 24           | 120.0        | nd                         |
| Trichlorofluoromethane        | 35           | 175.0        | nd                         |
| 1,2,3-Trichloropropane        | 22           | 110.0        | nd                         |
| 1,2,4-Trimethylbenzena        | 25           | 125.0        | nd                         |
| 1,3,5-Trimethylbenzene        | 28           | 140.0        | nd                         |
| Vinyl acetate                 | 52           | 260.0        | nd                         |
| Vinyl Chloride (Chloroethene) | 36           | 180.0        | nd                         |
| m & p-Xylene                  | 75           | 375.0        | nd                         |
| o-Xylene                      | 28           | 140.0        | nd                         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                              |                                        | Quality Cont | rol Data |        |        |        |        |        |
|------------------------------|----------------------------------------|--------------|----------|--------|--------|--------|--------|--------|
| Surrogates<br>30 (ug/L each) | QC Limits<br>% Recovery<br>Lower-Upper |              |          |        |        |        |        |        |
| SURR: Bromofluorobenzene     | 74 - 121                               | 104.0%       | 103.7%   | 102.7% | 103.3% | 102.3% | 103.3% | 102.7% |
| SURR: Dibromofluoromethane   | 80 - 120                               | 97.0%        | 96.0%    | 95.0%  | 96.3%  | 95.3%  | 95.3%  | 95.3%  |
| SURR: Toluene-d8             | 81 - 117                               | 93.7%        | 92.3%    | 90.0%  | 92.3%  | 92.3%  | 92.3%  | 92.3%  |

Comment

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

COC 13-1321 COC 13-1326

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN06343           | . 5/29/2013  | 5/29/2013        |                  | 7600 TYRONE, B28-3 |
| -                 |              |                  |                  | 100                |
|                   |              |                  |                  |                    |
|                   | -            |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              | 3.               |                  | 90 V V             |

| 7990-01070-007                |       |           |                 |      |
|-------------------------------|-------|-----------|-----------------|------|
| - 31                          |       | 4)        | LNO             | 3343 |
| Compounds                     | ME    | )L PC     |                 |      |
| £(                            | (ug/l |           | - / 11110       |      |
|                               | (-9-  | .57 (-51) | (e)             | (B)  |
| Acetone                       | 32    | 160       | .0 nd           | 1    |
| tert-Amyl methyl ether (TAME) | 23    | 115       | .0 nd           |      |
| Benzene                       | 26    | · 130.    | .0 nd           |      |
| Bromobenzene                  | 26    | 130.      | 0 nd            |      |
| Bromochloromethane            | 24    | 120.      | 0 nd            |      |
| Bromodichloromethane          | 22    | 110.      | 0 nd            |      |
| Bromoform                     | 23    | 115.      | o nd            |      |
| Bromomethane                  | 20    | 100.0     | ) nd            |      |
| 2-Butanone (MEK)              | 26    | 130.0     | ) nd            |      |
| tert-Butyl alcohol (TBA)      | 373   | 1865.     |                 |      |
| n-Butylbenzene                | 29    | 145.0     | nd              |      |
| sec-Butylbenzene              | 27    | 135.0     | nd              |      |
| tert-Butylbenzene             | 29    | 145.0     | nd              |      |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0     | nd              | *    |
| Carbon disulfide              | 116   | 580.0     | nd              |      |
| Carbon Tetrachloride          | 32    | 160.0     | nd              |      |
| Chlorobenzene                 | 28    | § 140.0   | nd              |      |
| Chloroethane                  | 42    | 210.0     | nd              |      |
| 2-Chloroethyl vinyl ether     | 23    | 115.0     | nd              |      |
| Chloroform                    | 30    | 150.0     | nd              |      |
| Chloromethane                 | 70    | 350.0     | nd              |      |
| 2-Chlorotoluene               | 27    | 135.0     | nd              |      |
| 4-Chlorotoluene               | 28    | 140.0     | nd              |      |
| Dibromochloromethane          | 25    | 125.0     | nd              |      |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0     | nd              |      |
| 1,2-Dibromoethane (ED8)       | 23    | 115.0     | nd              |      |
| Dibromomethane                | 33    | 165.0     | nd              |      |
| 1,2-Dichlorobenzene           | 27    | 135.0     | nd              |      |
| 1,3-Dichlorobenzene           | 27    | 135.0     | nd              |      |
| 1,4-Dichlorobenzene           | 33    | 165.0     | nd              |      |
| Dichlorodifluoromethane       | 37    | 185.0     | nd              |      |
| 1,1-Dichloroethane            | 29    | 145.0     | nd              |      |
| 1,2-Dichloroethane            | 22    | 110.0     | nd              |      |
| 1,1-Dichloroethene            | 28    | 140.0     | nd              |      |
| cis-1,2-Dichloroethene        | 26    | 130.0     | nd              |      |
| trans-1,2-Dichloroethene      | 32    | 160.0     | nd              |      |
| 1,2-Dlchloropropane           | 22    | 110.0     | nď              |      |
| 1,3-Dichloropropane           | 21    | 105.0     | nd              |      |
| 2,2-Dichloropropane           | 38    | 190.0     | nd              |      |
| 1,1-Dichloropropene           | 27    | 135.0     | nd              |      |
| cis-1,3-Dichloropropene       | 26    | 130.0     | nd              |      |
| trans-1,3-Dichloropropene     | 29    | 145.0     | nd              |      |
| Diisopropyl ether (DIPE)      | 26    | 130.0     | nd              |      |
| Ethylbenzene                  | 30    | 150.0     | <sub>∞</sub> nd |      |
| Hexachlorobutadiene           | 44    | 220.0     | nd `            |      |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN06343           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-3 |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |

|                             |         |         | LN06343 |  |
|-----------------------------|---------|---------|---------|--|
| Compounds                   | MDL     | PQL     | Amount  |  |
|                             | (ug/kg) | (ug/kg) | (ug/kg) |  |
| 2-Hexanone                  | 21      | 105.0   | nd      |  |
| Isopropylbenzene            | 33      | 165.0   | nd      |  |
| p-Isopropyitoluene          | 28      | 140.0   | nd      |  |
| Methyl-t-butyl ether (MTBE) | 23      | 115.0   | nd      |  |
| Methylene chloride          | 31      | 155.0   | nd      |  |
| Methyl iodide (lodomethane) | 20      | 100.0   | nd      |  |
| 4-Methyl-2-pentanone (MIBK) | 19      | 95.0    | nd      |  |
| Naphthalene                 | 30      | 150.0   | nd      |  |
| Propylbenzene               | 30      | 150.0   | nd      |  |
| Styrene (Phenylethylene)    | 33      | 165.0   | nd      |  |
| 1,1,1,2-Tetrachloroethane   | 23      | 115.0   | nd      |  |
| 1,1,2,2-Tetrachloroethane   | 40      | 200.0   | nd      |  |
| Tetrachloroethylene (PCE)   | 27      | 135.0   | nd      |  |
| Toluene                     | 25      | 125.0   | nd      |  |
| 1,2,3-Trichlorobenzene      | 29      | 145.0   | nd      |  |
| 1,2,4-Trichlorobenzene      | 31      | 155.0   | nd      |  |
| 1,1,1-Trichloroethane       | 26      | 130.0   | nd      |  |
| 1,1,2-Trichloroethane       | 23      | 115.0   | nd      |  |
| Trichloroethylene (TCE)     | 24      | 120.0   | nd      |  |
| Trichlorofluoromethane      | 35      | 175.0   | nd      |  |
| 1,2,3-Trichloropropane      | 22      | 110.0   | nd      |  |
| 1,2,4-Trimethylbenzene      | 25      | 125.0   | nd      |  |
| 1,3,5-Trimethylbenzene      | 28      | 140.0   | nd      |  |
| Vinyl acetate               | 52      | 260.0   | nd      |  |
| Vinyl Chloride              | 36      | 180.0   | nd      |  |
| m & p-Xylene                | 75      | 375.0   | nd      |  |
| o-Xylene                    | 28      | 140.0   | nd      |  |

MDL - Method Detection Limit

J - Concentration above MDL below PQL

PQL - Practical Quantitation Limit (5xMDL)

nd - Not Detected; below detection limit

|                            | 0011-16     | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
|                            | QC Limits   |                      |  |
| Surrogates                 | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper |                      |  |
| SURR: Bromofluorobenzene   | 74 - 121    | 103.7%               |  |
| SURR: Dibromofluoromethane | 80 - 120    | 95.0%                |  |
| SURR: Toluene-d8           | 81 - 117    | 92.7%                |  |

Comment:

Analyst Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|--------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank             | 5/28/2013    | 5/28/2013        | 6/3/2013         | Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 1 - 0        |                  |                  | To the second se |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                 |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | THE PARTY    |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Mar                           | 104.3 | The state of | Blank  |
|-------------------------------|-------|--------------|--------|
| Compounds                     | MDL   | PQL          | Amount |
|                               | ug/kg | ug/kg        | ug/kg  |
| Acetone                       | 32    | 160.0        | nd     |
| tert-Amyl methyl ether (TAME) | 23    | 115.0        | nď     |
| Benzene                       | 26    | 130.0        | nd     |
| Bromobenzene                  | 26    | 130.0        | nd     |
| Bromochloromethane            | 24    | 120.0        | nd     |
| Bromodichloromethane          | 22    | 110.0        | nd     |
| Bromoform                     | 23    | 115.0        | nd     |
| Bromomethane                  | 20    | 100.0        | nd     |
| Methyl ethyl ketone (MEK)     | 26    | 130.0        | nd     |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0       | nd     |
| Butylbenzene                  | 29    | 145.0        | nd     |
| sec-Butylbenzene              | 27    | 135.0        | nd     |
| tert-Butylbenzene             | 29    | 145.0        | nd     |
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0        | nd     |
| Carbon disulfide              | 116   | 580.0        | nd     |
| Carbon Tetrachloride          | 32    | 160.0        | nd     |
| Chlorobenzene                 | 28    | 140.0        | nd     |
| Chloroethane                  | 42    | 210.0        | nd     |
| 2-Chloroethyl vinyl ether     | 23    | 115.0        | nd     |
| Chloroform                    | 30    | 150.0        | nd     |
| Chloromethane                 | 70    | 350.0        | nd     |
| 2-Chlorotoluene               | 27    | 135,0        | nd     |
| 4-Chlorotoluene               | 28    | 140.0        | nd     |
| Dibromochloromethane          | 25    | 125.0        | nd     |
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0        | nd     |
| 1,2-Dibromoethane             | 23    | 115.0        | nd     |
| Dibromomethane                | 33 -  | 165.0        | nd     |
| 1,2-Dichlorobenzene           | 27    | 135.0        | nd     |
| 1,3-Dichlorobenzene           | 27    | 135.0        | nd     |
| 1,4-Dichlorobenzene           | 33    | 165.0        | nd     |
| Dichlorodifluoromethane       | 37    | 185.0        | nd     |
| 1,1-Dichloroethane            | 29    | 145.0        | nd     |
| 1,2-Dichloroethane            | 22    | 110.0        | nd     |
| 1,1-Dichloroethene            | 28    | 140.0        | nd     |
| cis-1,2-Dichloroethene        | 26    | 130.0        | nd     |
| trans-1,2-Dichloroethene      | 32    | 160.0        | nd     |
| 1,2-Dichloropropane           | 22    | 110.0        | nd     |
| 1,3-Dichloropropane           | 21    | 105.0        | nd     |
| 2,2-Dichloropropane           | 38    | 190.0        | nd     |
| 1,1-Dichloropropene           | 27    | 135.0        | nd     |
| cls-1,3-Dichloropropene       | 26    | 130.0        | nd     |
| trans-1,3-Dichloropropene     | 29    | 145.0        | nd     |
| Disopropyl ether (DIPE)       | 26    | 130.0        | nd     |
| Ethylbenzene                  | 30    | 150.0        | nd     |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|--------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank             | 5/2B/2013    | 5/28/2013        | 6/3/2013         | Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | +            |                  |                  | The state of the s |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                               |       |       | Blank  |
|-------------------------------|-------|-------|--------|
| Compounds                     | MDL   | PQL   | Amount |
|                               | ug/kg | ug/kg | ug/kg  |
| Hexachlorobutadiene           | 44    | 220.0 | nd     |
| 2-Hexanone                    | 21    | 105.0 | nd     |
| Isopropylbenzene              | 33    | 165.0 | nd     |
| p-Isopropyltoluene            | 28    | 140.0 | nd     |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd     |
| Methylene chloride            | 31    | 155.0 | nd     |
| Iodomethane                   | 20    | 100.0 | nd     |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd     |
| Naphthalene                   | 30    | 150.0 | nd     |
| Propylbenzene                 | 30    | 150.0 | nd     |
| Styrene                       | 33    | 165.0 | nd     |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd     |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd     |
| Tetrachloroethylene           | 27    | 135.0 | nd     |
| Toluene                       | 25    | 125.0 | nd     |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd     |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd     |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd     |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd     |
| Trichloroethylene             | 24    | 120.0 | nd     |
| Trichlorofluoromethane        | 35    | 175.0 | nd     |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd     |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd     |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd     |
| Vinyl acetate                 | 52    | 260.0 | nd     |
| /inyl Chloride (Chloroethene) | 36    | 180.0 | nd     |
| n & p-Xylene                  | 75    | 375.0 | nd     |
| -Xylene                       | 28    | 140.0 | nd     |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |             | Quality Control Data | A |  |
|----------------------------|-------------|----------------------|---|--|
|                            | QC Limits   |                      |   |  |
| Surrogates                 | % Recovery  |                      |   |  |
| 30 (ug/L each)             | Lower-Upper |                      |   |  |
| SURR: Bromofluorobenzene   | 74 - 121    | 102.0%               |   |  |
| SURR: Dibromofluoromethane | 80 - 120    | 96.7%                |   |  |
| SURR: Toluene-d8           | 81 - 117    | 92.7%                |   |  |

Comment:

Analyst: Bryan Tlu

Reviewed by: Rose Gentalian

# Quality Assurance Report

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED:

6/3/13

BATCH #: LN06217 LN LN06217 LN06219 LN06229 LN06231 LN06335 LN06337 LN06341 LN06343 LAB SAMPLE I.D.:

UNIT:

ug/kg

| ANALYTE<br>1,1-Dichloroethene | SAMPLE | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | 000    | MS/MSD           |          |
|-------------------------------|--------|---------------|------|------|------------------------|------|------|--------|------------------|----------|
| Benzene                       | ND     | 30.0          | 25.3 | 84.3 | 30.0                   |      |      | RPD    | LIMIT            | RPD LIMI |
| Frichloroethylene             | ND     | 30.0          | 29.9 | 99.7 |                        | 25.9 | 86.3 | 2.3 %  | 59-172           | 22%      |
| Oluene                        | ND     | 30.0          | 30.8 | 103  | 30.0                   | 30,5 | 102  | 2.3 %  | 66-142           |          |
|                               | ND     | 30.0          | 30.6 |      | 30.0                   | 31.3 | 104  | 0.97 % | 62-137           | 21%      |
| hlorobenzene                  | ND     | 30.0          | 35.7 | 102  | 30.0                   | 31.5 | 105  | 2.9 %  |                  | 24%      |
|                               |        |               | 33.7 | 119  | 30.0                   | 36.6 | 122  | 2.5 %  | 59-139<br>60-133 | 21%      |

Éaboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

6/3/13

ANALYTICAL METHOD:

USEPA 8260

SUPPLY SOURCE:

LABLCS I.D.:

Q8087

LOT NUMBER: DATE OF SOURCE:

UNIT:

ug/kg

| ANALYTE 1,1,2-Trichloroethane             | LCS RESULT ug/kg | TRUE VALUE<br>ug/kg | % RECOVERY | Advisory       |  |
|-------------------------------------------|------------------|---------------------|------------|----------------|--|
| 1,2-Dichloroethane<br>1,4-Dichlorobenzene | 32.1             | 30                  | 99.7       | Advisory Range |  |
| Benzene Benzene                           | 31.3             | 30                  | 107.0      | 70 - 130       |  |
| Bromoform                                 | 28.9             | 30                  | 104.3      | 70 - 130       |  |
| Carbon Tetrachloride                      | 33               | 30                  | 96.3       | 70 - 130       |  |
| etrachloroethylene                        | 27               | 30                  | 110.0      | 70 - 130       |  |
| richloroethylene                          | 28.2             | 30                  | 90.0       | 70 - 130       |  |
| A                                         | 27.2             | 30                  | 94.0       | 70 - 130       |  |
| di -                                      |                  | 30                  | 90.7       | 70 - 130       |  |
| 7.4                                       |                  |                     |            |                |  |
| 7.0                                       |                  |                     |            |                |  |
|                                           |                  |                     |            |                |  |
|                                           |                  |                     |            |                |  |
| 1000                                      |                  |                     |            | 1/4            |  |
|                                           |                  |                     |            |                |  |
|                                           |                  |                     |            |                |  |
| 4 1                                       |                  |                     |            | -              |  |
|                                           |                  |                     |            |                |  |
|                                           |                  |                     |            |                |  |

# **ATTACHMENT #2**

METALS/MERCURY

EPA METHOD 6010B/7471

COC 13-1326

# ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B

Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY   | DATE                     | DATE                    | DATE     |                           |        |       |                  |                  |                  |         |                  |                  |  |
|--------------|--------------------------|-------------------------|----------|---------------------------|--------|-------|------------------|------------------|------------------|---------|------------------|------------------|--|
| LOG NO.      | SAMPLED                  | RECEIVED                | ANALYZED | SAMPLE DESCRIPTION        |        |       |                  |                  |                  |         |                  |                  |  |
| LN06329      | 5/29/13                  | 5/29/13                 | 6/5/13   | 1                         |        | 7600  | TYRONE,          | B23-1            |                  |         |                  |                  |  |
| LN06331      | 5/29/13                  | 5/29/13                 | 6/5/13   | 6/5/13 7600 TYRONE, B23-3 |        |       |                  |                  |                  |         |                  |                  |  |
| LN06335      | 5/29/13                  | 5/29/13                 | 6/5/13   | 5/13 7600 TYRONE, B27-1   |        |       |                  |                  |                  |         |                  |                  |  |
| LN06337      | 5/29/13                  | 5/29/13                 | 6/5/13   | /5/13 7600 TYRONE, B27-3  |        |       |                  |                  |                  |         |                  |                  |  |
| LN06338      | 5/29/13                  | 5/29/13                 | 6/5/13   | 5/13 7600 TYRONE, B24-1   |        |       |                  |                  |                  |         |                  |                  |  |
| LN06340      | 5/29/13                  | 5/29/13                 | 6/5/13   |                           |        | 7600  | TYRONE,          | B24-3            | _                | _       |                  | -                |  |
| METAL        | LIMIT<br>TTLC<br>(mg/kg) | LIMIT<br>STLC<br>(mg/l) | METHOD   | MDL                       | RL     | D. F. | LN06329<br>mg/kg | LN06331<br>mg/kg | LN06335<br>mg/kg | LN06337 | LN06338<br>mg/kg | LN06340<br>mg/kg |  |
|              | 1                        |                         |          |                           |        |       |                  |                  | - 1              | 1       | -                |                  |  |
| Antimony     | 500 1                    | 15                      | 6010B    | 1.0                       | 5.0    | 1     | 3.3J             | 4.0J             | 2.71             | 3.8J    | 3,3J             | 4.2J             |  |
| Arsenic      | 500                      | 5                       | 6010B    | 2.6                       | 13.0   | 1     | ND               | ND               | ND               | ND      | ND               | ND               |  |
| Barium       | 10000                    | 100                     | 6010B    | 3.7                       | 18.5   | 1     | 218              | 300              | 190              | 256     | 205              | 296              |  |
| Beryllium    | 75                       | 0.75                    | 6010B    | 0.7                       | 3.50   | 1     | ND               | ND               | ND               | ND      | ND               | ND               |  |
| Cadmium      | 100                      | 1                       | 6010B    | 0.6                       | 3.0    | 1     | 3.3              | 4.0              | 3.1              | 3.6     | 3.2              | 4.1              |  |
| Chromium (T) | 500                      | 5                       | 6010B    | 1.4                       | 7.0    | 1     | 20               | 23               | 18               | _ 23    | 19               | 23               |  |
| Cobalt       | 8000                     | 80                      | 6010B    | 1.0                       | 5.0    | 1     | 15               | 20               | 14               | 18      | 16.              | 21               |  |
| Copper       | 2500                     | 25                      | 6010B    | 1.6                       | 8.0    | 1     | 21               | 22               | 14               | 20      | 18               | 22               |  |
| Lead         | 1000                     | 5                       | 6010B    | 0.9                       | 4.5    | 1     | 39               | 15               | 12               | 14      | 42               | 15               |  |
| Molybdenum   | 3500                     | 350                     | 6010B    | 0.3                       | 1.5 -  | 1 -   | ND               | ND               | 0.5J             | ND      | ND               | ND               |  |
| Nickel       | 2000                     | 20                      | 6010B    | 0.6                       | 3.0    | 1     | 20               | 24               | 20               | 23      | 20               | 24               |  |
| Selenium     | 100                      | 1                       | 6010B    | 1.6                       | 8.0    | 1.    | ND               | ND               | ND               | ND      | ND               | ND               |  |
| Silver       | 500                      | 5                       | 6010B    | 1.5                       | 7.5    | 1     | ND               | ND               | ND               | ND      | ND               | ND               |  |
| Thallium     | 700                      | 7                       | 6010B    | 1.0                       | 5.0    | 1     | ND :             | ND               | ND               | ND      | ND               | ND               |  |
| Vanadium     | 2400                     | 24                      | 6010B    | 1.8                       | 9.00   | 1     | 31               | 38               | 30               | 35      | 30               | 37               |  |
| Zinc         | 5000                     | 250                     | 6010B    | 1.9                       | 9.50   | 1     | 124              | 79               | 59               | 74      | 93               | 78               |  |
| Mercury      | 20                       | 0.2                     | 7471     | 0.00002                   | 0.0001 | 1     | 0.0480           | 0.0210           | 0.0200           | 0.0200  | 0.0240           | 0.0230           |  |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

<sup>\*\* -</sup> exceed TTLC limit

<sup>\* -</sup> exceed 10x STLC limit

J - concentration above MDL and below RL

COC 13-1326

# ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY      | DATE    | DATE     | DATE     | 1                  |        |         |         |             |            |             |                                                   |
|-----------------|---------|----------|----------|--------------------|--------|---------|---------|-------------|------------|-------------|---------------------------------------------------|
| LOG NO.         | SAMPLED | RECEIVED | ANALYZED |                    |        | C01     |         | DESCRIPTION |            | 131 7       | m.1 11                                            |
| LN06341         | 5/29/13 | 5/29/13  | 6/5/13   | 7600 TYRONE, B28-1 |        |         |         |             |            |             |                                                   |
| LN06343         | 5/29/13 | 5/29/13  | 6/5/13   |                    |        | 7600 1  | TYRONE, | 328-3       | · w        |             |                                                   |
|                 |         |          |          | -                  |        | 1999    |         | 11,261439   | (          |             |                                                   |
| Sections in the |         |          |          | dan te             |        |         |         |             |            | -           |                                                   |
|                 | u 11-1  |          |          |                    |        | -       |         | *****       |            |             |                                                   |
|                 |         |          |          |                    |        |         |         |             |            |             |                                                   |
|                 | LIMIT   | LIMIT    |          |                    |        |         |         |             |            |             |                                                   |
|                 | TTLC    | STLC     |          |                    | i)     | 1       | LN06341 | LN06343     | Ī          | £           | 1                                                 |
| METAL           | (mg/kg) | (mg/l)   | METHOD   | MDL                | RL     | D. F. I | mg/kg   | mg/kg       |            |             | T                                                 |
| Antimony        | 500     | 15       | 6010B    | 1.0                | 5.0    | 1 1     | 2.0.J   | 4.0J        | <u> </u>   |             |                                                   |
| Arsenic         | 500     | 5        | 6010B    | 2.6                | 13.0   | 1       | ND      | ND          | 1 -11.00.4 | ļ           | -                                                 |
| Barium          | 10000   | 100      | 6010B    | 3.7                | 18.5   | 1       | 99      | 263         |            |             | 1                                                 |
| Beryllium       | 75      | 0.75     | 6010B    | 0.7                | 3.50   | 1       | ND      | ND          | 158        | 1           |                                                   |
| Cadmium         | 100     | I        | 6010B    | 0.6                | 3.0    |         | 1.8J    | 3.7         |            |             | 1                                                 |
| Chromium (T)    | 500     | 5        | 6010B    | 1.4                | 7.0    | 1       | 10      | 22          |            |             |                                                   |
| Cobalt          | 8000    | 80       | 6010B    | 1.0                | 5.0    | 1       | 7.8     | 19          | 1          | E Parent    |                                                   |
| Copper          | 2500    | 25       | 6010B    | 1.6                | 8.0    | 1 1     | 7.7.1   | 21          |            |             |                                                   |
| Lead            | 1000    | 5        | 6010B    | 0.9                | 4.5    | 1       | 6.7     | 18          | 1 5        | 1           | 1                                                 |
| Molybdenum      | 3500    | 350      | 6010B    | 0.3                | 1.5    | 1       | 0.44J   | ND          |            | - 360 cm    |                                                   |
| Nickel          | 2000    | 20       | 6010B    | 0.6                | 3.0    | 1.1     | 12.3    | 22          | _ 10 + 0   | *********** |                                                   |
| Selenium        | 100     | 1        | 6010B    | 1.6                | 8.0    | 1_1     | ND      | ND          |            |             |                                                   |
| Silver          | 500     | 5        | 6010B    | 1.5                | 7.5    | 1       | ND      | ND _        | \$         | _  _        |                                                   |
| Thallium        | 700     | 7        | 6010B    | 1.0                | 5.0    | 1       | ND      | ND          | . 1        | -           | <del>, , , , , , , , , , , , , , , , , , , </del> |
| Vanadium        | 2400    | 24       | 6010B    | 1.8                | 9.0    | 1 1     | 19      | 35          | į          | 1           |                                                   |
| Zinc            | 5000    | 250      | 6010B    | 1.9                | 9.5    | 1       | 36      | 78          |            |             | - 1                                               |
| Mercury         | 20      | 0.2      | 7471     | 0.00002            | 0.0001 | 1       | 0.0093  | 0.0190      |            |             | E-m                                               |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: KC/YC

COC 13-1326

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 6010B

Sample Matrix: SOIL

| LABORATORY<br>LOG NO. | DATE<br>SAMPLED | DATE           | DATE   |     |      |      | SAMPLE DE          | ecen | דס  |
|-----------------------|-----------------|----------------|--------|-----|------|------|--------------------|------|-----|
| LN06337 Dup           | 05/29/13        | 5/29/13        | 6/5/13 | -   |      | 7600 | YRONE, B           | -    | 71  |
|                       | 2017            |                |        | -   | -    |      |                    |      |     |
|                       |                 |                |        | 4.1 |      |      | 10                 |      |     |
|                       | -               | - C-           |        |     | _    |      |                    |      |     |
|                       | 700             |                |        |     | - V  | 0    |                    | -    |     |
|                       |                 | -              |        |     |      | -    |                    |      |     |
|                       | LIMIT           | LIMIT          | 1000   | -   | 1    |      | Dup                |      |     |
| METAL                 | (mg/kg)         | STLC<br>(mg/l) | METHOD | MDL | RL   | D.F. | LN06337<br>(mg/kg) | -    | _   |
| Antimony              | 500             | 15             | 6010B  | 1.0 | 5.0  | 1    | 3.8J               |      |     |
| Arsenic               | 500             | 5              | 6010B  | 2,6 | 13.0 | 1    | ND I               |      | 17  |
| Barium                | 10000           | 100            | 6010B  | 3.7 |      |      | 249                | -    | _   |
|                       | - 1             |                |        |     | 18.5 | -    |                    | -    | -   |
| Beryllium             | 75              | 0.75           | 6010B  | 0.7 | 3.50 |      | ND                 |      | -   |
| Cadmium               | 001             | 1              | 6010B  | 0.6 | 3.0  | 1    | 3.5                |      |     |
| Chromium (T)          | 2500            | 5              | 6010B  | 1.4 | 7.0  | 1    | 21                 | -011 | 100 |
| Cobalt                | 8000            | 80             | 6010B  | 1.0 | 5.0  | 1    | 17                 |      | -   |
| Copper                | 2500            | 25             | 6010B  | 1.6 | 8.0  | 1    | 19                 |      | 1   |
| Lead                  | 1000            | 5              | 6010B  | 0,9 | 4.5  | 1    | 14                 | -    |     |
| Molybdenum            | 3500            | 350            | 6010B  | 0.3 | 1.5  | 1    | ND                 | _    |     |
| Nickel                | 2000            | 20             | 6010B  | 0.6 | 3.0  | 1 1  | 22                 | -    |     |
| Selenium              | 100             | I              | 6010B  | 1.6 | 8.0  | 1    | ND                 |      |     |
| Silver                | 500             | 5              | 6010B  | 1.5 | 7.5  | 1    | ND                 |      | -   |
| Thallium              | 700             | 7              | 6010B  | 1.0 | 5.0  | 1    | ND                 |      | 1   |
| Vanadium              | 2400            | 24             | 6010B  | 1.8 | 9.0  | 1.1  | 34                 |      |     |
| Zinc                  | 5000            | 250            | 6010B  | 1.9 | 9.5  | 1    | 71                 |      | 1   |
| 11                    |                 |                |        |     |      |      | 1                  |      |     |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: KC

COC 13-1326

## ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B Sample Matrix: SOIL

PROJECT: 7600 TYRONE

| LABORATORY | DATE    | DATE     | DATE     |     | 1    |       |          |            |         | -       |         |         |
|------------|---------|----------|----------|-----|------|-------|----------|------------|---------|---------|---------|---------|
| LOG NO.    | SAMPLED | RECEIVED | ANALYZED |     |      |       | SAMPLE I | DESCRIPTIO | N       |         |         |         |
| LN06317    | 5/29/13 | 5/29/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B17-1      |         |         |         |         |
| LN06319    | 5/30/13 | 5/30/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B17-3      |         |         |         |         |
| LN06320    | 5/31/13 | 5/31/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B13-1      |         |         |         |         |
| LN06322    | 6/1/13  | 6/1/13   | 6/4/13   |     |      | 7600  | TYRONE,  | B13-3      |         |         |         |         |
| LN06323    | 6/2/13  | 6/2/13   | 6/4/13   |     | -    | 7600  | TYRONE,  | B15-1      |         |         |         |         |
| LN06325    | 6/2/13  | 6/2/13   | 6/4/13   |     |      | 7600  | TYRONE,  | B15-3      |         | /A:     |         |         |
|            | LIMIT   | LIMIT    |          | -5  |      |       |          |            |         |         |         |         |
|            | TTLC    | STLC     |          |     |      |       | LN06317  | LN06319    | LN06320 | LN06322 | LN06323 | LN06325 |
| METAL      | (mg/kg) | (mg/l)   | METHOD   | MDL | RL   | D. F. | mg/Kg    | mg/Kg      | -mg/Kg  | mg/Kg   | mg/Kg   | mg/Kg   |
| Arsenic    | 500     | 5        | 6010B    | 2.6 | 13.0 | 100   | ND       | ND         | ND      | ND      | ND      | ND      |

| PLED RECEIVE<br>9/13 5/29/13<br>0/13 5/30/13 | 6/4/13                     |                                      | -                                   |                                             | SAMPLE I                                                 | DESCRIPTIO                          | N                                         | - W                                       |                                           |                                           |
|----------------------------------------------|----------------------------|--------------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                              | 1                          |                                      | 1                                   | - 424                                       |                                                          |                                     |                                           |                                           | 1                                         |                                           |
| 0/13 5/30/13                                 | cialia                     |                                      | 1                                   | 7600                                        | TYRONE,                                                  | B16-1                               |                                           |                                           |                                           |                                           |
|                                              | 6/4/13                     |                                      |                                     | 7600                                        | TYRONE,                                                  | B16-3                               |                                           |                                           |                                           |                                           |
| 1/13 5/31/13                                 | 6/4/13                     |                                      |                                     | 7600                                        | TYRONE,                                                  | B14-1                               |                                           |                                           |                                           |                                           |
| /13 6/1/13                                   | 6/4/13                     |                                      |                                     | 7600                                        | TYRONE,                                                  | B14-3                               |                                           | A                                         |                                           |                                           |
|                                              |                            |                                      |                                     |                                             |                                                          |                                     |                                           |                                           |                                           |                                           |
|                                              |                            |                                      |                                     |                                             |                                                          |                                     |                                           |                                           |                                           |                                           |
|                                              |                            |                                      |                                     |                                             |                                                          |                                     |                                           |                                           |                                           |                                           |
| IIT LIMIT                                    |                            |                                      |                                     |                                             |                                                          |                                     |                                           |                                           |                                           |                                           |
| C STLC                                       |                            | -                                    |                                     |                                             | LN06326                                                  | LN06328                             | LN06332                                   | LN06334                                   |                                           |                                           |
| kg) (mg/l)                                   | METHOD                     | MDL                                  | RL                                  | D. F.                                       | mg/Kg                                                    | mg/Kg                               | mg/Kg                                     | mg/Kg                                     |                                           |                                           |
| 5                                            | 6010B                      | 2.6                                  | 13.0                                | 100                                         | ND                                                       | ND                                  | ND                                        | ND                                        |                                           |                                           |
| - I                                          | IT LIMIT C STLC (g) (mg/l) | IT LIMIT  .C STLC  kg) (mg/l) METHOD | IT LIMIT C.C STLC (mg/l) METHOD MDL | IT LIMIT  .C STLC  kg) (mg/l) METHOD MDL RL | /13 6/1/13 6/4/13 7600 7600 7600 7600 7600 7600 7600 760 | 13   6/1/13   6/4/13   7600 TYRONE, | 13   6/1/13   6/4/13   7600 TYRONE, B14-3 |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analayst: YC

13-1326

## ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

#### EPA METHOD 6010B

Sample Matrix: Soil

#### PROJECT: 7600 TYRONE

| LABORATORY<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>ANALYZED |     |     |      | SAMPLE I         | DESCRIPTION      | 3-44 |  |
|-----------------------|-----------------|------------------|------------------|-----|-----|------|------------------|------------------|------|--|
| LN06314               | 5/31/13         | 5/31/13          | 6/4/13           |     |     | 7600 | TYRONE,          | B14-1            |      |  |
| LN06316               | 6/1/13          | 6/1/13           | 6/4/13           |     |     | 7600 | TYRONE,          | B14-3            |      |  |
|                       |                 |                  |                  |     |     |      |                  | -01              |      |  |
|                       |                 |                  | 1                |     |     |      |                  |                  |      |  |
| ,                     | LIMIT           | LIMIT            |                  |     |     |      |                  |                  |      |  |
| METAL                 | TTLC<br>(mg/kg) | STLC<br>(mg/l)   | METHOD           | MDL | RL  | D.F. | LN06314<br>mg/Kg | LN06316<br>mg/Kg |      |  |
| Lead                  | 1000            | 5                | 6010B            | 0.9 | 4.5 | 100  | 27.0             | 15.0             |      |  |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: YC

## QA/QC Report

# I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 06/05/13

ANALYTICAL METHOD

USEPA 6010/7000

BATCH #:

\$TTLCS-7753 (LN06329 LN06331 LN06337 LN06338 LN06340 LN06341 LN06343)

LAB SAMPLE I.D.: BLANK SOIL

UNIT: (Circle One) (mg/kg



mg/L

| METAL        | SAMPLE<br>RESULT | SPIKE<br>CONC | BS    | %BS  | (DUP)<br>SPIKE<br>CONC | BSD | %BSD | RPD  | BS/BSD<br>% REC.<br>LIMIT | RPD<br>LİMI'I |
|--------------|------------------|---------------|-------|------|------------------------|-----|------|------|---------------------------|---------------|
| Antimony     | ND               | 200           | 153   | 76.5 | 200                    | 147 | 73.5 | 4.0% | 14 - 89                   | < 30          |
| Arsenic      | ND               | 200           | 203   | 102  | 200                    | 203 | 102  | 0.0% | 70 - 130                  | < 30          |
| Barium       |                  |               | San . |      |                        | 2   | 444  | ,    |                           | (minum)       |
| Beryllium    | ND               | 200           | 189   | 94.5 | 200                    | 191 | 95.5 | 1.1% | 70 - 130 -                | < 30          |
| Cadmium      | ND               | 200           | 196   | 98.0 | 200                    | 194 | 97.0 | 1.0% | 70 - 130                  | < 30          |
| Chromium (T) | ND               | 200           | 193   | 96.5 | 200                    | 196 | 98.0 | 1.5% | 70 - 130                  | < 30          |
| Cobalt       | ND               | 200           | 206   | 103  | - 200                  | 203 | 102  | 1.0% | 70 - 130                  | < 30          |
| Copper       | ND               | 200           | 190   | 95.0 | 200                    | 195 | 97.5 | 2.6% | 70 - 130                  | < 30          |
| Lead         | ND               | 200           | 199   | 99.5 | 200                    | 199 | 99.5 | 0.0% | 70 - 130                  | < 30          |
| Molybdenum   | ND               | 200           | 201   | 100  | 200                    | 196 | 98.0 | 2.0% | 70 - 130                  | < 30          |
| Nickel       | ND               | 200           | 197   | 98.5 | 200                    | 199 | 99.5 | 1.0% | 70 - 130                  | < 30          |
| Selenium     | ND               | 200           | 191   | 95.5 | 200                    | 192 | 96.0 | 0.5% | 70 - 130                  | < 30          |
| Silver       | ***              |               |       |      |                        |     |      | ***  |                           |               |
| Thallium     | ND               | 200           | 171   | 85.5 | 200                    | 174 | 87.0 | 1.7% | 70 - 130                  | < 30          |
| Vanadium     | ND               | 200           | 199   | 99.5 | 200                    | 202 | 101  | 1.5% | 70 - 130                  | < 30          |
| Zinc         | ND               | 200           | 200   | 100  | 200                    | 200 | 100  | 0.0% | 70 - 130                  | < 30          |

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC

PROJECT: 7600 TYRONE COC 13-1326

# QA/QC Report

# II. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE ANALYZED: 06/06/13

ANALYTICAL METHOD

USEPA 6010/7000

BATCH #:

\$TTLCS-7753 (LN06329 LN06331 LN06337 LN06338 LN06340 LN06341 LN06343)

LAB SAMPLE I.D.: LN06337

UNIT: (Circle One) (mg/kg

mg/L

| METAL        | SAMPLE<br>RESULT | SPIKE<br>CONC | MS  | %MS  | (DUP)<br>SPIKE<br>CONC | MSD | %MSD | RPD   | MS/MSD<br>% REC.<br>LIMIT | RPD<br>LIMIT |
|--------------|------------------|---------------|-----|------|------------------------|-----|------|-------|---------------------------|--------------|
| Antimony     | 3.8              | 200           | 49  | 22.6 | 200                    | 39  | 17.6 | 24.9% | 14 - 89                   | < 30         |
| Arsenic      | ND               | 200           | 881 | 94.0 | 200                    | 178 | 89.0 | 5.5%  | 70 - 130                  | < 30         |
| Barium       | -                |               | 4-4 |      | 1000                   | -   | ***  |       |                           | Septe.       |
| Beryllium    | ND               | 200           | 180 | 90.0 | 200                    | 186 | 93.0 | 3.3%  | 70 - 130                  | < 30         |
| Cadmium      | 3.6              | 200           | 174 | 85.2 | 200                    | 172 | 84.2 | 1.2%  | 70 - 130                  | < 30         |
| Chromium (T) | 23               | 200           | 194 | 85.5 | 200                    | 203 | 90.0 | 5.1%  | 70 - 130                  | < 30         |
| Cobalt       | 18               | 200           | 193 | 87.5 | 200                    | 193 | 87.5 | 0.0%  | 70 - 130                  | < 30         |
| Copper       | 20               | 200           | 198 | 89.0 | 200                    | 210 | 95.0 | 6.5%  | 70 - 130                  | < 30         |
| Lead         | 14               | 200           | 175 | 80.5 | 200                    | 176 | 81.0 | 0.6%  | 70 - 130                  | < 30         |
| Molybdenum   | ND               | 200           | 173 | 86.5 | 200                    | 170 | 85.0 | 1.7%  | 70 - 130 -                | < 30         |
| Nickel       | 23               | 200           | 198 | 87.5 | 200                    | 208 | 92.5 | 5.6%  | 70 - 130                  | < 30         |
| Selenium     | ND               | 200           | 179 | 89.5 | 200                    | 178 | 89.0 | 0.6%  | 70 - 130                  | < 30         |
| Silver       |                  | -             | *** |      |                        | -   |      |       |                           | ***          |
| Thallium     | ND               | 200           | 139 | 69.5 | 200                    | 138 | 69.0 | 0.7%  | 70 - 130                  | < 30         |
| Vanadium     | 35               | 200           | 212 | 88.5 | 200                    | 226 | 95.5 | 7.6%  | 70 - 130                  | < 30         |
| Zinc         | 74               | 200           | 247 | 86.5 | 200                    | 260 | 93.0 | 7.2%  | 70 - 130                  | < 30         |
|              | Ī                |               |     | 1    |                        |     |      |       |                           |              |

MS = Matrix Spike MSD = Matrix Spike Duplicate %MS = Percent Recovery of Matrix Spike

RPD = Relative Percent Difference %MSD = Percent Recovery of Matrix Spike Duplicate

Analyst: KC

PROJECT: 7600 TYRONE COC 13-1326

# III. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 06/05/13

ANALYTICAL

USEPA 6010/7000

SUPPLY SOURCE: VHG

LAB LCS I.D.:

Q8732

LOT NUMBER:

201-0040

UNIT: (Circle One) (mg/kg)

mg/L

| METAL        | LCS RESULTS<br>mg/kg | TRUE VALUE<br>mg/kg | %<br>Recovery | Acceptable Range |
|--------------|----------------------|---------------------|---------------|------------------|
| Antimony     | 68                   | 80                  | 85.0          | 48 - 84          |
| Arsenic      | 420                  | 400                 | 105           | 70 - 130         |
| Barium       | 387                  | 400                 | 96.8          | 70 - 130         |
| Beryllium    | 10                   | 12.5                | 80.0          | 70 - 130         |
| Cadmium      | 11                   | 12.5                | 88.0          | 70 - 130         |
| Chromium (T) | 79                   | 80                  | 98.8          | 70 - 130         |
| Cobalt       | 43                   | 50                  | 86.0          | 70 - 130         |
| Copper       | 81                   | 80                  | 101           | 70 - 130         |
| Lead         | 1 85                 | 80                  | 106           | 70 - 130         |
| Molybdenum   |                      |                     |               |                  |
| Nickel       | 82                   | 80                  | 102           | 70 - 130         |
| Selenium     | 197                  | 200                 | 98.5          | 70 - 130         |
| Silver       | 10.1                 | 12.5                | 80.8          | 70 - 130         |
| Thallium     | 70                   | 80                  | 87.5          | 70 ÷ 130         |
| Vanadium     | 89                   | 80                  | 111           | 70 - 130         |
| Zinc         | 203                  | 200                 | 102           | 70 - 130         |

Analyst: KC

Reviewed by: The call

# **ATTACHMENT #3**

TOTAL EXTRACTABLE PETROLEUM
HYDROCARBONS (TEPH)
MOTOR OIL (MO)
DIESEL RANGE ORGANIC (DRO)

EPA METHOD 8015M

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE               | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMP             | LE DESCH         | RIPTION          | INST.            | RUN              | ватон  |
|-------------------|-----------------|--------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|
| LN06329           | 05/29/13        | 05/29/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B23-1            | GC Agilen        | t 05             | 53113  |
| LN06331           | 05/29/13        | 05/29/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B23-3            | GC Agilen        | t 05             | 3113   |
| LN06335           | 05/29/13        | 05/29/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B27-1            | GC Agilen        | 0.5              | 3113   |
| LN06337           | 05/29/13        | 05/29/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B27-3            | GC Agilen        | 0.5              | 3113   |
| LN06338           | 05/29/13        | 05/29/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B24-1            | GC Agilen        | 05               | 3113   |
| LN06340           | 05/29/13        | 05/29/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B24-3            | GC Agilent       | 05               | 3113   |
| LN06341           | 05/29/13        | 05/29/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B28-1            | GC Agilent       | 05               | 3113   |
|                   |                 | MDL / PQL<br>mg/kg | MB<br>mg/kg       | LN06329<br>mg/kg | LN06331<br>mg/kg | LN06335<br>mg/kg | LN06337<br>mg/kg | LN06338<br>mg/kg | LN06340<br>mg/kg | LN0634 |
| Dilution          | Factor          |                    | 1                 | 1                | 1                | 1                | 1                | 1                | 1                | 1      |
| TEPH (C9          | - C36)          | 4/20               | ND                | ND               | 4.2 J            | 4.0 J            | 13.1 J           | 60.6             | 4.4 J            | ND     |
| DRO (C10          | - C28)          | 29 / 145           | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND     |
| MOTOR             | OIL             | 35 / 175           | ND                | ND               | ND               | ND               | ND               | 60.6 J           | ND               | ND     |
| Quality           | Control D       | ata_               | MB                |                  |                  |                  |                  |                  |                  |        |
| Surrogate/In      | ternal Std.     | % ACP              | % RC              | % RC             | % RC             | % RC             | % RC             | % RC             | % RC             | % RC   |
| 1-Chloroocta      | idecane         | (60 - 140)         | 90.5%             | 96.5%            | 96.0%            | 106%             | 94.0%            | 100%             | 96,5%            | 80.0%  |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL
Project: 7600 TYRONE

| SAMPLE LOG NO,  | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE     | DATE<br>ANALYZED | SAMPL | E DESCI | RIPTION | INST.      | RÚN B | ATCH |
|-----------------|-----------------|------------------|----------|------------------|-------|---------|---------|------------|-------|------|
| LN06343         | 05/29/13        | 05/29/13         | 05/31/13 | 05/31/13         | 7600  | TYRONE, | B28-3   | GC Agilent | 053   | 113  |
|                 |                 |                  |          |                  |       |         |         |            |       |      |
|                 |                 |                  |          |                  |       |         |         |            |       |      |
|                 |                 |                  |          |                  |       |         |         |            |       |      |
|                 |                 |                  |          |                  |       |         |         |            |       |      |
|                 |                 | MDL/PQL<br>mg/kg |          | LN06343<br>mg/kg |       |         |         |            |       |      |
| Dilution Fac    | ctor            |                  |          | 1                |       |         |         |            |       |      |
| TEPH (C9 - 0    | C36)            | 4/20             |          | ND               |       |         |         |            |       |      |
| DRO (C10 - 0    | C28)            | 29 / 145         |          | ND               |       |         |         |            |       |      |
| MOTOR O         | ıı              | 35 / 175         |          | ND               |       |         |         |            |       |      |
| Quality Co      | ontrol Da       | ata              |          |                  |       |         |         |            |       |      |
| Surrogate/Inter | nal Std.        | % ACP            |          | % RC             |       |         |         |            |       |      |
| I-Chlorooctade  | cane            | (60 - 140)       |          | 107%             |       |         |         |            |       |      |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

%RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL
Project: 7600 TYRONE

# I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE RECEIVED    | DATE<br>EXTRACTED | DATE<br>ANALYZED        | SAMPLE DESCRIPTION | INST.      | RUN BATCH |
|-------------------|-----------------|------------------|-------------------|-------------------------|--------------------|------------|-----------|
| LN06216 DUP       | 05/28/13        | 05/28/13         | 05/31/13          | 05/31/13                | 7600 TYRONE, B22-3 | GC Agilent | 053113    |
|                   |                 |                  |                   |                         | ~                  |            |           |
|                   |                 |                  |                   |                         |                    |            |           |
|                   |                 |                  |                   |                         |                    |            |           |
|                   |                 | MDL/PQL<br>mg/kg |                   | LN06216<br>DUP<br>mg/kg |                    |            |           |
| Dilution F        | actor           |                  |                   | 1                       |                    |            |           |
| TEPH (C9          | - C36)          | 4/20             |                   | ND                      |                    |            |           |
| DRO (C10          | - C28)          | 29 / 145         |                   | ND                      |                    |            |           |
| MOTOR             | OIL             | 35 / 175         |                   | ND                      |                    |            |           |
| Quality           | Control D       | ata              |                   |                         |                    |            |           |
| Surrogate/Inte    | ernal Std.      | % ACP            | 10                | % RC                    |                    |            |           |
| 1-Chlorooctac     | decane          | (60 - 140)       |                   | 88.5%                   |                    |            |           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

# QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No .:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Rang |
|---------|-----------|---------------|-------------|--------|-------|-----------------|
| TEPH    | 053113    | 5/31/2013     | 280         | 209    | 74.6  | 70 - 130        |
| DRO     | 053113    | 5/31/2013     | 500         | 379    | 75.8  | 70 - 130        |
| МО      | 053113    | 5/31/2013     | 500         | 436    | 87.2  | 70 - 130        |
|         |           |               |             |        |       |                 |
|         |           |               |             |        |       |                 |
|         |           |               |             |        |       |                 |
|         |           |               |             |        |       |                 |
|         |           |               |             |        |       |                 |

Analysts

J. Yi

Reviewed by

R. Gentallan

# **ATTACHMENT #4**

GASOLINE RANGE ORGANICS (GRO)
EPA METHOD 8015B

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

| SAMPLE          | DATE        | DATE               | DATE        | DATE             | The second       | 10 100 100 107 10<br>10 100 10 10 10 10 10 10 10 10 10 10 10 |                  | INSTR.           |                  |                 |
|-----------------|-------------|--------------------|-------------|------------------|------------------|--------------------------------------------------------------|------------------|------------------|------------------|-----------------|
| LOO NO.         | SAMPLED     | RECEIVED           | EXTRACTED   | ANALYZED         | SAMP             | LE DESCRIP                                                   | TION             | iD               | RUN LOG          | BATCH.          |
| LN06329         | 05/29/13    | 05/29/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B23-1                                                   |                  | AG gas           | 201              | 30530           |
| LN06331         | 05/29/13    | 05/29/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B23-3                                                   |                  | AG gas           | 201              | 30530           |
| LN06335         | 05/29/13    | 05/29/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B27-1                                                   | 9 4              | AG gas           | 201              | 30530           |
| LN06337         | 05/29/13    | 05/29/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B27-3                                                   |                  | AG gas           | 201              | 30530           |
| LN06338         | 05/29/13    | 05/29/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B24-1                                                   |                  | AG gas           | 201              | 30530           |
| LN06340         | 05/29/13    | 05/29/13           | 05/29/13    | 05/30/13         | 7600 TYRO        | ONE, B24-3                                                   |                  | AG gas           | 2013             | 30530           |
| LN06341         | 05/29/13    | 05/29/13           | 05/29/13    | 05/30/13         | 7600 TYRO        | ONE, B28-1                                                   | -                | AG gas           | 2013             | 30530           |
|                 |             |                    |             |                  |                  |                                                              |                  |                  |                  |                 |
|                 |             | MDL / PQL<br>mg/kg | MB<br>mg/kg | LN06329<br>mg/kg | LN06331<br>mg/kg | LN06335<br>mg/kg                                             | LN0633°<br>mg/kg | LN06338<br>mg/kg | LN06340<br>mg/kg | LN0634<br>mg/kg |
| Dilution Facto  | r           | 1                  | 1           | 1                | 1                | 1                                                            | 1                | 4**              | 1                | 1               |
| Gasoline (GRO   | 0)          | 1.1/5.5            | ND          | ND               | ND               | ND                                                           | ND               | ND               | ND               | ND              |
| Quality C       | ontrol Data |                    |             |                  |                  |                                                              |                  |                  |                  |                 |
| Surrogate/Inter | nal Std.    | % ACP              | % RC        | %RC              | %RC              | %RC                                                          | %RC              | %RC              | %RC              | %RC             |
|                 | enzene-d4   | (70 - 130)         | 109%        | 107%             | 108%             | 108%                                                         | 108%             | 107%             | 108%             | 108%            |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*\*</sup> Sample was analyzed at higher dilution: Sample extract was either exhibiting high turbidity or highly colored MDL/PQL at higher dilution is calculted as MDL/PQL (dilution x1) multipled by the dilution factor

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL
Project: 7600 TYRONE

|                     |          | DAG<br>RUCAVED  |             |                  |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | RUN LOUVBATE |
|---------------------|----------|-----------------|-------------|------------------|-----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|
| LN06343             | 05/29/13 | 05/29/13        | 05/29/13    | 05/30/13         | 7600 TYRO | Marin Control | CONTRACTOR OF THE PARTY OF THE | AG gas | 20130530     |
|                     |          |                 |             |                  |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |
|                     |          |                 |             |                  |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |
|                     |          | MDL / PQL mg/kg | MB<br>mg/kg | LN06343<br>mg/kg |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |
| Dilution Factor     |          | 1               | 1           | 1                |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |
| Gasoline (GRO)      |          | 1.1/5.5         | ND          | ND               |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |
| Quality Cont        | rol Data |                 |             |                  |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |
| Surrogate/Internal  | Std.     | % ACP           | %RC         | %RC              |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |
| Serio Parcy Miteral | ene-d4   | (70 - 130)      | 109%        | 108%             | 1         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

# QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| LN06205 20130530 ND 22.0 22.4 102% 22.9 104% 2.2% 70-130 | LOG NO. | QC | CONC | CONC | MS | % MS | MSD | % MSD | RPD | % ACP | ACI<br>30 |
|----------------------------------------------------------|---------|----|------|------|----|------|-----|-------|-----|-------|-----------|
|----------------------------------------------------------|---------|----|------|------|----|------|-----|-------|-----|-------|-----------|

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130530 | 5/30/2013     | 22.0        | 20.9   | 95.0   | 70 - 130         |

Analyzed by

analyzea by

B. Estrada

Reviewed by R. Ge

R. Gentallan.

# **ATTACHMENT #5**

# POLYCHLORINATED BIPHENYLS (PCBs)

EPA Method 8082

# ANALYTICAL RESULT FOR PCBs by EPA600/SR-94/112/8082 (Polychlorinated Biphenyls)

Sample Matrix: Soil (Low Level)

| 100 NU.        | SAMPLED   |           |            |            |            | SAMPLE DI  | SCRIPTION  |            |  |
|----------------|-----------|-----------|------------|------------|------------|------------|------------|------------|--|
| LN06329        | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  |            |            |            |            |  |
| LN06331        | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  |            |            |            |            |  |
| LN06335        | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  |            |            |            |            |  |
| LN06337        | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  |            |            |            | 1          |  |
| LN06341        | 5/29/2013 | 5/29/2013 | 5/30/2013  | 6/4/2013   |            |            |            |            |  |
| LN06343        | 5/29/2013 | 5/29/2013 | 5/30/2013  | 6/4/2013   |            |            |            |            |  |
|                |           | MDL/PQL   | LN06329    | LN06331    | LN06335    | LN06337    | LN06341    | LN06343    |  |
| PARAMETERS     |           | (mg/kg)   | (mg/kg)    | (mg/kg)    | (mg/kg)    | (mg/kg)    | (mg/kg)    | (mg/kg)    |  |
| PCB - 1221     |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND-        |  |
| PCB - 1232     |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |
| PCB - 1242     |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |
| PCB - 1248     | - 7       | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |
| PCB - 1254     |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |
| PCB - 1260     |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |
| SURROGATE PAR  | AMETERS   | QC LIMIT  | % Recovery |  |
| DECACHLOROBIPE | IENYL     | 70 - 130  | 99         | 94         | 102        | 106        | 95         | 93         |  |

MDL - Method Detection Limit

ND - Not Detected; below method detection limit

Analyst: D. Wong

Reviewed by: A 6/4/13

COC: 13-1326 Page 2 of 3

Project Name:

Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

## QA/QC Report

I. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

ANALYTICAL METHOD:

USEPA 600/SR-94/112

USEPA 8082

DATE ANALYZED: 06/04/13

BATCH#: 53013 LAB SAMPLE LD: LN06364

UNIT: mg/kg

|            |                  |         |      |       | (0)(1) |      |        |      | WEIMST<br>WERE |      |
|------------|------------------|---------|------|-------|--------|------|--------|------|----------------|------|
| PARAMETERS | NUMBER<br>RESULT | E CONCE | NS   | FalMs | conc   | MEDI | + Misb | gg/D | Linguis.       | 1 IV |
| PCB-1242   | 0.0              | 25.0    | 20.8 | 83    | 25.0   | 20.3 | 81     | 2%   | 70 - 130       | 30   |
| PCB-1260   | 0.0              | 25.0    | NR   | NR    | 25.0   | NR   | NR     | NR   | 70 - 130       | 30   |

NR = Not reported dut to matrix interference.

MS - Matrix Spike MSD - Matrix Spike Dupllicate %MS - Percent Recovery of Matrix Spike RPD - Relative Percent Difference %MSD - Percent Recovery of Matrix Spike Duplicate

Reviewed by: A4 6/4/13

COC: 13-1326 Page 3 of 3

Project Name:

Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

# II. Laboratory Control Check Sample (LCS)

DATE ANALYZED:

06/04/13

ANALYTICAL METHOD: USEPA 600/SR-94/112

| BATCH No.  | 053013 |         |    |          | UNIT: mg/kg     | USEPA 8082    |
|------------|--------|---------|----|----------|-----------------|---------------|
|            |        |         |    | H. Glade |                 |               |
|            | TRUE   |         |    |          |                 | E ACCUPATANCE |
| PARAMITERS |        | RESULTS |    | ristifi. | Printer and the | E COMPLETE    |
| PCB - 1242 | 25.0   | 19.6    | 78 | NA       | NA              | 80 - 120      |
| PCB - 1260 | 25.0   | 21.9    | 88 | NA       | NA              | 80 - 120      |

Note: Low LCS recovery for 1242 (78%). Although LCS is 2% below acceptance limit, it should have no significant effect on the quality of this batch of analyses.

%RC - Percent Recovery NA - Not Analyzed Batch - ten samples per batch

Reviewed by: 14/13

# **ATTACHMENT #6**

**PESTICIDES** 

**EPA METHOD 8081** 







#### CERTIFICATE OF ANALYSIS

Client:

LADWP - Environmental Laboratory

1630 North Main Street, Bldg. 7, Rm 311

Los Angeles, CA 90012

Report Date:

06/13/13 15:54

Received Date:

05/30/13 09:50

Turn Around:

5 workdays

Phone:

Fax:

Attention: Kevin Han 213-367-7267

(213) 367-7285

Work Order #:

3E30013

47055-2, COC #13-1321,26

Client Project:

7600 Tyrone Ave, COC #13-1321,26,

WO#

#### NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

#### Dear Kevin Han:

Enclosed are the results of analyses for samples received 05/30/13 09:50 with the Chain of Custody document. The samples were received in good condition, at 2.8 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualiflers.

#### Case Narrative:

Reviewed by:

Kim G Tu Project Manager









LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: Project ID:

3E30013

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported:

EW.

05/30/13 09:50

06/13/13 15:54

| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The state of the s |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The second secon | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AMAI VTYCAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REPORT FOR SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WIANT I LYPHIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WEL OUT LOU DWELL PPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Sampled by: Sample Comments | Lab ID                                                                                                                                             | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client                      | 3E30013-01                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/28/13 08:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-02                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/28/13 08:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-03                                                                                                                                         | Solld                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/28/13 09:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-04                                                                                                                                         | Solld                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/28/13 09:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-05                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/28/13 10:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-06                                                                                                                                         | Solld                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/28/13 10:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-07                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 07:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-08                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 07:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cilent                      | 3E30013-09                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-10                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 06:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-11                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 D8:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-12                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 08:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-13                                                                                                                                         | Solld                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 08:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-14                                                                                                                                         | Solld                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 08:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cilent                      | 3E30013-15                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 09:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Client                      | 3E30013-16                                                                                                                                         | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05/29/13 09:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | Client | Client       3E30013-01         Client       3E30013-03         Client       3E30013-04         Client       3E30013-05         Client       3E30013-06         Client       3E30013-07         Client       3E30013-07         Client       3E30013-09         Client       3E30013-10         Client       3E30013-11         Client       3E30013-12         Client       3E30013-12         Client       3E30013-14         Client       3E30013-15 | Client         3E30013-01         Solid           Client         3E30013-02         Solid           Client         3E30013-03         Solid           Client         3E30013-04         Solid           Client         3E30013-05         Solid           Client         3E30013-06         Solid           Client         3E30013-07         Solid           Client         3E30013-08         Solid           Client         3E30013-09         Solid           Client         3E30013-10         Solid           Client         3E30013-11         Solid           Client         3E30013-12         Solid           Client         3E30013-13         Solid           Client         3E30013-14         Solid           Client         3E30013-14         Solid |

ANALYSES





125,50

Sampled: 05/28/13 08:10

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-01

LN06208

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 07:26 | Analyzed: 0 | 06/04/13 17:02 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|-------|-------------|----------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML    | Units       | Dilution       | Qualifier    |
| 2,4'-000                      | ND             | 23        | 23       | 23    | ug/kg       | 1              |              |
| 2,4'-DDE                      | ND             | 23        | 23       | 23    | ug/kg       | 1              |              |
| 2,4'-DDT                      | ND-            | 23        | 23       | 23    | ug/kg       | 1              |              |
| 4,4'-DDD                      | ND             | 4.5       | 23       | 23    | ug/kg       | 3              |              |
| 4,4'-DDE                      | ND             | 7.2       | 23       | 23    | ug/kg       | 3              |              |
| 4,4'-DDT                      | ND             | 5.1       | 23       | 23    | ug/kg       | 4              |              |
| Aldrin                        | ND             | 11        | 23       | 23    | ug/kg       | 1              |              |
| alpha-BHC                     | ND             | 14        | 23       | 23    | ug/kg       | 1              |              |
| alpha-Chlordane               | ND             | 12        | 23       | 23    | ug/kg       | 1              |              |
| beta-BHC                      | ND             | 7.3       | 23       | 23    | ug/kg       | 1              |              |
| Chlordane (tech)              | ND             | 95        | 470      | 470   | ug/kg       | 1              |              |
| cis-Nonachlor                 | ND             | 23        | 23       | 23    | ug/kg       | 1              |              |
| DCPA                          | ND             | 23        | 23       | 23    | ug/kg       | 1              |              |
| delta-BHC                     | ND             | 5.3       | 23       | 23    | ug/kg       | 1              |              |
| Dieldrin                      | ND.            | 7.0       | 23       | 23    | ug/kg       | 1              |              |
| Endosulfan I                  | ND             | 5.3       | 23       | 23    | ug/kg       | 1              |              |
| Endosulfan II                 | NO             | 3.0       | 23       | 23    | ug/kg       | 1              |              |
| Endosulfan sulfate            | ND             | 5.1       | 23       | 23    | ug/kg       | 1              |              |
| Endrin                        | ND             | 12        | 23       | 23    | ug/kg       | 7              |              |
| Endrin aldehyde               | ND             | 8.5       | 23       | 23    | ug/kg       | 1              |              |
| Endrin ketone                 | ND             | 4.3       | 23       | 23    | ug/kg       | 1              |              |
| gamma-BHC (Lindane)           | ND             | 12        | 23       | 23    | ug/kg       | 1              |              |
| gamma-Chlordane               | ND             | 9.3       | 23       | 23    | ug/kg       | .1             |              |
| -leptachlor                   | ND             | 13        | 23       | 23    | ug/kg       | 1              |              |
| Heptachlor epoxide            | ND             | 8.5       | 23       | 23    | ug/kg       | 1              |              |
| Kepone                        | ND             | 200       | 470      | 470   | ug/kg       | 1              |              |
| Methoxychlor                  | ND             | 5.1       | 23       | 23    | ug/kg       | 1              |              |
| Mirex                         | ND             | 7,3       | 23       | 23    | ug/kg       | 1              |              |
| Oxychlordane                  | ND             | 23        | 23       | 23    | ug/kg       | 1              |              |
| Toxaphene                     | ND             | .80       | 700      | 700   | ug/kg       | 1              |              |
| rans-Nonachior                | ND             | 23        | 23       | 23    | ug/kg       | 1 in           |              |
| Surr: Decachlorobiphenyl      | 68 %           | Conc:158  | 2        | 1-125 | %           |                |              |
| Surr: Tetrachloro-meta-xylene | 63 %           | Conc:145  |          | 8-112 | %           |                |              |



Analytical Laboratory Service - Since 1964



Sampled: 05/28/13 08:14

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID:

3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

3E30013-02

LN06210

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared  | 05/31/1: | 07:26 | Analyzed: 0 | 6/04/13 17:30 | Analyst; bma |
|-------------------------------|----------------|-----------|----------|-------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML    | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 24        | 24       | 24    | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 24        | 24       | 24    | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 24        | 24       | 24    | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.7       | 24       | 24    | ug/kg       | 4             |              |
| 4,4'-DDE                      | ND             | 7.5       | 24       | 24    | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.4       | 24       | 24    | ug/kg       | 7             |              |
| Aldrin                        | ND             | 11        | 24       | 24    | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 24       | 24    | ug/kg       | 1             |              |
| alpha-Chlordane               | NO             | 13        | 24       | 24    | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.7       | 24       | 24    | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 100       | 490      | 490   | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 24        | 24       | 24    | ug/kg       | 1             |              |
| DCPA                          | ND             | 24        | 24       | 24    | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.6       | 24       | 24    | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 7.3       | 24       | 24    | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.6       | 24       | 24    | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.1       | 24       | 24    | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.4       | 24       | 24    | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 24       | 24    | ug/kg       | 1             |              |
| Endrin aldehyde               | NO             | 6.8       | 24       | 24    | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.5       | 24       | 24    | ug/kg       | a             |              |
| gamma-BHC (Lindane)           | ND             | 13        | 24       | 24    | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.8       | 24       | 24    | ug/kg       | 1             |              |
| leptachlor                    | ND             | 13        | 24       | 24    | ug/kg       | 1             |              |
| Heptachtor epoxide            | ND             | 8.9       | 24       | 24    | ug/kg       | 1             |              |
| Kepone                        | ND             | 210       | 490      | 490   | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.4       | 24       | 24    | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.6       | 24       | 24    | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 24        | 24       | 24    | ug/kg       | 1             |              |
| oxaphene                      | ND             | 84        | 730      | 730   | ug/kg       | 1             |              |
| rans-Nonachior                | ND             | 24        | 24       | 24    | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 61 %           | Conc: 148 | 2        | 1-125 | %           |               |              |
| Surr; Tetrachloro-meta-xylene | 67 %           | Conc: 162 |          | 8-112 | %           |               |              |



Sampled: 05/28/13 09:50

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID:

Project ID:

3E30013 7600 Tyrone Ave, COC Date Received: Date Reported:

05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-03 LN06232

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared | 05/31/13 | 07:26 | Analyzed: 0 | 06/04/13 17:58 | Analyst; bma |
|-------------------------------|----------------|----------|----------|-------|-------------|----------------|--------------|
| Analyte                       | Result         | MDL      | MRL      | ML    | Units       | Dilution       | Qualifler    |
| 2,4'-DDD                      | ND             | 21       | 21       | 21    | ug/kg       | 1              |              |
| 2,4'-DDE                      | ND             | 21       | 21       | 21    | ug/kg       | 7              |              |
| 2,4'-DDT                      | ND             | 21       | 21       | 21    | ug/kg       | 1              |              |
| 4,4'-DDD                      | ND             | 4.1      | 21       | 21    | ug/kg       | 4              |              |
| 4,4'-DDE                      | ND             | 6.5      | 21       | 21    | ug/kg       | 1              |              |
| 4,4'-DDT                      | ND             | 4.6      | 21       | 21    | ug/kg       | 110            |              |
| Aldrin                        | ND             | 9,8      | 21       | 21    | ug/kg       | 1              |              |
| alpha-BHC                     | ND             | 12       | 21       | 21    | ug/kg       | 1              |              |
| alpha-Chlordane               | ND             | 11       | 21       | 21    | ug/kg       | 1              |              |
| beta-BHC                      | ND             | 6.7      | 21       | 21    | ug/kg       | 1              |              |
| Chlordane (tech)              | ND             | 86       | 420      | 420   | ug/kg       | 1              |              |
| cis-Nonachlor                 | ND             | 21       | 21       | 21    | ug/kg       | 1              |              |
| DCPA                          | ND             | 21       | 21       | 21    | ug/kg       | 1              |              |
| delta-BHC                     | ND             | 4.8      | 21       | 21    | ug/kg       | 1              |              |
| Dieldrin                      | ND             | 6.3      | 21       | 21    | ug/kg       | 1              |              |
| Endosulfan i                  | ND             | 4.8      | 21       | 21    | ug/kg       | 1              |              |
| Endosulfan II                 | ND             | 2.7      | 21       | 21    | ug/kg       | 1              |              |
| Endosulfan sulfate            | ND.            | 4.6      | 21       | 21    | ug/kg       | 1              |              |
| Endrin                        | ND             | 11       | 21       | 21    | ug/kg       | 1              |              |
| Endrin aldehyde               | ND             | 5.9      | 21       | 21    | ug/kg       | 1              |              |
| Endrin ketone                 | ND             | 3.9      | 21       | 21    | ug/kg       | 1              |              |
| gamma-BHC (Lindane)           | ND             | 11       | 21       | 21    | ug/kg       | 1              |              |
| gamma-Chlordane               | ND             | 8.4      | 21       | 21    | ug/kg       | 1              |              |
| -leptachlor                   | ND             | 11       | 21       | 21    | ug/kg       | 1              |              |
| leptachlor epoxide            | ND             | 7.7      | 21       | 21    | ug/kg       | 1              |              |
| Cepone                        | ND             | 190      | 420      | 420   | ug/kg       | 1              |              |
| Viethoxychlor                 | ND             | 4.6      | 21       | 21    | ug/kg       | 1              |              |
| Mirex                         | ND             | 6.6      | 21       | 21    | ug/kg       | 1              |              |
| Oxychlordane                  | ND             | 21       | 21       | 21    | ug/kg       | 1              |              |
| Toxaphene                     | ND             | 72       | 630      | 630   | ug/kg       | 1              |              |
| rans-Nonachior                | ND             | 21       | 21       | 21    | ug/kg       | 1              |              |
| Surr: Decachlorobiphenyl      | 64 %           | Conc:135 | 2        | 1-125 | %           |                |              |
| Surr: Tetrachloro-meta-xylene | 77 %           | Conc:163 | 7        | 8-112 | %           |                |              |



Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID:

3E30013

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

Los Angeles CA, 90012

7600 Tyrone Ave, COC Project ID: #13-1321,26, WO#

3E30013-04

LN06234

Sampled: 05/28/13 09:54

Sampled By: Client

Matrix: Solid

| Chlorinated | Pesticides | and/or PCBs |
|-------------|------------|-------------|
|             |            |             |

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | Prepared: 05/31/13 07:26 |        |       | Analyzed: 06/04/13 18:26 |           |
|-------------------------------|----------------|-----------|--------------------------|--------|-------|--------------------------|-----------|
| Analyte                       | Result         | MDL       | MRL                      | ML     | Units | Difution                 | Qualifler |
| 2,4'-DDD                      | ND             | 24        | 24                       | 24     | ug/kg | 1                        |           |
| 2,4'-DDE                      | ND             | 24        | 24                       | 24     | ug/kg | 1                        |           |
| 2,4'-DDT                      | ND             | 24        | 24                       | 24     | ug/kg | 1.                       |           |
| 4,4'-DOD                      | ND             | 4.6       | 24                       | 24     | ug/kg | 1                        |           |
| 4,4'-DDE                      | ND             | 7.4       | 24                       | 24     | ug/kg | 1                        |           |
| 4,4'-DDT                      | ND             | 5,3       | 24                       | 24     | ug/kg | 1                        |           |
| Aldrin                        | ND             | 11        | 24                       | 24     | ug/kg | 1                        |           |
| alpha-BHC                     | ND             | 14        | 24                       | 24     | ug/kg | 1                        |           |
| alpha-Chlordane               | ND             | 12        | 24                       | 24     | ug/kg | 1                        |           |
| beta-BHC                      | ND             | 7.6       | 24                       | 24     | ug/kg | 1                        |           |
| Chlordane (tech)              | ND             | 98        | 480                      | 480    | ug/kg | 1                        |           |
| cls-Nonachlor                 | ND             | 24        | 24                       | 24     | ug/kg | 1                        |           |
| DCPA                          | ND             | 24        | 24                       | 24     | ug/kg | -1                       |           |
| delta-BHC                     | ND             | 5.5       | 24                       | 24     | ug/kg | 1                        |           |
| Dieldrin                      | ND             | 7.2       | 24                       | 24     | ug/kg | 1                        |           |
| Endosulfan I                  | ND             | 5.5       | 24                       | 24     | ug/kg | 1                        |           |
| Endosulfan II                 | ND             | 3,1       | 24                       | 24     | ug/kg | 1                        |           |
| Endosulfan sulfate            | ND             | 5.3       | 24                       | 24     | ug/kg | 1                        |           |
| Endrin                        | ND             | 13        | 24                       | 24     | ug/kg | 1                        |           |
| Endrin aldehyde               | ND             | 6.7       | 24                       | 24     | ug/kg | 1                        |           |
| Endrin ketone                 | ND             | 4.4       | 24                       | 24     | ug/kg | 1                        |           |
| gamma-BHC (Lindane)           | ND             | 13        | 24                       | 24     | ug/kg | 1                        |           |
| gamma-Chlordane               | ND             | 9.6       | 24                       | 24     | ug/kg | 1                        |           |
| Heptachlor                    | ND             | 13        | 24                       | 24     | ug/kg | 1.1                      |           |
| Heptachlor epoxide            | ND             | 8.7       | 24                       | 24     | ug/kg | 1.1                      |           |
| Kepone                        | ND             | 210       | 480                      | 480    | ug/kg | 1                        |           |
| Methoxychlor                  | ND             | 5.3       | 24                       | 24     | ug/kg | 1                        |           |
| Mirex                         | ND             | 7.5       | 24                       | 24     | ug/kg | 4                        |           |
| Oxychlordane                  | ND             | 24        | 24                       | 24     | ug/kg | 1                        |           |
| Toxaphene                     | ND             | 82        | 720                      | 720    | ug/kg | 1.1                      |           |
| trans-Nonachlor               | ND             | 24        | 24                       | 24     | ug/kg | 4                        |           |
| Surr: Decachloroblphenyl      | 59 %           | Conc:141  | 2                        | 21-125 | %     |                          |           |
| Surr: Tetrachloro-meta-xylene | 67 %           | Conc:161  | 1                        | 18-112 | %     |                          |           |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/28/13 10:50

Report ID: Project ID: 3E30013

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

3E30013-05 LN06250

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/1 | 3 07:26 | Analyzed: ( | Analyst: bma |           |
|-------------------------------|----------------|-----------|---------|---------|-------------|--------------|-----------|
| Analyte                       | Result         | MDL       | MRL     | ML      | Units       | Dilution     | Qualifier |
| 2,4'-DDD                      | ND             | 23        | 23      | 23      | ug/kg       | 1            |           |
| 2,4'-DDE                      | ND             | 23        | 23      | 23      | ug/kg       | 1            |           |
| 2,4'-DDT                      | ND             | 23        | 23      | 23      | ug/kg       | 1            |           |
| 4,4*-DDD                      | ND             | 4.4       | 23      | 23      | ug/kg       | 1            |           |
| 4,4'-DDE                      | ND             | 7.1       | 23      | 23      | ug/kg       | 1            |           |
| 4,4'-DDT                      | ND             | 5.0       | 23      | 23      | ug/kg       | 1            |           |
| Aldrin                        | ND             | 11        | 23      | 23      | ug/kg       | 1            |           |
| alpha-BHC                     | ND             | 13        | 23      | 23      | ug/kg       | 1            |           |
| alpha-Chlordane               | ND             | 12        | 23      | 23      | ug/kg       | 1            |           |
| beta-BHC                      | ND             | 7.2       | 23      | 23      | ug/kg       | 1            |           |
| Chlordane (tech)              | NO             | 94        | 460     | 460     | ug/kg       | 1            |           |
| cis-Nonachlor                 | ND             | 23        | 23      | 23      | ug/kg       | 1            |           |
| DCPA                          | ND             | 23        | 23      | 23      | ug/kg       | 1            |           |
| delta-BHC                     | ND             | 5.2       | 23      | 23      | ug/kg       | 1            |           |
| Dieldrin                      | ND             | 6,9       | 23      | 23      | ug/kg       | 1            |           |
| Endosulfan I                  | ND             | 5.2       | 23      | 23      | ug/kg       | 1            |           |
| Endosulfan II                 | ND             | 2.9       | 23      | 23      | ug/kg       | 4            |           |
| Endosulfan sulfate            | ND             | 5.0       | 23      | 23      | ug/kg       | 1            |           |
| Endrin                        | ND             | 12        | 23      | 23      | ug/kg       | 1            |           |
| Endrin aldehyde               | ND             | 6.4       | 23      | 23      | ug/kg       | 1            |           |
| Endrin ketone                 | ND             | 4.2       | 23      | 23      | ug/kg       | 1            |           |
| gamma-BHC (Lindane)           | ND             | 12        | 23      | 23      | ug/kg       | 1 -          |           |
| gamma-Chlordane               | ND             | 9.2       | 23      | 23      | ug/kg       | 1            |           |
| Heptachlor                    | ND             | 12        | 23      | 23      | ug/kg       | 1            |           |
| Heptachlor epoxide            | ND             | 8.3       | 23      | 23      | ug/kg       | 1            |           |
| Kepone                        | ND             | 200       | 460     | 460     | ug/kg       | 1            |           |
| Methoxychlor                  | ND             | 5.0       | 23      | 23      | ug/kg       | 1            |           |
| xerilly                       | ND             | 7.2       | 23      | 23      | ug/kg       | 1            |           |
| Oxychlordane                  | ND             | 23        | 23      | 23      | ug/kg       | 1            |           |
| охарнепе                      | ND             | 79        | 690     | 690     | ug/kg       | 1            |           |
| rans-Nonachlor                | ND             | 23        | 23      | 23      | ug/kg       | 1            |           |
| Surr: Decachlorobiphenyl      | 64 %           | Conc: 146 |         | 21-125  | %           |              |           |
| Surr: Tetrachloro-meta-xylene | 65 %           | Conc:148  |         | 18-112  | %           |              |           |



Analytical Laboratory Service - Since 1964



Report ID: 3E30013

Date Rece

05/30/13 09:50

Los Angeles CA, 90012

**Project ID:** 7600 Tyrone Ave, COC #13-1321, 26, WO#

Date Received: Date Reported:

06/13/13 15:54

3E30013-06

LN06252

Sampled: 05/28/13 10:54

Sampled By: Client

Matrix: Solid

#### Chlorinated Pesticides and/or PCBs

| Method: EPA 8081A             | Batch: V | V3E1479 | Prepared: | Prepared: 05/31/13 07:26 |        |       | 06/04/13 19:23 | Analyst: bma |
|-------------------------------|----------|---------|-----------|--------------------------|--------|-------|----------------|--------------|
| Analyte                       |          | Result  | MDL       | MRL                      | ML     | Units | Dilution       | Qualifier    |
| 2,4'-DDD                      |          | ND      | 23        | 23                       | 23     | ug/kg | 1              |              |
| 2,4'-DDE                      |          | ND      | 23        | 23                       | 23     | ug/kg | 1              |              |
| 2,4'-DDT                      |          | ND      | 23        | 23                       | 23     | ug/kg | 1              |              |
| 4,4~DDD                       |          | ND      | 4.4       | 23                       | 23     | ug/kg | 1              |              |
| 4,4´-DDE                      |          | ND      | 7.1       | 23                       | 23     | ug/kg | 1              |              |
| 4,4'-DDT                      |          | ND      | 5.1       | 23                       | 23     | ug/kg | 1              |              |
| Aldrin                        |          | ND      | 11        | 23                       | 23     | ug/kg | 1              |              |
| alpha-BHC                     |          | ND      | 13        | 23                       | 23     | ug/kg | 1              |              |
| alpha-Chlordane               |          | ND      | 12        | 23                       | 23     | ug/kg | 1              |              |
| beta-BHC                      |          | ND      | 7.3       | 23                       | 23     | ug/kg | 1              |              |
| Chlordane (tech)              |          | ND      | 94        | 460                      | 460    | ug/kg | 1              |              |
| cis-Nonachlor                 |          | ND      | 23        | 23                       | 23     | ug/kg | 1              |              |
| DCPA                          |          | ND      | 23        | 23                       | 23     | ug/kg | x 1            |              |
| delta-BHC                     | 22       | ND      | 5.3       | 23                       | 23     | ug/kg | 1              |              |
| Dieldrin                      |          | ND      | 6.9       | 23                       | 23     | ug/kg | 1              |              |
| Endosulfan I                  |          | ND      | 5,3       | 23                       | 23     | ug/kg | 1              |              |
| Endosulfan II                 |          | ND      | 2.9       | 23                       | 23     | ug/kg | 1              |              |
| Endosulfan sulfate            |          | ND      | 5.1       | 23                       | 23     | ug/kg | 1              |              |
| Endrin                        |          | ND      | 12        | 23                       | 23     | ug/kg | 1              |              |
| Endrin aldehyde               |          | ND      | 6.5       | 23                       | 23     | ug/kg | 1              |              |
| Endrin ketone                 |          | ND      | 4.2       | 23                       | 23     | ug/kg | 1              |              |
| gamma-BHC (Lindane)           |          | ND      | 12        | 23                       | 23     | ug/kg | 1              |              |
| gamma-Chlordane               |          | ND      | 9.2       | 23                       | 23     | ug/kg | 1              |              |
| Heptachlor                    |          | ND      | 13        | 23                       | 23     | ug/kg | 1              |              |
| Heptachlor epoxide            |          | ND      | 8.4       | 23                       | 23     | ug/kg | 1              |              |
| Kepone                        | 2        | ND      | 200       | 460                      | 460    | ug/kg | 1              |              |
| Methoxychlor                  |          | ND      | 5.1       | 23                       | 23     | ug/kg | 1              |              |
| Mirex                         |          | ND      | 7.2       | 23                       | 23     | ug/kg | 1              |              |
| Oxychlordane                  |          | ND      | 23        | 23                       | 23     | ug/kg | 1              |              |
| Toxaphene                     |          | ND      | 79        | 690                      | 690    | ug/kg | 1              |              |
| trans-Nonachlor               |          | ND      | 23        | 23                       | 23     | ug/kg | 1              |              |
| Surr: Decachlorobiphenyl      |          | 63 %    | Conc:146  |                          | 21-125 | %     |                |              |
| Surr: Tetrachloro-meta-xylene |          | 64 %    | Conc: 147 |                          | 18-112 | %     |                | 9            |
| ·                             |          |         |           |                          |        |       |                |              |

Page 8 of 23



Sampled: 05/29/13 07:45

Analytical Laboratory Service - Since 1984

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID:

7600 Tyrone Ave,COC

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-07 LN06320

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared  | Prepared: 05/31/13 07:26 |       |       | Analyzed: 06/04/13 19:51 |           |  |
|-------------------------------|----------------|-----------|--------------------------|-------|-------|--------------------------|-----------|--|
| Analyte                       | Result         | MDL       | MRL                      | ML    | Units | Dilution                 | Qualifier |  |
| 2,4'-DDD                      | ND             | 21        | 21                       | 21    | ug/kg | 1.                       |           |  |
| 2,4'-DDE                      | ND             | 21        | 21                       | 21    | ug/kg | 1                        |           |  |
| 2,4'-DDT                      | ND             | 21        | 21                       | 21    | ug/kg | .1                       |           |  |
| 4,4'-DDD                      | ND             | 4.0       | 21                       | 21    | ug/kg | 1                        |           |  |
| 4,4'-DDE                      | 40             | 6.3       | 21                       | 21    | ug/kg | 1                        |           |  |
| 4,4'-DDT                      | 10             | 4.5       | 21                       | 21    | ug/kg | 1                        | 1         |  |
| Aldrin                        | ND             | 9,5       | 21                       | 21    | ug/kg | 1                        |           |  |
| alpha-BHC                     | ND             | 12        | 21                       | 21    | ug/kg | 1                        |           |  |
| alpha-Chlordane               | ND             | 11        | 21                       | 21    | ug/kg | 4                        |           |  |
| beta-BHC                      | ND             | 8.5       | 21                       | 21    | ug/kg | t                        |           |  |
| Chlordane (tech)              | ND             | 84        | 410                      | 410   | ug/kg | 1                        |           |  |
| cis-Nonachlor                 | ND             | 21        | 21                       | 21    | ug/kg | 1                        |           |  |
| DCPA                          | ND             | 21        | 21                       | 21    | ug/kg | 4                        |           |  |
| delta-BHC                     | ND             | 4.7       | 21                       | 21    | ug/kg |                          |           |  |
| Dieldrin                      | ND             | 8.2       | 21                       | 21    | ug/kg | 1                        |           |  |
| Endosulfan I                  | ND             | 4.7       | 21                       | 21    | ug/kg | 1                        |           |  |
| Endosulfan II                 | ND             | 2.6       | 21                       | 21    | ug/kg | 1                        |           |  |
| Endosulfan sulfate            | ND             | 4.5       | 21                       | 21    | ug/kg | 1                        |           |  |
| Endrin                        | ND             | 11        | 21                       | 21    | ug/kg | 11                       |           |  |
| Endrin aldehyde               | ND             | 5.8       | 21                       | 21    | ug/kg | 1                        |           |  |
| Endrin ketone                 | ND             | 3.8       | 21                       | 21    | ug/kg | 1                        |           |  |
| gamma-BHC (Lindane)           | ND             | 11        | 21                       | 21    | ug/kg | 3.                       |           |  |
| gamma-Chlordane               | ND             | 8.2       | 21                       | 21    | ug/kg | 1                        |           |  |
| Heptachlor                    | ND             | 11        | 21                       | 21    | ug/kg | 1                        |           |  |
| Heptachlor epoxide            | ND             | 7.5       | 21                       | 21    | ug/kg | 1                        |           |  |
| Kepone                        | ND             | 180       | 410                      | 410   | ug/kg | 1                        |           |  |
| Methoxychlor                  | ND             | 4.5       | 21                       | 21    | ug/kg | 1                        |           |  |
| Mirex                         | ND             | 6.4       | 21                       | 21    | ug/kg | 1                        |           |  |
| Oxychlordane                  | ND             | 21        | 21                       | 21    | ug/kg | 1                        |           |  |
| Toxaphene                     | ND             | 71        | 620                      | 620   | ug/kg | 1                        |           |  |
| trans-Nonachlor               | ND             | 21        | 21                       | 21    | ug/kg | 1                        |           |  |
| Surr: Decachloroblphenyl      | 66 %           | Conc:135  | 2                        | 1-125 | %     |                          |           |  |
| Surr; Tetrachloro-meta-xylene | 70 %           | Conc: 144 | 1                        | B-112 | %     |                          |           |  |





Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: Project ID:

3E30013

7600 Tyrone Ave, COC #13-1321,26, WO# Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

3E30013-08

LN06322

Sampled: 05/29/13 07:49

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared  | Prepared: 05/31/13 07:26 |       |       | Analyzed: 06/04/13 20:20 |           |
|-------------------------------|----------------|-----------|--------------------------|-------|-------|--------------------------|-----------|
| Analyte                       | Result         | MDL       | MRL                      | ML    | Units | Dilution                 | Qualifier |
| 2,4'-DDD                      | ND             | 25        | 25                       | 2.5   | ug/kg | 1                        |           |
| 2,4'-DDE                      | ND             | 25        | 25                       | 25    | ug/kg | 1                        |           |
| 2,4'-DDT                      | ND             | 25        | 25                       | 25    | ug/kg | 1                        |           |
| 4,4*-DDD                      | ND             | 4.8       | 25                       | 25    | ug/kg | 1                        |           |
| 4,4'-DDE                      | ND             | 7.7       | 25                       | 25    | ug/kg | 1                        |           |
| 4,4'-DDT                      | ND             | 5.5       | 25                       | 25    | ug/kg | 1                        |           |
| Aldrin                        | ND             | 12        | 25                       | 25    | ug/kg | -1                       |           |
| alpha-BHC                     | ND             | 15        | 25                       | 25    | ug/kg | 1                        |           |
| alpha-Chlordane               | ND             | 13        | 25                       | 25    | ug/kg | 1                        |           |
| beta-BHC                      | ND             | 7.9       | 25                       | 25    | ug/kg | 1                        |           |
| Chlordane (tech)              | ND             | 100       | 500                      | 500   | ug/kg | 1                        |           |
| cls-Nonachfor                 | ND             | 25        | 25                       | 25    | ug/kg | 3                        |           |
| DCPA                          | ND             | 25        | 25                       | 25    | ug/kg | 1                        |           |
| delta-BHC                     | ND             | 5.7       | 25                       | 25    | ug/kg | 1                        |           |
| Dieldrin                      | ND             | 7.5       | 25                       | 25    | ug/kg | 1                        |           |
| Endosulfan I                  | ND             | 5.7       | 25                       | 25    | ug/kg | 1                        |           |
| Endosulfan II                 | ND             | 3.2       | 25                       | 25    | ug/kg | 4                        |           |
| Endosulfan sulfate            | ND             | 5.5       | 25                       | 25    | ug/kg | 1                        |           |
| Endrin                        | ND             | 13        | 25                       | 25    | ug/kg | 1                        |           |
| Endrin aldehyde               | ND             | 7.0       | 25                       | 25    | ug/kg | 1                        |           |
| Endrin ketone                 | ND             | 4.6       | 25                       | 25    | ug/kg | 1                        |           |
| gamma-BHC (Lindane)           | ND             | 13        | 25                       | 25    | ug/kg | 1                        |           |
| gamma-Chlordane               | ND             | 10        | 25                       | 25    | ug/kg | 1                        |           |
| -leptachlor                   | ND             | 14        | 25                       | 25    | ug/kg | 1                        |           |
| Heptachlor epoxide            | ND             | 9.1       | 25                       | 25    | ug/kg | 1                        |           |
| Kepone                        | ND             | 220       | 500                      | 500   | ug/kg | 1                        |           |
| Methoxychlor                  | NO             | 5.5       | 25                       | 25    | ug/kg | 4                        |           |
| Mirex                         | ND             | 7.8       | 25                       | 25    | ug/kg | 1                        |           |
| Dxychlordane                  | ND             | 25        | 25                       | 25    | ug/kg | 1                        |           |
| foxaphene                     | ND             | 85        | 750                      | 750   | ug/kg | 1                        |           |
| rans-Nonachlor                | ND             | 25        | 25                       | 25    | ug/kg | 1                        |           |
| Surr: Decachiorobiphenyl      | 63 %           | Conc:156  | 2                        | 1-125 | %     |                          |           |
| Surr: Tetrachloro-meta-xylene | 65 %           | Conc; 162 | 1                        | 8-112 | %     |                          |           |



Sampled: 05/29/13 08:00

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-09 LN06323

Sampled By: Client

Matrix: Solld

| Analyst: bma | /04/13 20:48 | Analyzed: 06 | 07:26      | 05/31/13 | Prepared:      | Batch: W3E1479 | Method: EPA 8081A                                                      |
|--------------|--------------|--------------|------------|----------|----------------|----------------|------------------------------------------------------------------------|
| Qualifier    | Dilution     | Units        | ML         | MRL      | MDL            | Result         | Analyte                                                                |
|              | 1            | ug/kg        | 24         | 24       | 24             | ND             | 2,4'-DDD                                                               |
|              | 1            | ug/kg        | 24         | 24       | 24             | ND             | 2,4'-DDE                                                               |
|              | 1            | ug/kg        | 24         | 24       | 24             | ND             | 2,4'-DDT                                                               |
|              | 1            | ug/kg        | 24         | 24       | 4.7            | ND             | 4,4'-DDD                                                               |
|              | 1            | ug/kg        | 24         | 24       | 7.5            | ND             | 4,4'-DDE                                                               |
|              | 1            | ug/kg        | 24         | 24       | 5.3            | ND             | 4,4'-DDT                                                               |
|              | 1            | ug/kg        | 24         | 24       | 71             | ND             | Aldrin                                                                 |
|              | 11           | ug/kg        | 24         | 24       | 14             | ND             | alpha-BHC                                                              |
|              | 4            | ug/kg        | 24         | 24       | 13             | ND             | alpha-Chlordane                                                        |
|              | 1            | ug/kg        | 24         | 24       | 7.7            | ND             | beta-BHC                                                               |
|              | à.           | ug/kg        | 490        | 490      | 99             | ND             | Chlordane (tech)                                                       |
|              | 4            | ug/kg        | 24         | 24       | 24             | ND             | cis-Nonachlor                                                          |
|              | 1            | ug/kg        | 24         | 24       | 24             | ND             | DCPA                                                                   |
|              | 1            | ug/kg        | 24         | 24       | 5.5            | ND             | delta-BHC                                                              |
|              | 1            | ug/kg        | 24         | 24       | 7.3            | ND             | Dieldrin                                                               |
|              | 1            | ug/kg        | 24         | 24       | 5.5            | ND             | Endosulfan I                                                           |
|              | 4            | ug/kg        | 24         | 24       | 3.1            | ND             | Endosulfan II                                                          |
|              | 1            | ug/kg        | 24         | 24       | 5.3            | ND             | Endosulfan sulfate                                                     |
|              | 1            | ug/kg        | 24         | 24       | 13             | ND             | Endrin                                                                 |
|              | 1            | ug/kg        | 24         | 24       | 6.8            | ND             | Endrin aldehyde                                                        |
|              | 1            | ug/kg        | 24         | 24       | 4.5            | ND             | Endrin ketone                                                          |
|              | 1            | ug/kg        | 24         | 24       | 13             | ND             | gamma-BHC (Lindane)                                                    |
|              | 1            | ug/kg        | 24         | 24       | 9.7            | ND             | gamma-Chlordane                                                        |
|              | 1            | ug/kg        | 24         | 24       | 13             | ND             | leptachlor                                                             |
|              | 1            | ug/kg        | 24         | 24       | 8.8            | ND             | feptachlor epoxide                                                     |
|              | 1            | ug/kg        | 490        | 490      | 210            | ND             | Cepone                                                                 |
|              | 4            | ug/kg        | 24         | 24       | 5.3            | ND             | Methoxychlor                                                           |
|              | 1            | ug/kg        | 24         | 24       | 7.6            | ND             | Mirex                                                                  |
|              | 1            | ug/kg        | 24         | 24       | 24             | ND             | Oxychlordane                                                           |
|              | 1            | ug/kg        | 730        | 730      | 83             | ND             | Toxaphene                                                              |
|              | 1            | ug/kg        | 24         | 24       | 24             | ND             | rans-Nonachior                                                         |
|              |              | %            | -125       | 21       | Conc:157       | 65 %           | Surr: Decachloroblphenyl                                               |
|              |              | %            | -112       | 18       | Conc: 191      | 79 %           | Surr: Tetrachloro-meta-xylene                                          |
|              | 1            | ug/kg<br>%   | 24<br>-125 | 24 21    | 24<br>Conc:157 | ND<br>65 %     | trans-Nonachior Surr: Decachiorobiphenyl Surr: Tetrachioro-meta-xylene |



Analytical Laboratory Service - Since 1984



Sampled: 05/29/13 08:04

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID:

3E30013

Project ID: #13-1321,26, WO#

7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

3E30013-10

LN06325

Sampled By: Client

Matrix: Solid

| Chlorinated | Pesticides | and/or PCBs |
|-------------|------------|-------------|
|-------------|------------|-------------|

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: 0 | 6/04/13 23:38 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 2,4'-DDE                      | NO             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 4,4*-DDD                      | ND             | 4.5       | 23       | 23      | ug/kg       | 4             |              |
| 4,4'-DDE                      | 15             | 7.2       | 23       | 23      | ug/kg       | 1             | -1           |
| 4,4'-DDT                      | 7.8            | 5.2       | 23       | 23      | ug/kg       | 1             | - 0          |
| Aldrin                        | ND             | 11        | 23       | 23      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 23       | 23      | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 12        | 23       | 23      | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.4       | 23       | 23      | ug/kg       | -1            |              |
| Chlordane (tech)              | ND.            | 96        | 470      | 470     | ug/kg       | 1             |              |
| cis-Nonachior                 | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| DCPA                          | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| della-BHC                     | ND             | 5.4       | 23       | 23      | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 7.0       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.4       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.0       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.2       | 23       | 23      | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 23       | 23      | ug/kg       | - 1           |              |
| Endrin aldehyde               | ND             | 6.6       | 23       | 23      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.3       | 23       | 23      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 12        | 23       | 23      | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.4       | 23       | 23      | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 13        | 23       | 23      | ug/kg       | 1             |              |
| Heptachtor epoxide            | ND             | 8.5       | 23       | 23      | ug/kg       | 1             |              |
| Kepone                        | ND             | 210       | 470      | 470     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.2       | 23       | 23      | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.3       | 23       | 23      | ug/kg       | 1.1           |              |
| Oxychlordane                  | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| oxaphene                      | ND             | 80        | 700      | 700     | ug/kg       | 1.            |              |
| rans-Nonachlor                | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 64 %           | Conc:150  | 2        | 1-125   | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 65 %           | Conc:152  | 1        | 8-112   | %           |               |              |

Page 12 of 23



Sampled: 05/29/13 08:10

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30013 Project ID:

7600 Tyrone Ave, COC

Date Received: Date Reported:

05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-11 LN06326

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared | 05/31/13 | 3 07:26 | Analyzed: 06/05/13 00:06 |          | Analyst: bma |
|-------------------------------|----------------|----------|----------|---------|--------------------------|----------|--------------|
| Analyte                       | Result         | MDL      | MRL      | ML      | Units                    | Dilution | Qualifier    |
| 2,4'-DDD                      | ND             | 22       | 22       | 22      | ug/kg                    | 1        |              |
| 2,4'-DDE                      | NO             | 22       | 22       | 22      | ug/kg                    | 1        |              |
| 2,4'-DDT                      | ND             | 22       | 22       | 22      | ug/kg                    | 1        |              |
| 4,4'-DDD                      | ND             | 4.2      | 22       | 22      | ug/kg                    | 1        |              |
| 4,4'-DDE                      | ND             | 6.8      | 22       | 22      | ug/kg                    | 1        |              |
| 4,4'-DDT                      | ND             | 4.8      | 22       | 22      | ug/kg                    | 1        |              |
| Aldrin                        | ND             | 10       | 22       | 22      | ug/kg                    | 1        |              |
| alpha-BHC                     | ND             | 13       | 22       | 22      | ug/kg                    | 1        |              |
| alpha-Chlordane               | ND             | 11       | 22       | 22      | ug/kg                    | 1        |              |
| beta-BHC                      | ND             | 6.9      | 22       | 22      | ug/kg                    | 1.       |              |
| Chlordane (tech)              | ND             | 89       | 440      | 440     | ug/kg                    | 1        |              |
| cfs-Nonachlor                 | ND             | 22       | 22       | 22      | ug/kg                    | 1.1      |              |
| DCPA                          | ND             | 22       | 22       | 22      | ug/kg                    | 4        |              |
| delta-BHC                     | ND             | 5.0      | 22       | 22      | ug/kg                    | 1        |              |
| Dieldrin                      | ND             | 6.6      | 22       | 22      | ug/kg                    | 1        |              |
| Endosulfan I                  | NO             | 5.0      | 22       | 22      | ug/kg                    | 1        |              |
| Endosulfan II                 | ND             | 2.8      | 22       | 22      | ug/kg                    | .7       |              |
| Endosulfan sulfate            | ND             | 4.8      | 22       | 22      | ug/kg                    | 1.       |              |
| Endrin                        | ND             | 12       | 22       | 22      | ug/kg                    | 1        |              |
| Endrin aldehyde               | ND             | 6.1      | 22       | 22      | ug/kg                    | 4        |              |
| Endrin ketone                 | ND             | 4.0      | 22       | 22      | ug/kg                    | 1        |              |
| gamma-BHC (Lindane)           | NO             | 11       | 22       | 22      | ug/kg                    | 1        |              |
| gamma-Chlordane               | ND             | 8.8      | 22       | 22      | ug/kg                    | 1        |              |
| leptachlor                    | ND             | 12       | 22       | 22      | ug/kg                    | 1        |              |
| Heptachlor epoxide            | ND             | 0.8      | 22       | 22      | цg/kg                    | 1.       |              |
| Kepone                        | ND             | 190      | 440      | 440     | ug/kg                    | 1        |              |
| Methoxychlor                  | ND             | 4.8      | 22       | 22      | ug/kg                    | 1        |              |
| Mirex                         | ND             | 6,8      | 22       | 22      | ug/kg                    | 1        |              |
| Oxychlordane                  | ND             | 22       | 22       | 22      | ug/kg                    | 1        |              |
| Toxaphene                     | ND             | 75       | 660      | 660     | ug/kg                    | 1        |              |
| rans-Nonachlor                | ND             | 22       | 22       | 22      | ug/kg                    | 1        |              |
| Surr: Decachiorobiphenyl      | 63 %           | Conc:137 |          | 21-125  | %                        |          |              |
| Surr: Tetrachloro-meta-xylene | 59 %           | Conc:129 |          | 18-112  | %                        |          |              |



LADWP - Environmental Laboratorv 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/29/13 08:14

Report ID:

3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

3E30013-12 LN06328

Sampled By: Client

Matrix: Solld

| Method: EPA 8081A            | Batch: W3E1479 | Prepared: 05/31/13 07:26 |     |       | Analyzed: 06/05/13 00:34 |          | Analyst: bma |
|------------------------------|----------------|--------------------------|-----|-------|--------------------------|----------|--------------|
| Analyte                      | Result         | MDL                      | MRL | ML    | Units                    | Dilution | Qualifier    |
| 2,4'-DDD                     | ND             | 24                       | 24  | 24    | ug/kg                    | 4        |              |
| 2,4'-DDE                     | NO             | 24                       | 24  | 24    | ug/kg                    | 1        |              |
| 2,4'-DDT                     | 190            | 24                       | 24  | 24    | ug/kg                    | *        |              |
| 4,4'-DDD                     | ND             | 4.7                      | 24  | 24    | ug/kg                    | 1        |              |
| 4,4'-DDE                     | 740            | 37                       | 120 | 120   | ug/kg                    | 5        | M-06         |
| 4,4'-DDT                     | 270            | 5.3                      | 24  | 24    | ug/kg                    | 1        |              |
| Aldrin                       | ND             | 11                       | 24  | 24    | ug/kg                    | 1        |              |
| alpha-BHC                    | ND             | 14                       | 24  | 24    | ug/kg                    | 1        |              |
| alpha-Chlordane              | ND             | 13                       | 24  | 24    | ug/kg                    | 1        |              |
| beta-BHC                     | 37             | 7.7                      | 24  | 24    | ug/kg                    | 1        |              |
| Chlordane (tech)             | ND             | 99                       | 490 | 490   | ug/kg                    | 1        |              |
| cis-Nonachlor                | ND             | 24                       | 24  | 24    | ug/kg                    | 1        |              |
| DCPA                         | ND             | 24                       | 24  | 24    | ug/kg                    | 4        |              |
| delta-BHC                    | ND             | 5.5                      | 24  | 24    | ug/kg                    | 1        |              |
| Dieldrin                     | ND             | 7,3                      | 24  | 24    | ug/kg                    | 1        |              |
| Endosulfan I                 | ND             | 5.5                      | 24  | 24    | ug/kg                    | 4        |              |
| Endosulfan II                | ND             | 3.1                      | 24  | 24    | ug/kg                    | 1        |              |
| Endosulfan sulfate           | ND             | 5.3                      | 24  | 24    | ug/kg                    | 1        |              |
| Endrin                       | ND             | 13                       | 24  | 24    | ug/kg                    | 1        |              |
| Endrin aldehyde              | ND             | 6.8                      | 24  | 24    | ug/kg                    | -1.      |              |
| Endrin ketone                | ND             | 4.5                      | 24  | 24    | ug/kg                    | 1        |              |
| gamme-BHC (Lindane)          | ND             | 13                       | 24  | 24    | ug/kg                    | 1        |              |
| gamma-Chlordane              | ND             | 9.7                      | 24  | 24    | ug/kg                    | 1        |              |
| Heptachlor                   | ND             | 13                       | 24  | 24    | ug/kg                    | 1        |              |
| Heptachlor epoxide           | ND             | 8.8                      | 24  | 24    | ug/kg                    | 1        |              |
| Cepone                       | ND             | 210                      | 490 | 490   | ug/kg                    | 1        |              |
| Methoxychlor                 | ND             | 5.3                      | 24  | 24    | ug/kg                    | 1        |              |
| Mirex                        | ND             | 7.6                      | 24  | 24    | ug/kg                    | 1        |              |
| Oxychlordane                 | ND             | 24                       | 24  | 24    | ug/kg                    | 11       |              |
| Toxaphene                    | 2400           | 83                       | 730 | 730   | ug/kg                    | 1        |              |
| rans-Nonachlor               | ND             | 24                       | 24  | 24    | ug/kg                    | 7        |              |
| Surr: Decachlorobiphenyl     | 63 %           | Conc: 154                | 2   | 1-125 | %                        |          |              |
| Sun: Tetrachloro-meta-xylene | 61 %           | Conc:148                 | 1   | 8-112 | %                        |          |              |





Sampled: 05/29/13 08:40

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID:

7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-13 LN06332

Sampled By: Client

Matrix: Solid

#### Chlorinated Pesticides and/or PCBs

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | Prepared: 05/31/13 07:26 |        |       | Analyzed: 06/05/13 01:02 |           |
|-------------------------------|----------------|-----------|--------------------------|--------|-------|--------------------------|-----------|
| Analyte                       | Result         | MDL       | MRL                      | ML     | Units | Dilution                 | Qualifier |
| 2,4'-DDD                      | ND             | 25        | 25                       | 25     | ug/kg | 1                        |           |
| 2,4'-DDE                      | ND             | 25        | 25                       | 25     | ug/kg | 1                        |           |
| 2,4'-DDT                      | ND             | 25        | 25                       | 25     | ug/kg | 1                        |           |
| 4,4'-DDD                      | ND             | 4.7       | 25                       | 25     | ug/kg | 3                        |           |
| 4.4'-DDE                      | ND             | 7,5       | 25                       | 25     | ug/kg | 1.                       |           |
| 4,4'-DDT                      | ND             | 5.4       | 25                       | 25     | ug/kg | 1.                       |           |
| Aldrin                        | ND             | 11        | 25                       | 25     | ug/kg | 1                        |           |
| alpha-BHC                     | ND             | 14        | 25                       | 25     | ug/kg | 1                        |           |
| alpha-Chlordane               | ND             | 13        | 25                       | 25     | ug/kg | 1.                       |           |
| beta-BHC                      | ND             | 7.7       | 25                       | 25     | ug/kg | 1.                       |           |
| Chlordane (tech)              | ND             | 100       | 490                      | 490    | ug/kg | 31                       |           |
| cis-Nonachlor                 | ND             | 25        | 25                       | 25     | ug/kg | 1                        |           |
| DCPA                          | ND             | 25        | 25                       | 25     | ug/kg | 1                        |           |
| delta-BHC                     | ND             | 5.6       | 25                       | 25     | ug/kg | 1.1                      |           |
| Dieldrin                      | ND             | 7.4       | 25                       | 25     | ug/kg | 1                        |           |
| Endosulfan I                  | ND             | 5.6       | 25                       | 25     | ug/kg | 1                        |           |
| Endosulfan II                 | ND             | 3.1       | 25                       | 25     | ug/kg | 1                        |           |
| Endosulfan sulfate            | ND             | 5.4       | 25                       | 25     | ug/kg | 1                        |           |
| Endrin                        | ND             | 13        | 25                       | 25     | ug/kg | 1                        |           |
| Endrin aldehyde               | ND             | 6.9       | 25                       | 25     | ug/kg | -1                       |           |
| Endrin ketone                 | ND             | 4.5       | 25                       | 25     | ug/kg | 1                        |           |
| gamma-BHC (Lindane)           | ND             | 13        | 25                       | 25     | ug/kg | 1                        |           |
| gamma-Chlordane               | ND             | 9.8       | 25                       | 25     | ug/kg | 1                        |           |
| Heptachlor                    | ND             | 13        | 25                       | 25     | ug/kg | 1                        |           |
| Heptachlor epoxide            | ND             | 8.9       | 25                       | 25     | ug/kg | 1                        |           |
| Kepone                        | ND             | 220       | 490                      | 490    | ug/kg | 1                        |           |
| Methoxychlor                  | ND             | 5.4       | 25                       | 25     | ug/kg | 1                        |           |
| Mirex                         | ND             | 7.6       | 25                       | 25     | ug/kg | 1                        |           |
| Oxychlordane                  | ND             | 25        | 25                       | 25     | ug/kg | 1                        |           |
| Toxaphene                     | ND             | 84        | 740                      | 740    | ug/kg | 1                        |           |
| trans-Nonachior               | ND             | 25        | 25                       | 25     | ug/kg | 1                        |           |
| Surr: Decachlorobiphenyl      | 56 %           | Conc: 138 |                          | 21-125 | %     |                          |           |
| Surr: Tetrachloro-meta-xylene | 67 %           | Conc:165  |                          | 18-112 | %     |                          |           |

Page 15 of 23



WIL

Sampled: 05/29/13 08:44

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bidg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-14

LN06334

Sampled By: Client

Matrix: Solid

#### Chlorinated Pesticides and/or PCBs

| Method: EPA 8081A             | Batch: W3E1479 | Prepared  | Prepared: 05/31/13 07:26 |       |       | Analyzed: 06/05/13 01:31 |           |  |
|-------------------------------|----------------|-----------|--------------------------|-------|-------|--------------------------|-----------|--|
| Analyte                       | Result         | MDL       | MRL                      | ML    | Units | Dilution                 | Qualifler |  |
| 2,4'-DOD                      | ND             | 24        | 24                       | 24    | ug/kg | 1                        |           |  |
| 2,4'-DDE                      | ND             | 24        | 24                       | 24    | ug/kg | 1                        |           |  |
| 2,4'-DDT                      | ND             | 24        | 24                       | 24    | ug/kg | 1                        |           |  |
| 4,4'-DDD                      | ND             | 4.5       | 24                       | 24    | ug/kg | 1                        |           |  |
| 4,4'-DDE                      | ND             | 7.3       | 24                       | 24    | ug/kg | 1                        |           |  |
| 4,4'-DDT                      | ND             | 5.2       | 24                       | 24    | ug/kg | 1                        |           |  |
| Aldrin                        | ND             | 11        | 24                       | 24    | ug/kg | 1                        |           |  |
| alpha-BHC                     | ND             | 14        | 24                       | 24    | ug/kg | 1                        |           |  |
| alpha-Chlordane               | ND             | 12        | 24                       | 24    | ug/kg | 1                        |           |  |
| beta-BHC                      | ND             | 7.5       | 24                       | 24    | ug/kg | 1                        |           |  |
| Chlordane (tech)              | ND             | 97        | 470                      | 470   | ug/kg | 1                        |           |  |
| cls-Nonachlor                 | ND             | 24        | 24                       | 24    | ug/kg | 1.                       |           |  |
| DCPA                          | ND             | 24        | 24                       | 24    | ug/kg | 1                        |           |  |
| delta-BHC                     | ND             | 5.4       | 24                       | 24    | ug/kg | 3.0                      |           |  |
| Dieldrin                      | ND             | 7.1       | 24                       | 24    | ug/kg | 4                        |           |  |
| Endosulfan                    | ND             | 5.4       | 24                       | 24    | ug/kg | 4                        |           |  |
| Endosulfan II                 | ND             | 3.0       | 24                       | 24    | ug/kg | +                        |           |  |
| Endosulfan sulfate            | ND             | 5.2       | 24                       | 24    | ug/kg | 1                        |           |  |
| Endrin                        | ND             | 13        | 24                       | 24    | ug/kg | 1                        |           |  |
| Endrin aldehyde               | ND             | 6.6       | 24                       | 24    | ug/kg | 4                        |           |  |
| Endrin ketone                 | ND             | 4.4       | 24                       | 24    | ug/kg | 40                       |           |  |
| gamma-BHC (Lindane)           | ND             | 12        | 24                       | 24    | ug/kg | 7                        |           |  |
| gamma-Chlordane               | ND             | 9.5       | 24                       | 24    | ug/kg | 1                        |           |  |
| Heptachlor                    | ND             | 13        | 24                       | 24    | ug/kg | 1                        |           |  |
| Heptachlor epoxide            | ND             | 8.6       | 24                       | 24    | ug/kg | 1                        |           |  |
| Kepone                        | ND             | 210       | 470                      | 470   | ug/kg | 1                        |           |  |
| Methoxychlor                  | ND             | 5.2       | 24                       | 24    | ug/kg | 1                        |           |  |
| Mirex                         | ND             | 7.4       | 24                       | 24    | ug/kg | 1                        |           |  |
| Oxychlordane                  | ND             | 24        | 24                       | 24    | ug/kg | 1                        |           |  |
| Toxaphene                     | ND             | 81        | 710                      | 710   | ug/kg | 1                        |           |  |
| trans-Nonachlor               | ND             | 24        | 24                       | 24    | ug/kg | 4                        |           |  |
| Surr, Decachlorobiphenyl      | 64 %           | Conc: 152 | 2                        | 1-125 | %     |                          |           |  |
| Surr: Tetrachloro-meta-xylene | 70 %           | Conc: 165 | 1                        | 8-112 | %     |                          |           |  |

Page 16 of 23



WIL

Sampled: 05/29/13 09:30

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

3E30013-15 LN06341

Sampled By: Client

Matrix: Solid

#### Chlorinated Pesticides and/or PCBs

|                               | Chlorina       | led Pesticid | es and/o | or PCBs |             |               |              |
|-------------------------------|----------------|--------------|----------|---------|-------------|---------------|--------------|
| Method: EPA 8081A             | Batch: W3E1479 | Prepared     | 05/31/13 | 3 07:26 | Analyzed: 0 | 6/05/13 02:00 | Analyst: bma |
| Analyte                       | Result         | MDL          | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 24           | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 24           | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 24           | 24       | 24      | ug/kg       | 1             |              |
| 4,4°-DDD                      | ND             | 4.6          | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.4          | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.3          | 24       | 24      | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11           | 24       | 24      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14           | 24       | 24      | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 12           | 24       | 24      | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.6          | 24       | 24      | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 98           | 480      | 480     | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 24           | 24       | 24      | ug/kg       | 1             |              |
| DCPA                          | ND             | 24           | 24       | 24      | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.5          | 24       | 24      | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 7.2          | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5,5          | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.1          | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.3          | 24       | 24      | ug/kg       | 1             |              |
| Endrin                        | ND             | 13           | 24       | 24      | ug/kg       | 4             |              |
| Endrin aldehyde               | ND             | 6.7          | 24       | 24      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.4          | 24       | 24      | ug/kg       | 1             |              |
| gamma-BHC (Lindana)           | ND             | 13           | 24       | 24      | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9,6          | 24       | 24      | ug/kg       | 1             |              |
| Teptachlor                    | ND             | 13           | 24       | 24      | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.8          | 24       | 24      | ug/kg       | 4             |              |
| Kepone                        | ND             | 210          | 480      | 480     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.3          | 24       | 24      | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.5          | 24       | 24      | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 24           | 24       | 24      | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 82           | 720      | 720     | ug/kg       | 1             |              |
| rans-Nonachlor                | ND             | 24           | 24       | 24      | ug/kg       | 1             |              |
| Surr; Decachlorobiphenyl      | 63 %           | Conc:151     |          | 1-125   | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 69 %           | Conc: 166    | 1        | 8-112   | %           |               |              |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

08/13/13 15:54

3E30013-16

LN06343

Sampled: 05/29/13 09:34

Sampled By: Client

Matrix: Solld

| Chlorinated Pesticides and | OF PCBs |
|----------------------------|---------|
|----------------------------|---------|

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: 05/31/13 07:26 |     |        | Analyzed: 0 | Analyst: bma |           |
|-------------------------------|----------------|--------------------------|-----|--------|-------------|--------------|-----------|
| Analyte                       | Result         | MDL                      | MRL | ML     | Units       | Dilution     | Qualifier |
| 2,4'-000                      | 36             | 23                       | 23  | 23     | ug/kg       | 1            |           |
| 2,4'-DDE                      | ND             | 23                       | 23  | 23     | ug/kg       | 1            |           |
| 2,4'-DDT                      | 94             | 23                       | 23  | 23     | ug/kg       | 1            |           |
| 4,4'-DDD                      | ND             | 4.5                      | 23  | 23     | ug/kg       | 1            |           |
| 4,4'-DDE                      | 440            | 7.2                      | 23  | 23     | ug/kg       | 4            |           |
| 4,4'-DDT                      | 260            | 5.1                      | 23  | 23     | ug/kg       | 1            |           |
| Aldrin                        | ND             | 11 -                     | 23  | 23     | ug/kg       | 1            |           |
| alpha-BHC                     | ND             | 14                       | 23  | 23     | ug/kg       | 1            |           |
| alpha-Chlordane               | ND             | 12                       | 23  | 23     | ug/kg       | 1            |           |
| beta-BHC                      | 42             | 7.4                      | 23  | 23     | ug/kg       | 1            |           |
| Chlordane (tech)              | ND             | 95                       | 470 | 470    | ug/kg       | 1            |           |
| cis-Nonachlor                 | ND             | 23                       | 23  | 23     | ug/kg       | 1            |           |
| DCPA                          | ND             | 23                       | 23  | 23     | ug/kg       | 1            |           |
| delta-BHC                     | ND             | 5.3                      | 23  | 23     | ug/kg       | 1            |           |
| Dieldrin                      | ND             | 7.0                      | 23  | 23     | ug/kg       | 1            |           |
| Endosulfan I                  | ND             | 5.3                      | 23  | 23     | ug/kg       | 1            |           |
| Endosulfan II                 | ND             | 3.0                      | 23  | 23     | ug/kg       | 1            |           |
| Endosulfan sulfate            | ND             | 5.1                      | 23  | 23     | ug/kg       | 1            |           |
| Endrin                        | ND             | 13                       | 23  | 23     | ug/kg       | 4            |           |
| Endrin aldehyde               | ND             | 6.5                      | 23  | 23     | ug/kg       | 1            |           |
| Endrin ketone                 | ND             | 4.3                      | 23  | 23     | ug/kg       | 1            |           |
| gamma-BHC (Lindane)           | ND             | 12                       | 23  | 23     | ug/kg       | 1            |           |
| gamma-Chlordane               | ND             | 9.3                      | 23  | 23     | ug/kg       | 1            |           |
| Heptachlor                    | ND             | 13                       | 23  | 23     | ug/kg       | 1            |           |
| Heptachlor epoxide            | ND             | 8.5                      | 23  | 23     | ug/kg       | 1            |           |
| Kepone                        | ND             | 210                      | 470 | 470    | ug/kg       | 1            |           |
| Methoxychlor                  | ND             | 5.1                      | 23  | 23     | ug/kg       | 1            |           |
| Mirex                         | ND             | 7.3                      | 23  | 23     | ug/kg       | 1            |           |
| Oxychlordene                  | ND             | 23                       | 23  | 23     | ug/kg       | 1            |           |
| Toxaphene                     | 1500           | 80                       | 700 | 700    | ug/kg       | 1.1          |           |
| rans-Nonachlor                | ND             | 23                       | 23  | 23     | ug/kg       | 1            |           |
| Surr: Decachlorobiphenyl      | 64 %           | Conc:150                 | 2   | 21-125 | %           |              |           |
| Surr: Tetrachloro-meta-xylena | 65 %           | Conc: 153                | 1.5 | 18-112 | %           |              |           |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID:

3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

## QUALITY CONTROL SECTION

Page 19 of 23



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30013

7600 Tyrone Ave, COC Project ID:

#13-1321,26, WO#

Date Received:

05/30/13 09:50

06/13/13 15:54 Date Reported:

## Chlorinated Pesticides and/or PCBs - Quality Control

| 27-6-6 | W3F1479 | EDA | DUDGE |
|--------|---------|-----|-------|
|        |         |     |       |

| i consideration of the constant of the constan |        | Reporting<br>Limit | 14-24-3 | Spike<br>Level | Source<br>Result | « oro | % REC<br>Limits | 200 | RPD     | Data<br>Qualifiers |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|---------|----------------|------------------|-------|-----------------|-----|---------|--------------------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result | Latin              | Units   | Lovoi          | Masun            | %REC  | Lajito          | RPD | Filtrix | - Addinion         |
| Blank (W3E1479-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                    |         | Analyzed:      | 06/04/13         | 13:16 |                 |     |         |                    |
| 2,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| 2,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| 2,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| 4,4"-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2,5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 2,5                | ug/kg   |                |                  |       |                 |     |         |                    |
| alpha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| alpha-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Chlordane (tech)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND     | 50                 | ug/kg   |                |                  |       |                 |     |         |                    |
| cis-Nonachtor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND     | 2.5                | цg/kg   |                |                  |       |                 |     |         |                    |
| DCPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Endrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| gamma-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Kepone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 50                 | ug/kg   |                |                  |       |                 |     |         |                    |
| Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Mirex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Oxychlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND     | -75                | ug/kg   |                |                  |       |                 |     |         |                    |
| trans-Nonachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND     | 2.5                | ug/kg   |                |                  |       |                 |     |         |                    |
| Surr: Decachlorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.7   | 2.0                | ug/kg   | 25.0           |                  | 59    | 21-125          |     |         |                    |
| Surr: Tetrachloro-meta-xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.5   |                    | ug/kg   | 25.0           |                  | 66    | 18-112          |     |         |                    |
| _CS (W3E1479-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                    |         | Analyzed: 1    | 06/04/13 1       | 3:44  |                 |     |         |                    |
| 4,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.1   | 2.5                | ug/kg   | 25.0           |                  | 85    | 48-126          | NR  |         |                    |
| 4,4"-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.1   | 2.5                | ug/kg   | 25.0           |                  | 80    | 48-121          | NR  |         |                    |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.4   | 2.5                | ug/kg   | 25.0           |                  | 85    | 45-146          | NR  |         |                    |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.8   | 2.5                | ug/kg   | 25.0           |                  | 79    | 57-137          | NR  |         |                    |
| alphe-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.3   | 2.5                | ug/kg   | 25.0           |                  | 81    | 64-131          | NR  |         |                    |
| beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.6   | 2.5                | ug/kg   | 25.0           |                  | 82    | 48-126          | NR  |         |                    |
| Chlordane (tech)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND     | 50                 | ug/kg   |                |                  |       | 41-163          |     |         |                    |
| delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.4   | 2.5                | ug/kg   | 25.0           |                  | 78    | 30-124          | NR  |         |                    |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.2   | 2.5                | ug/kg   | 25.0           |                  | 85    | 49-123          | NR  |         |                    |

Page 20 of 23





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID:

3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50

06/13/13 15:54

Chlorinated Pesticides and/or PCBs - Quality Control

| Batch W3E1479 - EPA |  |
|---------------------|--|
|                     |  |

|                                                        |        | Reporting |       | Spike      | Source   |          | % REC   |      | RPD   | Dat       |
|--------------------------------------------------------|--------|-----------|-------|------------|----------|----------|---------|------|-------|-----------|
| Analyte                                                | Result | Limit     | Units | Level      | Result   | %REC     | Limits  | RPD  | Limit | Qualifier |
| LCS (W3E1479-BS1)                                      |        |           |       | Analyzed:  | 06/04/13 | 13:44    |         |      |       |           |
| Endosulfan I                                           | 16.1   | 2.5       | ug/kg | 25.0       |          | 64       | 14-101  | NR   |       |           |
| Endosulfan II                                          | 18.1   | 2.5       | ug/kg | 25.0       |          | 72       | 33-146  | NR.  |       |           |
| Endosulfan sulfate                                     | 22.6   | 2.5       | ug/kg | 25.0       |          | 90       | 33-146  | NR   |       |           |
| Endrin                                                 | 22.0   | 2,5       | ug/kg | 25.0       |          | 88       | 39-144  | NR   |       |           |
| Endrin aldehyde                                        | 17.5   | 2.5       | ug/kg | 25.0       |          | 70       | 23-104  | NR   |       |           |
| gamma-BHC (Lindane)                                    | 20.3   | 2.5       | ug/kg | 25.0       |          | 81       | 43-114  | NR   |       |           |
| Heptachlor                                             | 20.4   | 2.5       | ug/kg | 25.0       |          | 82       | 48-125  | NR   |       |           |
| Heptachlor epoxide                                     | 21.6   | 2.5       | ug/kg | 25.0       |          | 87       | 47-121  | NR   |       |           |
| Methoxychlor                                           | 21.7   | 2.5       | ug/kg | 25.0       |          | 87       | 47-157  | NR   |       |           |
| Toxaphene                                              | ND     | 75        | ug/kg |            |          |          | 48-164  |      |       |           |
| Surr: Decachiorobiphenyl                               | 15.3   |           | ug/kg | 25.0       |          | 61       | 21-125  |      |       |           |
| Surr: Tetrachloro-meta-xylene                          | 18.1   |           | ug/kg | 25.0       |          | 72       | 18-112  |      |       |           |
| Matrix Spike (W3E1479-MS1)                             | Source | :: 3E3001 |       | Analyzed:  | 06/04/13 | 14:12    |         |      |       |           |
| 4,4°-DDD                                               | 210    | 24        | ug/kg | 240        | ND       | 87       | 21-119  | NR   |       |           |
| 4.4'-DDE                                               | 199    | 24        | ug/kg | 240        | ND       | 83       | 18-122  | NR   |       |           |
| 4,4'-DDT                                               | 208    | 24        | ug/kg | 240        | ND       | 87       | 12-141  | NR   |       |           |
| Aldrin                                                 | 173    | 24        | ug/kg | 240        | ND       | 72       | 24-173  | NR   |       |           |
| alpha-BHC                                              | 175    | 24        | ug/kg | 240        | ND       | 73       | 44-146  | NR   |       |           |
| beta-BHC                                               | 189    | 24        | ug/kg | 240        | ND       | 78       | 7-156   | NR   |       |           |
| delta-BHC                                              | 185    | 24        | ug/kg | 240        | ND       | 77       | 11-147  | NR   |       |           |
| Dieldrin                                               | 202    | 24        | ug/kg | 240        | ND       | 84       | 23-123  | NR   |       |           |
| Endosulfan I                                           | 124    | 24        | ug/kg | 240        | ND       | 52       | 0.1-94  | NR   |       |           |
| Endosulfan II                                          | 150    | 24        | ug/kg | 240        | ND       | 62       | 0.1-109 | NR   |       |           |
| Endosulfan sulfate                                     | 215    | 24        | ug/kg | 240        | ND       | 89       | 0.1-152 | NR   |       |           |
| Endrin                                                 | 206    | 24        | ug/kg | 240        | ND       | 86       | 22-147  | NR   |       |           |
|                                                        |        | 24        |       | 240        | ND       | 74       | 0.1-114 | NR   |       |           |
| Endrin aldehyde                                        | 179    |           | ug/kg |            | ND       | 74       | 16-121  | NR   |       |           |
| gamme-BHC (Lindane)                                    | 178    | 24<br>24  | ug/kg | 240<br>240 | ND       | 75       | 4-141   | NR   |       |           |
| Heptachlor                                             |        |           | ug/kg |            | ND       |          | 17-135  | NR   |       |           |
| Heptachlor epoxide                                     | 198    | 24        | ug/kg | 240        |          | 82<br>88 | 14-153  | NR   |       |           |
| Methoxychlor                                           | 211    | 24        | ug/kg | 240        | ND       | 64       | 21-125  | late |       |           |
| Surr: Decachiorobiphenyl Surr: Tetrachioro-meta-xylene | 155    |           | ug/kg | 240<br>240 |          | 64       | 18-112  |      |       |           |
|                                                        | 153    |           | ug/kg |            | أعماكنا  |          | 10-112  |      |       |           |
| Matrix Spike Dup (W3E1479-MSD1)                        |        | : 3E3001  |       | Analyzed:  | -        |          | 21.442  | -    | 25    |           |
| 4,4'-DDD                                               | 215    | 24        | ug/kg | 243        | ND       | 88       | 21-119  | 2    | 25    |           |
| 4,4'-DDE                                               | 203    | 24        | ug/kg | 243        | ND       | 84       | 18-122  | 2    | 25    |           |
| 4,4'-DDT                                               | 220    | 24        | ug/kg | 243        | ND       | 91       | 12-141  | 6    | 25    |           |
| Aldrin                                                 | 185    | 24        | ug/kg | 243        | ND       | 76       | 24-173  | 7    | 25    |           |
| alpha-BHC                                              | 187    | 24        | ug/kg | 243        | ND       | 77       | 44-148  | 6    | 25    |           |
| beta-BHC                                               | 200    | 24        | ug/kg | 243        | ND       | 83       | 7-156   | 6    | 25    |           |
| delta-BHC                                              | 193    | 24        | ug/kg | 243        | ND       | 79       | 11-147  | 4    | 25    |           |
| Dieldrin                                               | 209    | 24        | ug/kg | 243        | ND       | 86       | 23-123  | 4    | 25    |           |
| Endosulfan I                                           | 116    | 24        | ug/kg | 243        | ND       | 48       | 0.1-94  | 7    | 25    |           |
| Endosulfan II                                          | 135    | 24        | ug/kg | 243        | ND       | 56       | 0.1-109 | 10   | 25    |           |

Page 21 of 23

Week Laboratorius, Inc. 14869 East Clark Avenue, City of Industry, California 91745-1396 (626) 336-2139 FAX (626) 336-2634



Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID:

3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/13/13 15:54

Chlorinated Pesticides and/or PCBs - Quality Control

## Batch W3E1479 - EPA 8081A

|                                 |        | Reporting  | 11    | Spike    | Source   |       | % REC   |     | RPD   | Data       |
|---------------------------------|--------|------------|-------|----------|----------|-------|---------|-----|-------|------------|
| Analyte                         | Result | Limit      | Units | Level    | Result   | %REC  | Limits  | RPD | Limit | Qualiflers |
| Matrix Spike Dup (W3E1479-MSD1) | Source | e: 3E3001: | 3-01  | Analyzed | 06/04/13 | 14:40 |         |     |       |            |
| Endosulfan sulfate              | 235    | 24         | ug/kg | 243      | ND       | 97    | 0.1-152 | 9   | 25    |            |
| Endrin                          | 214    | 24         | ug/kg | 243      | ND       | 88    | 22-147  | 4   | 25    |            |
| Endrin aldehyde                 | 188    | 24         | ug/kg | 243      | ND       | 77    | 0.1-114 | 5   | 25    |            |
| gamma-BHC (Lindane)             | 189    | 24         | ug/kg | 243      | ND       | 78    | 16-121  | 6   | 25    |            |
| Heptachlor                      | 192    | 24         | ug/kg | 243      | ND       | 79    | 4-141   | 7   | 25    |            |
| Heptachlor epoxide              | 208    | 24         | ug/kg | 243      | ND       | 86    | 17-135  | 5   | 25    |            |
| Methoxychlor                    | 235    | 24         | ug/kg | 243      | ND       | 97    | 14-153  | 11  | 25    |            |
| Surr: Decachlorobiphenyl        | 160    |            | ug/kg | 243      |          | 66    | 21-125  | .,  |       |            |
| Surr: Tetrachloro-meta-xylene   | 163    |            | ug/kg | 243      |          | 67    | 18-112  |     |       |            |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: Project ID: 3E30013

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

FI

7600 Tyrone Ave, COC

#13-1321,26, WO#

#### Notes and Definitions

M-08 Due to the high concentration of analyte inherent in the sample, sample was diluted prior to preparation. The MDL and MRL were raised

due to this dilution

Detected but below the Reporting Limit; therefore, result is an estimated concentration.

NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

MRL Method Reporting Limit

Not Reportable

NR

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Colliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Page 23 of 23

## **ATTACHMENT #7**

Semi Volatile Organic Compounds (SVOCs)

**EPA METHOD 8270C** 



#### CERTIFICATE OF ANALYSIS

Client:

LADWP - Environmental Laboratory

1630 North Main Street, Bidg, 7, Rm 311

Los Angeles, CA 90012

Report Date:

06/05/13 16:04

Received Date:

05/30/13 09:50

Turn Around:

5 workdays

Fax:

Attention: Kevin Han

Phone:

213-367-7267 (213) 367-7285 Work Order #:

3E30014

49067-3, COC #13-1321,26

**Glient Project**:

7600 Tyrone Ave, COC #13-1321,26,

WO#

## NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

#### Dear Kevin Han:

Enclosed are the results of analyses for samples received 05/30/13 09:50 with the Chain of Custody document. The samples were received in good condition, at 2.8 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

#### Case Narrative:

Reviewed by:

Kim G Tu Project Manager









LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID:

3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Sampled by: | Sample Comments | Lab ID     | Matrix | Date Sampled   |
|-----------|-------------|-----------------|------------|--------|----------------|
| LN06205   | Cllent      |                 | 3E30014-01 | Salid  | 05/28/13 08:08 |
| LN08207   | Client      |                 | 3E30014-02 | Solid  | 05/28/13 08:04 |
| LN06214   | Client      |                 | 3E30014-03 | Solid  | 05/28/13 08:50 |
| LN05216   | Client      |                 | 3E30014-04 | Solid  | 05/28/13 08:54 |
| LN06217   | Client      |                 | 3E30014-05 | Salid  | 05/28/13 09:00 |
| LN06219   | Cllent      |                 | 3E30014-06 | Salid  | 05/28/13 09:04 |
| LN06229   | Client      |                 | 3E30014-07 | Solid  | 05/28/13 09:40 |
| LN06231   | Client      |                 | 3E30014-08 | Solid  | 05/28/13 09:44 |
| LN06241   | Client      |                 | 3E30014-09 | Solid  | 05/28/13 10:20 |
| LN08243   | Client      |                 | 3E30014-10 | Solid  | 05/28/13 10:24 |
| LN05259   | Client      |                 | 3E30014-11 | Solid  | 05/28/13 11;30 |
| LN06261   | Client      |                 | 3E30014-12 | Solld  | 05/28/13 11:34 |
| LN06329   | Client      |                 | 3E30014-13 | Solld  | 05/29/13 08:30 |
| LN06331   | Client      |                 | 3E30014-14 | Solid  | 05/29/13 08:34 |
| LN06335   | Client      |                 | 3E30014-15 | Solid  | 05/29/13 09:00 |
| LN08337   | Client      |                 | 3E30014-16 | Solid  | 05/29/13 09:04 |
| LN06338   | Client      |                 | 3E30014-17 | Solid  | 05/29/13 09:06 |
| LN06340   | Cllent      |                 | 3E30014-18 | Solid  | 05/29/13 09:10 |
| LN06341   | Client      |                 | 3E30014-19 | Solid  | 05/29/13 09:30 |
| LN06343   | Client      |                 | 3E30014-20 | Solid  | 05/29/13 09:34 |

ANALYSES

Semivolatile Organic Compounds by GC/MS



Sampled: 05/29/13 08:30

Analytical Laboratory Service - Since 1564

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

mendoen Para a Teknik para da hanara karan migali mer

Los Angeles CA, 90012

Report ID: 3E30014 Date Received:

05/30/13 09:50

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-13

LN06329

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | Analyzed: 06/05/13 01:12 |           |  |
|---------------------------------|----------------|----------|------------|---------|-------------|--------------------------|-----------|--|
| Analyte                         | Result         | MDL      | MRL        | ML      | Units       | Dilution                 | Qualifier |  |
| 1,2,4-Trichlorobenzene          | ND             | 0.080    | 0.44       | 0.44    | rng/kg      | 1                        |           |  |
| 1,2-Dichlorobenzene             | ND             | 0.097    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 1,3-Dichlorobenzene             | ND             | 0.071    | 0.44       | 0.44    | mg/kg       | 1.1                      |           |  |
| 1,4-Dichlorobenzene             | ND             | 0.11     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2,4,5-Trichlorophenol           | ND             | 0.097    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2,4,6-Trichlorophenol           | ND             | 0.097    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2,4-Dichlorophenol              | ND             | 0.12     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2,4-Dimethylphenol              | ND             | 0.11     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2,4-Dinitrophenol               | ND             | 3.4      | 22         | 22      | mg/kg       | 3.                       |           |  |
| 2,4-Dinitrotoluene              | ND             | 0.088    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2,6-Dinitrotoluene              | ND             | 0.071    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2-Chloronaphthalene             | ND             | 0.071    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2-Chlorophenol                  | ND             | 0.088    | 0.44       | 0.44    | rng/kg      | 1                        |           |  |
| 2-Methylnaphthalene             | ND             | 0.080    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2-Methylphenol                  | ND             | 0.11     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2-Nitroaniline                  | ND             | 0.12     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 2-Nitraphenol                   | ND             | 0.19     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 3 & 4-Methylphenol              | ND             | 0.11     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| 3,3'-Dichlorobenzidine          | ND             | 1.3      | 2.2        | 2.2     | mg/kg       | 4                        |           |  |
| 3-Nitroaniline                  | ND             | 0.13     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| ,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.4        | 4.4     | mg/kg       | 1                        |           |  |
| -Bromophenyl phenyl ether       | ND             | 0.062    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| -Chloro-3-methylphenol          | ND             | 0.097    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| -Chloroaniline                  | ND             | 0.12     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| -Chlorophenyl phenyl ether      | ND             | 0.080    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| -Nitroaniline                   | ND             | 0.12     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| -Nitrophenol                    | ND             | 0.13     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| cenaphthene                     | ND             | 0.080    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| cenaphthylene                   | ND             | 0.080    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| niline                          | ND             | 0.20     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| nthracene                       | ND             | 0.071    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.088    | 0.44       | 0.44    | mg/kg       | 4                        |           |  |
| enzidine                        | ND             | 1.1      | 4.4        | 4.4     | mg/kg       | 1                        |           |  |
| enzo (a) anthracene             | ND             | 0.062    | 0.44       | 0.44    | mg/kg       | 11                       |           |  |
| enzo (a) pyrene                 | ND             | 0.071    | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| enzo (b) fluoranthene           | ND             | 0.062    | 0.44       | 0.44    | mg/kg       | 1.411                    |           |  |
| enza (g,h,i) perylene           | 0.11           | 0.053    | 88.0       | 0.88    | mg/kg       | 1                        | 1         |  |
| enzo (k) fluoranthene           | ND             | 0.12     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |
| enzoic acid                     | ND             | 1.7      | 22         | 22      | mg/kg       | 1                        |           |  |
| enzyl alcohol                   | ND             | 0.12     | 0.44       | 0.44    | mg/kg       | 1                        |           |  |

Page 27 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID:

3E30014

Date Received: 05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/29/13 08:30

7600 Tyrone Ave, COC Project ID: #13-1321,26, WO#

Date Reported:

06/05/13 16:04

CHEMICAL STATE OF THE STATE OF 3E30014-13

LN06329

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepare   | d: 06/01/1 | 3 09:40 | Analyzed: | 06/05/13 01:12 | Analyst: abj |  |
|-----------------------------|----------------|-----------|------------|---------|-----------|----------------|--------------|--|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units     | Dilution       | Qualifier    |  |
| Bis(2-chloroethoxy)methane  | ND             | 0.080     | 0.44       | 0.44    | mg/kg     | - 1            |              |  |
| Bis(2-chloroethyl)ether     | ND             | 0.097     | 0,44       | 0.44    | mg/kg     | 1              |              |  |
| Bis(2-chloroisopropyl)ether | ND             | 0.12      | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11      | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Butyl benzyl phthalate      | 0,28           | 0.13      | 0.44       | 0.44    | mg/kg     | 1              | T.           |  |
| Carbazole                   | ND             | 0.080     | 0.44       | 0.44    | mg/kġ     | 1              |              |  |
| Chrysene                    | ND             | 0.080     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Dibenzo (a,h) anthracene    | ND             | 0.044     | 0.88       | 0.88    | mg/kg     | 1              |              |  |
| Dibenzofuran                | ND             | 0.080     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Diethyl phthalate           | ND             | 0.053     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Dimethyl phthalate          | ND             | 0.78      | 2.2        | 2.2     | mg/kg     | 1              |              |  |
| Di-n-butyl phthalate        | ND             | 0.071     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Di-n-octyl phthalate        | ND             | 0.12      | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Fluoranthene                | ND             | 0.097     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Fluorene                    | ND             | 0.062     | 0.44       | 0.44    | mg/kg     | 1.1            |              |  |
| Hexachlorobenzene           | ND             | 0.071     | 0.44       | 0.44    | mg/kg     | 13             |              |  |
| -lexachlorobutadiene        | ND             | 0.080     | 0.44       | 0.44    | mg/kg     | 1.1            |              |  |
| dexachlorocyclopentadiene   | ND             | 0.11      | 0.44       | 0.44    | mg/kg     | 3              |              |  |
| dexachloroethane            | ND             | 0.062     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| ndeno (1,2,3-cd) pyrene     | 0.16           | 0.080     | 0.88       | 0.88    | mg/kg     | 1              | J            |  |
| sophorone                   | ND             | 0.088     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Naphthalene                 | ND             | 0.097     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| Vitrobenzene                | ND             | 0.097     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| I-Nitrosodimethylamine      | ND             | 0.080     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| l-Nitrosodi-n-propylamine   | ND             | 0.080     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| f-Nitrosodiphenylamine      | ND             | 0.062     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| entachiorophenol            | ND             | 0.14      | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| henanthrena                 | ND             | 0.071     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| henal                       | ND             | 0.13      | 0.44       | 0.44    | mg/kg     | - 1            |              |  |
| yrene                       | ND             | 0.071     | 0.44       | 0.44    | mg/kg     | 1              |              |  |
| yridine                     | ND             | 0.044     | 0.88       | 0.88    | mg/kg     | 1              |              |  |
| urr: 2,4,6-Tribromophenol   | 65 %           | Canc:28.6 | 4          | 0-97    | %         |                |              |  |
| urr: 2-Fluorobiphenyl       | 74 %           | Conc:16.4 | 39         | -100    | %         |                |              |  |
| urr: 2-Fluorophenol         | 89 %           | Conc:39.6 | 26         | -115    | % .       |                |              |  |
| urr. Nitrobenzene-d5        | 76 %           | Conc:16.8 |            | -105    | %         |                |              |  |
| um: Phenol-d5               | 84 %           | Conc:37.3 |            | -105    | %         |                |              |  |
| urr: Terphenyl-d14          | 86 %           | Conc:19.1 |            | -106    | %         |                |              |  |

Page 28 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-14

LN06331

Sampled: 05/29/13 08:34

TOTAL SHIP TO THE SHIP SHIP SHIP SHIP

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | Analyst: abj |           |
|----------------------------------|----------------|----------|------------|---------|-------------|--------------|-----------|
| Analyte                          | Result         | MDL      | MRL        | ML      | Units       | Dilution     | Qualifier |
| 1,2,4-Trichlorobenzene           | ND             | 0.090    | 0.50       | 0.50    | mg/kg       | 1            |           |
| 1,2-Dichlorobenzene              | ND             | 0.11     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 1,3-Dichlorobenzene              | ND             | 0.080    | 0.50       | 0.50    | mg/kg       | 1            |           |
| 1,4-Dichlorobenzene              | ND             | 0.12     | 0.50       | D.50    | mg/kg       | 1            |           |
| 2,4,5-Trichlorophenol            | ND             | 0.11     | 0.50       | 0.50    | mg/kg       | 4            |           |
| 2,4,6-Trichlorophenal            | ND             | 0.11     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2,4-Dichlorophenal               | ND             | 0.13     | 0.50       | 0.50    | mg/kg       | (4.1         |           |
| 2,4-Dimethylphenol               | ND             | 0.12     | 0.50       | 0.50    | mg/kg       | 4            |           |
| 2,4-Dinitrophenol                | ND             | 3.8      | 25         | 25      | mg/kg       | 1            |           |
| 2,4-Dinitrotoluene               | ND             | 0.10     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2,6-Dinitrotaluene               | ND             | 0.080    | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2-Chloronaphthalene              | ND             | 0.080    | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2-Chlorophenol                   | ND             | 0.10     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2-Methylnaphthalene              | ND             | 0.090    | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2-Methylphenol                   | ND             | 0.12     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2-Nitroaniline                   | ND             | 0.13     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 2-Nitrophenol                    | ND             | 0.22     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 3 & 4-Methylphenol               | ND             | 0.12     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 3,3'-Dichlarobenzidine           | ND             | 1.5      | 2.5        | 2.5     | mg/kg       | 1            |           |
| 3-Nitroaniline                   | ND             | 0.15     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5      | 5.0        | 5.0     | mg/kg       | 1            |           |
| 4-Bromophenyl phenyl ether       | ND             | 0.070    | 0.50       | 0.50    | mg/kg       | 1            |           |
| 4-Chloro-3-methylphenol          | ND             | 0.11     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 4-Chloroaniline                  | ND             | 0.13     | 0.50       | 0.50    | mg/kg       | 1            |           |
| 4-Chlorophenyl phenyl ether      | ND             | 0.090    | 0.50       | 0.50    | mg/kg       | 1            |           |
| 4-Nitroaniline                   | ND             | 0.13     | 0.50       | 0.50    | mg/kg       | 1.5          |           |
| 4-Nitrophenol                    | ND             | 0.15     | 0.50       | 0.50    | mg/kg       | 1            |           |
| Acenaphthene                     | ND             | 0.090    | 0.50       | 0.50    | mg/kg       | 4            |           |
| Acenaphthylene                   | ND             | 0.090    | 0.50       | 0.50    | mg/kg       | 1            |           |
| Aniline                          | ND             | 0.23     | 0.50       | 0.50    | mg/kg       | 1            |           |
| Anthracene                       | ND             | 0.080    | 0.50       | 0.50    | mg/kg       | 1            |           |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.10     | 0.50       | 0.50    | mg/kg       | 1            |           |
| Benzidine                        | ND             | 1.3      | 5.0        | 5.0     | mg/kg       | 1            |           |
| Benzo (a) anthracene             | ND             | 0.070    | 0.50       | 0.50    | mg/kg       | . 1          |           |
| Benzo (a) pyrene                 | ND             | 0.080    | 0.50       | 0.50    | mg/kg       | 1            |           |
| Benzo (b) fluoranthene           | ND             | 0.070    | 0.50       | 0.50    | mg/kg       | 1            |           |
| Benzo (g,h,i) perylene           | ND             | 0.060    | 1.0        | 1.0     | mg/kg       | 4            |           |
| Benzo (k) fluoranthene           | ND             | 0.13     | 0.50       | 0.50    | mg/kg       | 1            |           |
| Benzoic acid                     | ND             | 1.9      | 25         | 25      | mg/kg       | 1            |           |
| Benzyl alcohol                   | ND             | 0.14     | 0.50       | 0.50    | mg/kg       | 1            |           |

Page 29 of 48





LADWP - Environmental Laboratory. 1630 North Main Street, Bldg. 7, Rm 311

The state of the region with the second public to the state of the second secon

Los Angeles CA, 90012

Sampled: 05/29/13 08:34

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-14 LN06331

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | 1: 06/01/1: | 3 09:40 | Analyzed: | : 06/05/13 01:42 | Analyst: abj |
|-----------------------------|----------------|-----------|-------------|---------|-----------|------------------|--------------|
| Analyte                     | Result         | MDL       | MRL         | ML      | Units     | Difution         | Qualifler    |
| Bis(2-chloroethoxy)methane  | ND             | 0.090     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.14      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12      | 0.50        | 0.50    | mg/kg     | 3:               |              |
| Butyl benzyl phthalate      | ND             | 0.15      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Carbazole                   | ND             | 0.090     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Chrysene                    | ND ND          | 0.090     | 0.50        | 0.50    | mg/kg     | 1.               |              |
| Dibenzo (a,h) anthracene    | ND             | 0.050     | 1.0         | 1.0     | mg/kg     | 1.               |              |
| Dibenzofuran                | ND             | 0.090     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Diethyl phthalate           | ND             | 0.060     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Dimethyl phthalate          | ND             | 0.88      | 2.5         | 2.5     | mg/kg     | 9                |              |
| DI-n-butyl phthalate        | ND             | 0.080     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Di-n-octyl phthalate        | ND             | 0.14      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Fluoranthene                | ND             | 0.11      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Fluorene                    | ND             | 0.070     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Hexachlorobenzene           | ND             | 0.080     | 0.50        | 0.50    | mg/kg     | t t              |              |
| Hexachlorobutadiene         | ND             | 0.090     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Hexachlorocyclopentadiene   | ND             | 0.12      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Hexachloroethane            | ND             | 0.070     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.090     | 1.0         | 1.0     | mg/kg     | 4                |              |
| Isaphorone                  | ND             | 0.10      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Naphthalene                 | ND             | 0.11      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Nitrobenzene                | ND             | 0.11      | 0.50        | 0.50    | mg/kg     | 1                |              |
| N-Nitrosodimethylamine      | ND             | 0.090     | 0.50        | 0.50    | mg/kg     | 1                |              |
| N-Nitrosodi-n-propyfamine   | ND             | 0.090     | 0.50        | 0.50    | mg/kg     | 1                |              |
| N-Nitrosodiphenylamine      | ND             | 0.070     | 0.50        | 0.50    | mg/kg     | 4                |              |
| Pentachlorophenol           | ND             | 0.16      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Phenanthrene                | ND             | 0.080     | 0.50        | 0.50    | mg/kg     | .1               |              |
| Phenol                      | NO             | 0.15      | 0.50        | 0.50    | mg/kg     | 1                |              |
| Pyrene                      | ND             | 0.080     | 0.50        | 0.50    | mg/kg     | 1                |              |
| Pyridine                    | ND             | 0.050     | -1.0        | 1.0     | mg/kg     | 1                |              |
| Surr: 2,4,6-Tribromophenol  | 61 %           | Conc:30.6 | 4           | 0-97    | %         |                  |              |
| Surr: 2-Flugrobiphanyl      | 73 %           | Conc:18.0 |             | -100    | %         |                  |              |
| Surr. 2-Fluorophenol        | 86 %           | Conc:429  |             | 9-115   | %         |                  |              |
| Sun: Nitrobenzene-d5        | 75 %           | Conc:18.8 |             | -105    | %         |                  |              |
| Surr. Phenol-d5             | 82 %           | Conc:40.6 |             | -105    | %         |                  |              |
| Surr. Terphenyl-d14         | 84 %           | Conc:21.0 |             | -106    | %         |                  |              |

Page 30 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30014

7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-15

Project ID:

#13-1321,26, WO# LN06335

Sampled: 05/29/13 09:00

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: | W3F0001 | Prepared | 1: 06/01/13 | 3 09:40 | Analyzed: ( | 06/05/13 02:12  | Analyst; abj |
|----------------------------------|--------|---------|----------|-------------|---------|-------------|-----------------|--------------|
| Analyte                          | 4      | Result  | MDL      | MRL         | ML      | Units       | Dilution        | Qualifier    |
| 1,2,4-Trichlorobenzene           |        | ND      | 0.089    | 0.50        | 0.50    | mg/kg       | 1               |              |
| 1,2-Dichlorobenzene              | 3      | ND      | 0.11     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 1,3-Dichlorobenzene              | (8)    | ND      | 0.079    | 0.50        | 0.50    | mg/kg       | ÿ 1             |              |
| 1,4-Dichlorobenzene              | 12     | ND .    | 0.12     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2,4,5-Trichlarophenol            | *      | ND ®    | 0.11     | 0.50        | 0.50    | mg/kg       | . 1             | 19           |
| 2,4,6-Trichlorophenol            |        | ND      | 0.11     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2,4-Dichlorophenol               |        | ND      | 0.13     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2,4-Dimethylphenol               |        | ND .    | 0.12     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2,4-Dinitrophenol                |        | ND      | 3.8      | 25          | 25      | mg/kg       | 1               |              |
| 2,4-Dinitrotoluene               |        | ≅ ND    | 0.099    | 0.50        | 0.50    | mg/kg       | 1 🛚             |              |
| 2,6-Dinitrotoluene               |        | ND .    | 0.079    | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2-Chloronaphthaiene              |        | ND      | 0.079    | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2-Chiorophenol                   |        | ND      | 0.099    | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2-Methylnaphthalene              |        | ND      | 0.089    | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2-Methyiphenol                   |        | ND      | 0.12     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2-NitroanIllne                   |        | ND      | 0.13     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 2-Nitrophenol                    |        | ND .    | 0.22     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 3 & 4-Methylphenol               |        | ND      | 0.12     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 3,3'-Dichlorobenzidine           |        | ND =    | 1.5      | 2.5         | 2.5     | mg/kg       | 1               |              |
| 3-Nitroaniline                   |        | ND      | 0.15     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 4,6-Dinitro-2-methylphenol       |        | ND      | 1.5      | 5.0         | 5.0     | mg/kg       | 1               | -            |
| 4-Bromophenyl phenyl ether       |        | ND      | 0.069    | 0.50        | 0.50    | mg/kg       | 1               |              |
| 4-Chloro-3-methylphenol          |        | ND      | 0.11     | 0.50        | 0.50    | mg/kg       | 1               | 2.5          |
| 4-Chloroaniline                  | 8      | ND      | 0.13     | 0.50        | 0.50    | mg/kg       | 1               | ii ii        |
| 4-Chlorophenyl phenyl ether      |        | ND      | 0.089    | 0.50        | 0.50    | mg/kg       | 1               |              |
| 4-Nitroaniline                   |        | ND      | 0.13     | 0.50        | 0.50    | mg/kg       | 1               |              |
| 4-Nitrophenol                    |        | ND      | 0.15     | 0.50        | 0.50    | mg/kg       | 1               |              |
| Acenaphthene                     |        | ND      | 0.089    | 0.50        | 0.50    | mg/kg       | 1               |              |
| Acenaphthylene                   |        | ND      | 0.089    | 0.50        | 0.50    | mg/kg       | 1 //            |              |
| Aniline                          |        | ND.     | 0.23     | 0.50        | 0.50    | mg/kg       | 1               | *            |
| Anthracene                       |        | ND      | 0.079    | 0.50        | 0.50    | mg/kg       | 1               |              |
| Azobenzene/1,2-Diphenylhydrazine |        | ND      | 0.099    | 0.50        | 0.50    | mg/kg       | <sub>55</sub> 1 | 1            |
| Benzidine                        |        | ND      | 1.2      | 5.0         | 5.0     | mg/kg       | 1               |              |
| Benzo (a) anthracene             |        | ND      | 0.069    | 0.50        | 0.50    | g mg/kg     | 1               |              |
| Benzo (a) pyrene                 |        | ND      | 0.079    | 0.50        | 0.50    | mg/kg       | 1               |              |
| Benzo (b) fluoranthene           |        | ND      | 0.069    | 0.50        | 0.50    | mg/kg       | 1,000           | *            |
| Benzo (g,h,l) perylene           |        | ND      | 0.059    | 0.99        | 0.99    | mg/kg       | 1               | 8            |
| Benzo (k) fluoranthene           |        | ND      | 0.13     | 0.50        | 0.50    | mg/kg       | 1               |              |
| Benzoic acid                     |        | ND      | 1.9      | 25          | 25      | mg/kg       | 1               |              |
| Benzyl alcohol                   |        | ND      | 0.14     | 0.50        | 0.50    | mg/kg       | 1               |              |

Page 31 of 48



Sampled: 05/29/13 09:00

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: Project ID: 3E30014 7600 Tyrone Ave, COC Date Received:

05/30/13 09:50

#13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-15

LN06335

Sampled By: Client

Mutrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: E      | PA 8270C         | Batch: | W3F0001 | Prepare    | d: 06/01/ | 13 09:40 | Analyzed: 0 | 06/05/13 02:12 | Analyst: abj |
|----------------|------------------|--------|---------|------------|-----------|----------|-------------|----------------|--------------|
| Analyte        |                  |        | Result  | MDL        | MRL       | ML       | Units       | Dilution       | Qualifier    |
| Bis(2-chlor    | cethoxy)methane  |        | ND      | 0.089      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Bis(2-chlor    | oethyl)ether     |        | ND      | 0.11       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Bis(2-chlor    | oisapropyl)ether |        | ND      | 0.14       | 0.50      | 0.50     | rng/kg      | 1              |              |
| Bis(2-ethyl    | hexyl)phthalate  |        | ND      | 0.12       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Butyl benzy    | yl phthalate     |        | ND      | 0.15       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Carbazole      |                  |        | ND      | 0.089      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Chrysene       |                  |        | ND      | 0.089      | 0,50      | 0.50     | mg/kg       | 1              |              |
| Dibenzo (a     | h) anthracens    |        | ND      | 0.050      | 0.99      | 0.99     | mg/kg       | 1.4            |              |
| Dibenzofur     | an               |        | ND      | 0.089      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Diethyl phth   | nalate           |        | ND      | 0.059      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Dimethyl ph    | thalate          |        | ND      | 0.87       | 2.5       | 2.5      | mg/kg       | 1              |              |
| Di-n-butyl p   | hthalate         |        | ND      | 0.079      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Di-n-octyl p   | hthalate         |        | ND      | 0.14       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Fluoranther    | e                |        | ND      | 0.11       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Fluorene       |                  |        | ND      | 0.069      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Hexachlorol    | enzene           |        | ND      | 0.079      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Hexachlorol    | outadiene        |        | ND      | 0.089      | 0.50      | 0.50     | mg/kg       | .1             |              |
| Hexachloro     | ydopentadiene    |        | NO      | 0.12       | 0.50      | 0.50     | mg/kg       | 4              |              |
| Hexachloros    | ethane           |        | ND      | 0.069      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Indeno (1,2,   | 3-cd) pyrene     |        | ND      | 0.089      | 0.99      | 0.99     | mg/kg       | 1              |              |
| Isophorone     |                  |        | ND      | 0.099      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Naphthalene    | i i              |        | ND      | 0.11       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Nitrobenzen    | 8                |        | ND      | 0.11       | 0.50      | 0.50     | mg/kg       | 1              |              |
| N-Nitrosadim   | nethylamine      |        | ND      | 0.089      | 0.50      | 0.50     | mg/kg       | 1              |              |
| N-Nitrosodi-r  | n-propylamine    |        | ND      | 0.089      | 0.50      | 0.50     | mg/kg       | 1              |              |
| N-Nitrosodip   | henylamine       |        | ND      | 0.069      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Pentachlorop   | henol            |        | ND      | 0.16       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Phenanthren    | e                |        | ND.     | 0.079      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Phenol         |                  |        | ND      | 0.15       | 0.50      | 0.50     | mg/kg       | 1              |              |
| Ругеле         |                  |        | ND      | 0.079      | 0.50      | 0.50     | mg/kg       | 1              |              |
| Pyridine       |                  |        | ND      | 0.050      | 0.99      | 0.99     | mg/kg       | 1              |              |
| Surr. 2,4,6-Tr | ibromophenal     |        | 62 %    | Conc:30.6  |           | 40-97    | %           |                |              |
| Surr. 2-Fluore | obiphenyl        |        | 74%     | Conc: 18.3 | 3         | 39-100   | %           |                |              |
| Surr. 2-Fluore | phenol           |        | 88 %    | Conc:428   | 2         | 26-115   | %           |                |              |
| Surr: Nitrober | nzena-d5         |        | 75 %    | Conc: 18.5 | 4         | 19-105   | %           |                |              |
| Surr. Phenol-  | d5               |        | 82 %    | Conc:40.4  |           | 86-105   | %           |                |              |
| Surr. Terphen  | yl-d14           |        | 82.%    | Conc:20.2  |           | 15-106   | %           |                |              |
| 1              |                  |        |         |            |           |          |             |                |              |

Page 32 of 48







L'ADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Sampled: 05/29/13 09:04

Report ID: Project ID:

3E30014

=30014

7600 Tyrone Ave, COC #13-1321,26, WO# Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-16

LN06337

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                |    | Batch: V | V3F0001 | Prepared | 1: 06/01/13       | 3 09:40 | Analyzed:      | 06/05/13 02:42 | Analyst: abj |
|----------------------------------|----|----------|---------|----------|-------------------|---------|----------------|----------------|--------------|
| Analyte .                        |    |          | Result  | MOL      | MRL               | ML      | Units          | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene           |    |          | ND      | 0.088    | 0.49              | 0.49    | mg/kg          | . 1            | 100          |
| 1,2-Dichlorobenzene              |    |          | ND .    | 0.11     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 1,3-Dichlorobenzene              |    |          | ND      | 0.078    | 0.49              | 0.49    | mg/kg          | . 1            |              |
| 1,4-Dichlorobenzene              |    |          | ND      | 0.12     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2,4,5-Trichlorophenol            |    |          | ND      | 0.11     | 0.49              | 0.49    | mg/kg          | × 1            | lit.         |
| 2,4,6-Trichlorophenol            |    |          | ND      | 0.11     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2,4-Dichlorophenol               |    |          | ND      | 0.13     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2,4-Dimethylphenol               |    |          | ND      | 0.12     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2,4-Dinitrophenol                |    |          | ND      | 3.7      | 25                | 25      | mg/kg          | 1              |              |
| 2.4-Dinitrotoluene               |    |          | ND      | 0.098    | 0.49              | 0.49    | mg/kg          | 1              | *            |
| 2,6-Dinitrotoluene               |    |          | ND      | 0.078    | 0.49              | 0.49    | mg/kg 🐇        | 1              |              |
| 2-Chloronaphthalene              |    |          | ND      | 0.078    | <sub>=</sub> 0.49 | 0.49    | mg/kg          | 1              |              |
| 2-Chlorophenol                   |    |          | ND      | 0.098    | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2-Methylnaphthalene              |    |          | ND      | 0.088    | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2-Methylphenol                   |    |          | ND      | 0.12     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2-Nitroaniline                   |    |          | ND      | 0.13     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 2-Nitrophenol                    |    |          | ND      | 0.22     | 0.49              | 0.49    | m <b>g</b> /kg | 1              | 4            |
| 3 & 4-Methylphenol               |    | 13       | ND      | 0.12     | 0.49              | 0.49    | mg/kg          | 1              | *            |
| 3,3'-Dichlorobenzidine           |    | (4       | ND      | 1.5      | 2.5               | 2.5     | mg/kg          | 1              |              |
| 3-Nitroaniline                   |    |          | ND      | 0.15     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 4,6-Dinitro-2-methylphenol       |    |          | ND      | 1.5      | 4.9               | 4.9     | ∘mg/kg         | 1              | 8            |
| 4-Bromophenyl phenyl ether       | 2) |          | ND      | 0.069    | 0.49              | 0.49    | mg/kg          | 1              |              |
| 4-Chloro-3-methylphenol          |    |          | ND      | 0.11     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 4-Chloroaniline                  |    |          | ND ®    | 0.13     | 0.49              | 0.49    | mg/kg          | 1              |              |
| 4-Chlorophenyl phenyl ether      |    |          | ND      | 0.088    | 0.49              | 0.49    | mg/kg          | 1:             |              |
| 4-Nitroaniline                   |    |          | ND III  | 0.13     | 0.49              | 0.49    | mg/kg          | 1              | (6)          |
| 4-Nitrophenol                    |    |          | ND      | ≥ 0.15   | 0.49              | 0.49    | mg/kg 📑        | 1              |              |
| Acenaphthene                     | 6  |          | ND      | 0.088    | 0.49              | 0.49    | mg/kg          | 1              |              |
| Acenaphthylene                   |    |          | - ND    | 0.088    | 0.49              | 0.49    | mg/kg          | . 1            |              |
| Aniline                          | +  |          | ND      | 0.23     | 0.49              | 0.49    | mg/kg          | 1              |              |
| Anthracene                       |    |          | ND      | 0.078    | 0.49              | 0.49    | mg/kg          | 1              |              |
| Azobenzene/1,2-Diphenylhydrazine |    |          | ND      | 0.098    | 0.49              | 0.49    | mg/kg          | . 1            | *            |
| Benzidine                        |    |          | ND      | 1.2      | 4.9               | 4.9     | mg/kg          | 1              |              |
| Benzo (a) anthracene             |    |          | ND      | 0.069    | 0.49              | 0.49    | mg/kg          | 1              | ¥1.          |
| Benzo (a) pyrene                 |    |          | ND      | 0.078    | 0.49              | 0.49    | mg/kg          | 1              |              |
| Benzo (b) fluoranthene           |    |          | ND      | 0.069    | 0.49              | 0.49    | mg/kg          | 1              | W            |
| Benzo (g,h,i) perylene           |    |          | ND      | 0.059    | 0.98              | 0.98    | mg/kg          | 1              |              |
| Benzo (k) fluoranthene           |    | ×        | ND      | 0.13     | 0.49              | 0.49    | mg/kg          | 1              |              |
| Benzoic acid                     |    |          | ND      | 1.9      | 25                | 25      | mg/kg          | 1              |              |
| Benzyl alcohol                   |    |          | ND      | 0.14     | 0.49              | 0.49    | ္မ mg/kg       | 1              |              |

Page 33 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012 THE RESERVE OF THE PERSON OF T

Sampled: 05/29/13 09:04

Sun: Terphenyl-d14

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-16

LN06337

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Preparer  | d: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 02:42 | Analyst: abj |
|-----------------------------|----------------|-----------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyt)ether | ND             | 0.14      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.15      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 10            |              |
| Chrysene                    | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.049     | 0.98       | 0.98    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.059     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.86      | 2.5        | 2.5     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | . 1           |              |
| Ol-n-octyl phthalate        | ND             | 0.14      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Juoranthene                 | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1             |              |
| luorene                     | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1             |              |
| fexachlorobenzene           | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1             |              |
| lexachlorobutadiene         | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| lexachlorocyclopentadiene   | ND             | 0.12      | 0.49       | 0.49    | mg/kg       | 1             |              |
| lexachloroethane            | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1             |              |
| ndena (1,2,3-cd) pyrene     | ND             | 0.088     | 0.98       | 0.98    | mg/kg       | 1             |              |
| sophorone                   | ND             | 0.098     | 0.49       | 0.49    | mg/kg       | 1/            |              |
| aphthalene                  | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1             |              |
| litrobenzene                | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1             |              |
| I-Nitrosodimethylemine      | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| -Nitrosodi-n-propylamine    | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| -Nitrosodiphenylamine       | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1             |              |
| entachlorophenol            | ND.            | 0.16      | 0.49       | 0.49    | mg/kg       | 1             |              |
| henanthrene                 | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1             |              |
| henol .                     | NO             | 0.15      | 0.49       | 0.49    | mg/kg       | 1             |              |
| yrene                       | NO             | 0.078     | 0.49       | 0.49    | mg/kg       | l di l        |              |
| yridine                     | ND             | 0.049     | 0.98       | 0.98    | mg/kg       | 1             |              |
| urr: 2,4,6-Tribromophenol   | 56 %           | Conc:27.5 |            | 0-97    | %           |               |              |
| urr, 2-Fluorobiphenyl       | 67 %           | Conc:16.5 |            | 9-100   | %           |               |              |
| in: 2-Fluorophenol          | 78 %           | Conc:38,3 |            | 5-115   | %           |               |              |
| un: Nitrobenzene-d5         | 69 %           | Conc:16.9 |            | -105    | %           |               |              |
| in: Phenol-d5               | 75 %           | Conc:36.6 |            | -105    | %           |               |              |
| and Thompson of the         | 20.04          | Canada a  |            | 100     | ***         |               |              |

Page 34 of 48

Conc. 18.0

73 %





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-17

LN06338

#13-1321,26, WO#

Sampled: 05/29/13 08:06

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: | W3F0001 | Prepare | d: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 03:13 | Analyst: abj |
|----------------------------------|--------|---------|---------|------------|---------|-------------|---------------|--------------|
| Analyte                          |        | Result  | MDL     | MRL        | ML,     | Units       | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene           |        | ND      | 0.087   | 0.48       | 0.48    | mg/kg       | 11            |              |
| 1,2-Dichlorobenzene              |        | ND      | 0.11    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 1,3-Dichlorobenzene              |        | ND      | 0.077   | 0.48       | 0.48    | mg/kg       | 7             |              |
| 1,4-Dichlorobenzene              |        | ND      | 0.12    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4,5-Trichlorophenal            |        | ND      | 0.11    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4,6-Trichlorophenol            |        | ND      | 0.11    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4-Dichlorophenol               |        | ND      | 0.13    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4-Dimethylphenol               |        | ND      | 0.12    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4-Dinitrophenol                |        | ND      | 3.7     | 24         | 24      | mg/kg       | 1             |              |
| 2,4-Dinitrotoluene               |        | ND      | 0.097   | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,6-Dinitrotaluene               |        | ND      | 0.077   | 0.48       | 0.48    | mg/kg       | 10            |              |
| 2-Chloronaphthalene              |        | ND      | 0.077   | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Chlorophenol                   |        | ND      | 0.097   | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Methylnaphthalene              |        | ND      | 0.087   | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Methylphenol                   |        | ND      | 0.12    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Nitroaniline                   |        | ND      | 0.13    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Nitrophenol                    |        | ND      | 0.21    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 3 & 4-Methylphenol               |        | ND      | 0.12    | 0.48       | 0.48    | mg/kg       | .1            |              |
| 3,3'-Dichlorobenzidine           |        | ND      | 1.5     | 2.4        | 2.4     | mg/kg       | 1             |              |
| 3-Nitroanlline                   |        | ND      | 0.14    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4,5-Dinitro-2-methylphenol       |        | ND      | 1.5     | 4.8        | 4.8     | mg/kg       | 1             |              |
| 4-Bramophenyl phenyl ether       |        | ND      | 0.068   | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Chloro-3-methylphenol          |        | ND      | 0.11    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Chloroaniline                  |        | ND      | 0.13    | 0.48       | 0.48    | mg/kg       | 1.            |              |
| 4-Chloraphenyl phenyl ether      |        | ND      | 0.087   | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Nitroaniline                   |        | ND      | 0.13    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Nitrophenol                    |        | ND      | 0.14    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Acenaphthene                     |        | ND      | 0.087   | 0.48       | 0.48    | mg/kg       | 1             |              |
| Acenaphthylene                   |        | ND      | 0.087   | 0.48       | 0.48    | mg/kg       | 4             |              |
| Anillne                          |        | ND      | 0.22    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Anthracene                       |        | ND      | 0.077   | 0.48       | 0.48    | mg/kg       | 1             |              |
| Azobenzene/1,2-Diphenylhydrazine |        | ND      | 0.097   | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzidine                        |        | ND      | - 1.2   | 4.8        | 4.8     | mg/kg       | 1             |              |
| Benzo (a) anthracene             |        | ND      | 0.068   | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzo (a) pyrene                 |        | ND      | 0.077   | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzo (b) fluoranthene           |        | ND      | 0.068   | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzo (g,h,i) perylene           |        | ND      | 0.058   | 0.97       | 0.97    | mg/kg       | 1             |              |
| Benzo (k) fluoranthene           |        | ND      | 0.13    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzoic acid .                   |        | ND      | 1.8     | 24         | 24      | mg/kg       | 1             |              |
| Benzyl alcohol                   |        | ND      | 0.14    | 0.48       | 0.48    | mg/kg       | 1             |              |

Page 35 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

THE MODEL CONTRACTOR OF THE PARTY OF THE PAR

Los Angeles CA, 90012

Sampled: 05/29/13 09:06

Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-17

#13-1321,26, WO# LN06338

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 03:13 | Analyst: abl |
|-----------------------------|----------------|------------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL        | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.087      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.14       | 0.48       | 0.48    | mg/kg       | - 1           |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.48       | 0.48    | mg/kg       | 4             |              |
| Carbazole                   | ND             | 0.087      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Chrysene                    | ND             | 0.087      | 0.48       | 0.48    | mg/kg       | 14.1          |              |
| Dibenzo (a,h) anthracene    | ND             | 0.048      | 0.97       | 0.97    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.087      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.058      | 0.48       | 0.48    | mg/kg       | 10            |              |
| Dimethyl phthalate          | ND             | 0.85       | 2.4        | 2.4     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.077      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.14       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.11       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.068      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Hexachlorobenzene           | ND             | 0.077      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.087      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.12       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Hexachloroethane            | ND             | 0.068      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.087      | 0.97       | 0.97    | mg/kg       | 1             |              |
| Isophorone                  | ND             | 0,097      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Naphthalene                 | ND             | 0.11       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Nitrobenzene                | ND             | 0.11       | 0.48       | 0.48    | mg/kg       | (1)           |              |
| N-Nitrosodimethylamine      | ND             | 0.087      | 0.48       | 0.48    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.087      | 0.48       | 0.48    | mg/kg       | Ť             |              |
| N-Nitrosodiphenylamine      | ND             | 0.068      | 0.48       | 0.48    | mg/kg       | ì             |              |
| Pentachlorophenol           | ND             | 0.15       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Phenanthrene                | ND             | 0.077      | 0.48       | 0.48    | mg/kg       | 1             |              |
| Phenol                      | ND             | 0.14       | 0.48       | 0.48    | mg/kg       | 1             |              |
| Pyrene                      | ND             | 0.077      | 0.48       | 0.48    | mg/kg       | - 1           |              |
| Pyridine                    | ND             | 0.048      | 0.97       | 0.97    | mg/kg       | 1             |              |
| Surr: 2,4,6-Tribromaphenal  | 55 %           | Conc:26.6  | 4          | 10-97   | %           |               |              |
| Surr: 2-Fluorobiphenyl      | 62 %           | Conc:14.9  | 3          | 9-100   | %           |               |              |
| Surr. 2-Fluorophenol        | 72 %           | Conc:34.9  | 2          | 6-115   | %           |               |              |
| Surr: Nitrobenzene-d5       | 65 %           | Conc:15.7  |            | 9-105   | %           |               |              |
| Surr. Phenol-d5             | 70 %           | Conc.33.9  |            | 5-105   | %           |               |              |
| Surr. Terphenyl-d14         | 70 %           | Conc: 16.8 |            | 5-106   | %           |               |              |
| O A CLASSIC SAN             | 2000           |            |            |         |             |               |              |

Page 36 of 48





LADWP - Environmental Laboratory \*\* 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-18

LN06340

Sampled: 05/29/13 09:10

Sampled By: Client

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch; W     | Batch; W3F0001 |       |      | 3 09:40 | Analyzed: 06/0 | 05/13 03:43 | B Analyst: abj |  |  |
|----------------------------------|--------------|----------------|-------|------|---------|----------------|-------------|----------------|--|--|
| Analyte                          |              | Result         | MDL   | MRL  | ML      | Units          | Dilution    | Qualifier      |  |  |
| 1,2,4-Trichlorobenzene           |              | ND             | 0.087 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 1,2-Dichlorobenzene              |              | ND-            | 0.11  | 0.48 | 0.48    | mg/kg          | 1 -         |                |  |  |
| 1,3-Dichlorobenzene              |              | ND             | 0.077 | 0.48 | 0.48    | mg/kg 🧁        | 1           |                |  |  |
| 1,4-Dichlorobenzene              |              | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2,4,5-Trichlarophenal            |              | ND             | 0.11  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2,4,6-Trichlorophenol            | 38           | ND             | 0.11  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2,4-Dichlorophenol               |              | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           | 8              |  |  |
| 2,4-Dimethylphenol               |              | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2,4-Dinitrophenal                |              | ND             | 3.6   | 24   | 24      | mg/kg          | 1           |                |  |  |
| 2,4-Dinitrotoluene               |              | ND             | 0.096 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2,6-Dinitrotoluene               | 34           | ND :           | 0.077 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2-Chloronaphthalene              |              | ND             | 0.077 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2-Chlorophenol                   |              | ND             | 0.096 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2-Methylnaphthalene              |              | ND ==          | 0.087 | 0.48 | 0.48    | ≅ mg/kg        | 1           | 36             |  |  |
| 2-Methylphenol                   | 2            | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 2-Nitroaniline                   |              | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           | 9              |  |  |
| 2-Nitrophenol                    | 2            | ND             | 0.21  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 3 & 4-Methylphenol               |              | ND 🤃           | 0.12  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 3,3'-Dichlorobenzidine           |              | ND ·           | 1.5   | 2.4  | 2.4     | mg/kg          | 1           |                |  |  |
| 3-Nitroaniline                   | 800<br>(100) | ND             | 0.14  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 4,6-Dinitro-2-methylphenol       |              | ND             | 1.5   | 4.8  | 4.8     | mg/kg          | 1           |                |  |  |
| 4-Bromophenyl phenyl ether       |              | ND ×           | 0.067 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 4-Chloro-3-methylphenol          |              | ND             | 0.11  | 0.48 | 0.48    | mg/kg          | 1           | in .           |  |  |
| 4-Chloroaniline                  |              | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 4-Chlorophenyl phenyl ether      |              | ND .           | 0.087 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 4-Nitroaniline                   |              | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| 4-Nitrophenol                    | *:           | ND             | 0.14  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| Acenaphthene                     |              | ND             | 0.087 | 0.48 | 0.48    | mg/kg          | 1 .         |                |  |  |
| Acenaphthy/ene                   |              | ND .           | 0.087 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| Aniline                          |              | ND             | 0.22  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| Anthracene                       |              | ND             | 0.077 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| Azobenzene/1,2-Diphenylhydrazine |              | ND             | 0.096 | 0.48 | 0.48    | mg/kg □        | - 1 -       |                |  |  |
| Benzidine                        |              | ND             | 1.2   | 4.8  | 4.8     | mg/kg          | 1           | 2              |  |  |
| Benzo (a) anthracene             |              | ND             | 0.067 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| Benzo (a) pyrene                 |              | ND             | 0.077 | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| Benzo (b) fluoranthene           |              | ND             | 0.067 | 0.48 | 0.48    | mg/kg          | 1           | 55             |  |  |
| Benzo (g,h,i) perylene           |              | ND             | 0.058 | 0.96 | 0.96    | mg/kg          | 1           |                |  |  |
| Benzo (k) fluoranthene           |              | ND             | 0.12  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |
| Benzoic acid                     |              | ND             | 1.8   | 24   | 24      | mg/kg 🦠        | - 1         |                |  |  |
| Benzył alcohol                   |              | ND             | 0.13  | 0.48 | 0.48    | mg/kg          | 1           |                |  |  |

Page 37 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg, 7, Rm 311

Report ID:

3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/29/13 09:10

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-18

LN06340

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           |   | Batch: W | 3F0001 | Prepared  | : 06/01/ | 13 09:40 | Analyzed: 06 | /05/13 03:43   | Analyst: abj |
|-----------------------------|---|----------|--------|-----------|----------|----------|--------------|----------------|--------------|
| Anelyte                     |   |          | Result | MDL       | MRI      | ML       | Units        | Dilution       | Qualifier    |
| Bis(2-chloroethoxy)methane  |   |          | ND     | 0.087     | 0.48     | 0.48     | mg/kg        | 1 1 1          | 25 F         |
| Bis(2-chloroethyl)ether     |   |          | ND     | 0.11      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Bis(2-chloraisopropyl)ether | * |          | ND     | 0.13      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Bis(2-ethylhexyl)phthalate  |   |          | ND     | 0.12      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Butyl benzyl phthalate      |   |          | ND     | 0.14      | 0.48     | 0.48     | mg/kg        | 1              | 347          |
| Carbazole                   |   | 85       | ND     | 0.087     | 0.48     | 0.48     | rng/kg       | 1              |              |
| Chrysene                    |   |          | ND     | 0.087     | 0.48     | 0.48     | mg/kg        | 1              |              |
| Dibenzo (a,h) anthracene    |   |          | ND     | 0.048     | 0.96     | 0.96     | mg/kg        | 1              | * 8          |
| Dibenzofuran                |   |          | ND     | 0.087     | 0.48     | 0.48     | mg/kg        | 1              |              |
| Diethyl phthalate           |   | 727      | * ND   | 0.058     | 0.48     | 0.48     | mg/kg        | 1              |              |
| Dimethyl phthalate          |   | 19       | ND     | 0.85      | 2.4      | 2.4      | ∃ mg/kg      | 1              |              |
| Di-n-butyl phthalate        |   |          | ND     | ∞ 0.077   | 0.48     | 0.48     | mg/kg        | 1              |              |
| Di-n-octyl phthalate        |   |          | ND     | 0.13      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Fluoranthene                |   |          | ND     | 0.11      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Fluorene                    |   |          | ND     | 0.067     | 0.48     | 0.48     | mg/kg        | 1              |              |
| Hexachlorobenzene           |   |          | ND     | 0.077     | 0.48     | 0.48     | mg/kg        | 1              |              |
| Hexachlorobutadiene         |   |          | ND     | 0.087     | 0.48     | 0.48     | mg/kg        | 1              | (9)          |
| Hexachlorocyclopentadiene   |   | 8        | ND     | 0.12      | 0.48     | 0.48     | mg/kg        | 1              | 400          |
| Hexachloroethane            |   |          | " ND   | 0.067     | 0.48     | 0.48     | mg/kg        | 1              |              |
| Indeno (1,2,3-cd) pyrene    |   |          | ND     | 0.087     | 0.96     | 0.96     | mg/kg        | 1              |              |
| Isophorone                  |   |          | ND     | 0.096     | 0.48     | 0.48     | rng/kg       | 1              |              |
| Naphthalene                 |   |          | ND     | 0.11      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Nitrobenzene                |   |          | ND     | 0.11      | 0.48     | 0.48     | ™ mg/kg      | <sub>2</sub> 1 |              |
| N-Nitrosodimethylamine      |   |          | ND     | 0.087     | 0.48     | 0.48     | rng/kg       | 1              |              |
| N-Nitrosodi-n-propylamine   |   |          | ND     | 0.087     | 0.48     | 0.48     | mg/kg        | 1              |              |
| N-Nitrosodiphenylamine      |   |          | ND     | 0.067     | 0.48     | 0.48     | mg/kg        | 1              | - 6          |
| Pentachlorophenol           |   |          | ND     | 0.15      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Phenanthrene                |   |          | ND     | 0.077     | 0.48     | 0.48     | mg/kg 🚊      | 1              |              |
| Phenol                      |   |          | ND     | 0.14      | 0.48     | 0.48     | mg/kg        | 1              |              |
| Pyrene                      |   |          | ND     | 0.077     | 0.48     | 0.48     | mg/kg        | 1              |              |
| Pyridine                    | G |          | ND     | 0.048     | 0.96     | 0.96     | mg/kg        | 1 3            |              |
| Surr. 2,4,6-Tribromophenol  |   |          | 56 %   | Conc;26.9 |          | 40-97    | %            |                |              |
| Surr: 2-Fluorobiphenyl      |   |          | 62 %   | Conc:14.8 |          | 39-100   | %            |                |              |
| Surr: 2-Fluorophenol        | 3 |          | 72 %   | Сопс:34.5 |          | 26-115   | %            |                | 9            |
| Surr. Nitrobenzene-d5       |   |          | 63 %   | Conc 15.2 |          | 49-105   | %            |                |              |
| Surr. Phenol-d5             |   | 90       | 69 %   | Conc:33.0 |          | 36-105   | % -          |                |              |
| Surr: Terphenyl-d14         |   |          | 91%    | Conc:21.8 |          | 36-106   | - %          |                |              |
| terra 🗸 = 1 ·               |   |          |        |           |          |          |              |                | 140          |

Page 38 of 48



Sampled: 05/29/13 09:30

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 47600 Tyrone Ave, COC

Date Received: Date Reported:

05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-19 LN06341

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Methad: EPA 8270C                | Batch: W3F0001  | Prepared | : 06/01/13 | 09:40 | Analyzed: 06 | 05/13 04:13 | Analyst: abj |
|----------------------------------|-----------------|----------|------------|-------|--------------|-------------|--------------|
| Analyte                          | Result          | MDL      | MRL        | ML    | Units        | Dilution    | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND              | 0.081    | 0.45       | 0.45  | mg/kg        | 1           | 20           |
| 1,2-Dichlorobenzene              | ND              | 0.10     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 1,3-Dichlorobenzene              | o ND            | 0.072    | 0.45       | 0.45  | mg/kg        | 1           |              |
| 1,4-Dichlorobenzene              | ND <sup>a</sup> | 0.11     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2,4,5-Trichlorophenol            | ND              | 0.10     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2,4,6-Trichlorophenol            | ND at           | 0.10     | 0.45       | 0.45  | mg/kg ⊴      | 1           |              |
| 2,4-Dichlorophenol               | ND              | 0.12     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2,4-Dimethylphenol               | ND              | 0.11     | 0.45       | 0.45  | mg/kg        | 36 1        |              |
| 2,4-Dinitrophenol                | ND              | 3.4      | 23         | 23    | mg/kg        | 1           |              |
| 2,4-Dinitrotoluene               | ND              | 0.090    | 0.45       | 0.45  | mg/kg        | 1           | 107          |
| 2,6-Dinitrotoluene               | ND              | 0.072    | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2-Chioronaphthalene              | ND              | 0.072    | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2-Chlorophenol                   | ND              | 0.090    | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2-Methylnaphthaiene              | ND              | 0.081    | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2-Methylphenoi                   | ND              | 0.11     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2-Nitroaniline                   | ND              | 0.12     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 2-Nitrophenol                    | ND              | 0.20     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 3 & 4-Methylphenol               | ND              | 0.11     | 0.45       | 0.45  | mg/kg        | 1           | 24           |
| 3,3'-Dichlorobenzidine           | ND *            | 1.4      | 2.3        | 2.3   | mg/kg        | 1           |              |
| 3-Nitroaniline                   | ND              | 0.14     | 0.45       | 0.45  | ing/kg       | 1           |              |
| 4,6-Dinitro-2-methylphenol       | ДИ              | 1.4      | 4.5        | 4.5   | mg/kg        | 1           |              |
| 4-Bromophenyl phenyl ether       | ND              | 0.063    | 0.45       | 0.45  | mg/kg        | 1 -         |              |
| 4-Chloro-3-methylphenol          | ND              | 0.10     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 4-Chloroaniline                  | ND              | 0.12     | 0.45       | 0.45  | mg/kg        | 1           |              |
| 4-Chloropheny! phenyl ether      | ND              | 0.081    | 0.45       | 0.45  | mg/kg        | 1           |              |
| 4-Nitroaniline                   | ND              | 0.12     | 0.45       | 0.45  | mg/kg 📰      | 1           |              |
| 1-Nitrophenoi                    | ND              | 0.14     | 0.45       | 0.45  | mg/kg        | 1           |              |
| Acenaphthene                     | ND              | 0.081    | 0.45       | 0.45  | mg/kg        | 1           |              |
| Acenaphthylene                   | ND              | 0.081    | 0.45       | 0.45  | mg/kg        | g 1         |              |
| Aniline                          | ND              | 0.21     | 0.45       | 0.45  | ⊸ mg/kg      | 1           | 8            |
| Anthracene                       | ND              | 0.072    | 0.45       | 0.45  | mg/kg        | 1 8         | 10           |
| Azobenzene/1,2-Diphenylhydrazine | ND              | 0.090    | 0.45       | 0.45  | mg/kg        | 1           |              |
| Benzidine                        | ND              | 1.1      | 4.5        | 4.5   | mg/kg        | 1           |              |
| lenzo (à) anthracene             | ND              | 0.063    | 0.45       | 0.45  | mg/kg        | 1           | (4)          |
| lenzo (a) pyrene                 | ND              | 0.072    | 0.45       | 0.45  | mg/kg        | 1           |              |
| enzo (b) fluoranthene            | ND              | 0.063    | 0.45       | 0.45  | mg/kg        | 1           | 747          |
| lenzo (g,h,i) perylene           | ND              | 0.054    | 0.90       | 0.90  | mg/kg        | 1           |              |
| lenzo (k) fluoranthene           | ND              | 0.12     | 0.45       | 0.45  | mg/kg        | 1           |              |
| enzoic acid                      | ND              | 1.7      | 23         | 23    | mg/kg        | 1           | **           |
| enzyl alcohol                    | ND              | 0,13     | 0.45       | 0.45  | mg/kg        | 1           | 20           |

Page 39 of 48

www.wecklabs.com





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/29/13 09:30

Report ID:

3E30014

Date Received:

05/30/13 09:50

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-19

LN06341

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C Ba         | atch: W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed | Analyzed::06/05/13 04:13 |           |  |
|------------------------------|---------------|------------|-----------|---------|----------|--------------------------|-----------|--|
| Analyte                      | Result        | MDL        | MRL       | ML      | Units    | Dilution                 | Qualifier |  |
| Bis(2-chloroethoxy)methane   | ND            | 0.081      | 0.45      | 0.45    | mg/kg    | 785 1 556                |           |  |
| Bis(2-chloroethyl)ether      | ND            | 0.10       | 0.45      | 0.45    | mg/kg    | , f 1                    |           |  |
| Bis(2-chloroisopropyl)ether  | ND            | 0.13       | 0.45      | 0.45    | mg/kg    | <sub></sub> 1            | 8         |  |
| Bis(2-ethylhexyl)phthalate   | ND            | 0.11       | 0.45      | 0.45    | ⊨ mg/kg  | 1                        |           |  |
| Butyl benzyl phthalate       | ND            | 0.14       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Carbazole                    | ND            | · 0.081    | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Chrysene                     | ND            | 0.081      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Dibenzo (a,h) anthracene     | ND:           | 0.045      | 0.90      | 0.90    | mg/kg    | 1                        |           |  |
| Dibenzofuran                 | ND            | 0.081      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Diethyl phthalate            | ND            | 0.054      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Dimethyl phthalate           | ND            | o.80       | 2.3       | 2.3     | mg/kg 🖥  | 1                        |           |  |
| Di-n-butyl phthalate         | ND.           | 0.072      | 0.45      | 0.45    | mg/kg    | ···· 1                   |           |  |
| Di-n-octyl phthalate         | ND            | 0.13       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Fluoranthene                 | ND            | 0.10       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Fluorene                     | ND            | 0.063      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Hexachlorobenzene            | ND            | 0.072      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Hexachlorobutadiene          | ND 🗈          | 0.081      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Hexachlorocyclopentadiene    | ND I          | 0.11       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Hexachloroethane             | ND            | 0.063      | 0.45      | 0.45    | mg/kg-   | 1                        |           |  |
| Indeno (1,2,3-cd) pyrene     | ND            | 0.081      | 0.90      | 0.90    | mg/kg    | 1                        |           |  |
| Isophorone                   | ND            | 0.090      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Naphthalene                  | ND            | 0.10       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Nitrobenzene                 | ND            | 0.10       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| N-Nitrosodimethylamine       | ND            | 0.081      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| N-Nitrosodi-n-propylamine    | ND            | 0.081      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| N-Nitrosodiphenylamine       | ND            | 0.063      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Pentachlorophenol            | ND            | 0.14       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Phenanthrene                 | ND            | 0.072      | 0.45      | 0.45    | mg/kg    | 1                        | 19        |  |
| Phenol                       | ND            | 0.14       | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Pyrene                       | ND            | 0.072      | 0.45      | 0.45    | mg/kg    | 1                        |           |  |
| Pyridine                     | ND            | 0.045      | 0.90      | 0.90    | mg/kg    | 1                        |           |  |
| Surr: 2, 4, 6-Tribromophenol | 66 %          | Conc: 29.8 |           | 40-97   | %        |                          |           |  |
| Surr: 2-Fluorobiphenyl =     | 74 %          | Conc:16.7  | 3         | 39-100  | %        |                          |           |  |
| Surr: 2-Fluoropheriol        | 88 %          | Conc:40.0  | 2         | 26-115  | %        |                          |           |  |
| Surr. Nitrobenzene-d5        | 75 %          | Сопс;16.9  | 4         | 19-105  | %        |                          |           |  |
| Sur: Phenol-d5               | 81 %          | *Conc:36.9 |           | 6-105   | %        |                          |           |  |
| Surr. Terphenyl-d14          | 83 %          | Conc.18.7  |           | 6-106   | %        |                          | 10.8      |  |

Page 40 of 48







Sampled: 05/29/13 09:34

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30014

Date Received:

05/30/13 09:50

#13-1321,26, WO#

Project ID: 7600 Tyrone Ave, COC

Date Reported:

06/05/13 16:04

LN06343 3E30014-20

Sampled By: Client

Matrix: Solid

## Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                |     | V3F0001 | •     | : 06/01/13 | -    | Analyzed: 0 | 6/05/13 04:44    | Analyst: abj |
|----------------------------------|-----|---------|-------|------------|------|-------------|------------------|--------------|
| Analyte                          |     | Result  | MDL   | MRL        | ML   | Units       | Dilution         | Qualifier    |
| 1,2,4-Trichlorobenzene           |     | ND      | 0.088 | 0.49       | 0.49 | mg/kg       | 1                |              |
| 1,2-Dichlorobenzene              | 8   | ND      | 0.11  | 0.49       | 0.49 | mg/kg       | 1                | 4            |
| 1,3-Dichlorobenzene              |     | ND      | 0.078 | 0.49       | 0.49 | mg/kg       | 1                |              |
| 1,4-Dichlarobenzene              |     | ND      | 0.12  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2,4,5-Trichlarophenol            |     | ND      | 0.11  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2,4,6-Trichlorophenol            |     | ND      | 0.11  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2,4-Dichlorophenol               | 060 | ND      | 0.13  | 0.49       | 0.49 | mg/kg       | n 1              |              |
| 2,4-Dimethylphenol               |     | ND      | 0.12  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2,4-Dinitrophenol                |     | ND      | 3.7   | 25         | 25   | mg/kg       | 1                | 6            |
| 2,4-Dinitrotoluene               |     | ND      | 0.098 | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2,6-Dinitrotoluene               |     | ND      | 0.078 | 0.49       | 0.49 | mg/kg       | 1 😘              |              |
| 2-Chloronaphthalene              |     | ND      | 0.078 | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2-Chlorophenol                   |     | ND      | 0.098 | 0.49       | 0.49 | , mg/kg     | 1                |              |
| 2-Methylnaphthalene              |     | ND      | 0.088 | 0.49       | 0.49 | mg/kg       | 1                | 8            |
| 2-Methylphenal                   |     | ND      | 0.12  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2-Nitroaniline                   |     | ND      | 0.13  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 2-Nitrophenol                    |     | ND      | 0.22  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 3 & 4-Methylphenol               |     | ND      | 0.12  | 0.49       | 0.49 | mg/kg       | .1               |              |
| 3,3'-Dichlorobenzidine           |     | ND      | 1.5   | 2.5        | 2.5  | mg/kg 📑     | 1                |              |
| 3-Nitroaniline                   |     | ND      | 0.15  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 4,6-Dinitro-2-methylphenol       |     | ND      | 1.5   | 4.9        | 4.9  | mg/kg       | 1 =              |              |
| 4-Bromophenyl phenyl ether       |     | ND      | 0.069 | 0.49       | 0.49 | mg/kg       | 1                |              |
| 4-Chloro-3-methylphenol          |     | ND      | 0.11  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 4-Chloroaniline                  |     | ND      | 0.13  | 0.49       | 0.49 | mg/kg       | 1                |              |
| 4-Chlorophenyl phenyl ether      |     | ND A    | 0.088 | 0.49       | 0.49 | mg/kg       | <sub>(i)</sub> 1 |              |
| 4-Nitroaniline                   |     | ND /    | 0.13  | 0.49       | 0.49 | _mg/kg      | 1                | 8            |
| 4-Nitrophenol                    | 2   | ND      | 0.15  | 0.49       | 0.49 | mg/kg       | 1                |              |
| Acenaphthene                     |     | ND      | 0.088 | 0.49       | 0.49 | mg/kg       | 1                |              |
| Acenaphthylene                   | 1   | ND      | 0.088 | 0.49       | 0.49 | ⊚ mg/kg     | 1                |              |
| Aniline                          |     | ND *    | 0.23  | 0.49       | 0.49 | mg/kg       | 1                |              |
| Anthracene                       |     | ND      | 0.078 | 0.49       | 0.49 | i mg/kg     | 1                |              |
| Azobenzene/1,2-Diphenylhydrazine |     | ND.     | 0.098 | 0.49       | 0.49 | mg/kg       | 1 #              |              |
| Benzidine                        |     | ND      | 1.2   | 4.9        | 4.9  | mg/kg       | 1                | 12 5         |
| Benzo (a) anthracene             |     | ND :    | 0.069 | 0.49       | 0.49 | mg/kg       | 1                |              |
| Benzo (a) pyrene                 |     | ND      | 0.078 | 0.49       | 0.49 | mg/kg       | 1                |              |
| Benzo (b) fluoranthene           |     | ND      | 0.069 | 0.49       | 0.49 | mg/kg       | 1                | 5            |
| Benzo (g,h,i) perylene           |     | ND      | 0.059 | 0.98       | 0.98 | mg/kg       | 1                |              |
| Benzo (k) fluoranthene           |     | ND      | 0.13  | 0.49       | 0.49 | mg/kg       | 1                |              |
| Benzoic acid                     |     | ND      | 1.9   | 25         | 25   | mg/kg       | 1                |              |
| Benzyl alcohol                   |     | ND      | 0.14  | 0.49       | 0.49 | mg/kg       | 1                |              |
| -                                |     |         |       |            |      |             |                  |              |

Page 41 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/29/13 09:34

Report ID: 3E30014

Date Received:

05/30/13 09:50

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-20

LN06343

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | 17  |   | W3F0001 | Prepare   | d: 06/01/1 | •    |         | 06/05/13 D4:44 | Analyst: abj |
|-----------------------------|-----|---|---------|-----------|------------|------|---------|----------------|--------------|
| Analyte                     |     |   | Result  | MDL       | MRL        | ML   | Units   | Dilution       | Qualifier    |
| Bis(2-chloroethoxy)methane  |     |   | ND      | 0.088     | 0.49       | 0.49 | mg/kg   | 1 .*           | 2 0          |
| Bis(2-chloroethyl)ether     |     |   | ND      | 0.11      | 0.49       | 0.49 | _ mg/kg | 8 8 1          |              |
| Bis(2-chloroisopropyl)ether |     |   | ND      | 0.14      | 0.49       | 0.49 | mg/kg   | 1.             |              |
| Bis(2-ethylhexyl)phthalate  |     |   | ND      | 0.12      | 0.49       | 0.49 | mg/kg   | 1              | 20           |
| Butyl benzyl phthalate      |     |   | 0.29    | 0.15      | 0.49       | 0.49 | mg/kg   | 1              |              |
| Carbazole                   |     |   | ND      | 0.088     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Chrysene                    |     |   | ND      | 0.088     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Dibenzo (a,h) anthracene    |     |   | ND      | 0.049     | 0.98       | 0.98 | mg/kg   | 1              |              |
| Dibenzofuran                |     |   | ND      | 0.088     | 0.49       | 0.49 | mg/kg   | 1              | 06           |
| Diethyl phthalate           |     |   | ND      | 0.059     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Dimethyl phthalate          | 2   |   | ND      | 0.86      | 2.5        | 2.5  | mg/kg   | 1              |              |
| Di-n-butyl phthalate        |     |   | ND      | 0.078     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Di-n-octyl phthalate        |     |   | ND =    | 0.14      | 0.49       | 0.49 | mg/kg   | 1              |              |
| Fluoranthene                |     |   | ND      | 0.11      | 0.49       | 0.49 | mg/kg   | 1              |              |
| Fluorene                    |     |   | ND      | 0.069     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Hexachlorobenzene           |     |   | ND      | 0.078     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Hexachlorobutadiene         |     |   | ПN      | 0.088     | 0.49       | 0.49 | mg/kg   | 1              | 8            |
| Hexachlorocyclopentadiene   |     |   | ND      | 0.12      | 0.49       | 0.49 | mg/kg   | 1              |              |
| Hexachloroethane            | (4) |   | ND      | 0.069     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Indeno (1,2,3-cd) pyrene    |     |   | ND      | 0.088     | 0.98       | 0.98 | mg/kg   | 1              |              |
| Isophorone                  |     |   | ND      | 0.098     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Naphthalene                 |     |   | ND      | 0.11      | 0.49       | 0.49 | mg/kg   | 1              |              |
| Nitrobenzene                |     |   | ND      | 0.11      | 0.49       | 0.49 | mg/kg   | 1              |              |
| N-Nitrosodimethylamine      |     |   | ND      | 0.088     | 0.49       | 0.49 | mg/kg   | 1              |              |
| N-Nitrosodi-n-propylamine   |     |   | ND      | 0.088     | 0.49       | 0.49 | mg/kg   | 1              |              |
| N-Nitrosodiphenylamine      |     |   | ND      | 0.069     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Pentachlorophenol           | 0   | 9 | ND      | 0.16      | 0.49       | 0.49 | mg/kg   | 1              |              |
| Phenanthrene                | 9   |   | ND      | 0.078     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Phenol.                     |     |   | ND      | 0.15      | 0.49       | 0.49 | mg/kg   | ∀1             |              |
| Pyrene                      |     | 9 | ND      | 0.078     | 0.49       | 0.49 | mg/kg   | 1              |              |
| Pyridine                    |     |   | ND      | 0.049     | 0.98       | 0.98 | mg/kg   | 1              |              |
| Surr. 2,4,6-Tribromophenol  |     |   | 59 %    | Conc:28.9 |            | 0-97 | » %     | . *            | 22           |
| Surr. 2-Fluorobiphenyl      |     |   | 67.%    | Conc:16.5 |            | -100 | %       | 20             |              |
| Surr. 2-Fluorophenol        |     |   | 83 %    | Conc:40.5 |            | -115 | %       |                |              |
| Surr. Nitrobenzene-d5       |     |   | 71 %    | Conc:17.4 |            | -105 | %       |                | g.           |
| Surr: Phenoi-d5             |     |   | 77 %    | Conc:37.6 |            | -105 | %       |                | 50           |
| Surr. Terphenyl-d14         |     |   | 73 %    | Conc:17.9 |            | 106  | %       |                |              |

Page 42 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID:

3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50

06/05/13 16:04

# QUALITY CONTROL SECTION





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

Semivolatile Organic Compounds by GC/MS - Quality Control

Batch W3F0001 - EPA 8270C

| Analyte                          | Result | Reporting<br>Limit | etinU | Spike<br>Level | Source<br>Result | %REC  | % REC<br>Limits | RPD  | RPD<br>Limit | Dala<br>Qualifiers |
|----------------------------------|--------|--------------------|-------|----------------|------------------|-------|-----------------|------|--------------|--------------------|
| Blank (W3F0001-BLK1)             |        |                    | -11   | Analyzed       | : 06/04/13       | 14:03 |                 |      | - 107        |                    |
| 1,2,4-Trichlorobenzene           | ND     | 0.050              | mg/kg |                |                  |       | ia.             | 2.5  |              |                    |
| 1,2-Dichlorobenzene              | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 1,3-Dichlorobenzene              | ND     | 0.050              | mg/kg |                |                  | 1     | 8               |      |              |                    |
| 1,4-Dichlorobenzene              | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2,4,5-Trichlorophenol            | ND     | 0.050              | mg/kg |                |                  |       |                 |      | - 5          |                    |
| 2,4,6-Trichlorophenol            | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2,4-Dichlorophenol               | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2,4-Dimethylphenol               | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2,4-Dinitrophenol                | ND     | 2.5                | mg/kg |                |                  |       | *               |      |              |                    |
| 2,4-Dinitrotoluene               | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2,6-Dinitrotoluene               | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2-Chloronaphthalene              | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2-Chlorophenol                   | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2-Methylnaphthalene              | - ND   | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2-Methylphenol                   | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2-Nitroaniline                   | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 2-Nitrophenoi                    | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              | 75                 |
| 3 & 4-Methylphenol               | ND.    | 0.050              | mg/kg |                |                  |       |                 |      |              | 30                 |
| 3,3'-Dichlorobenzidine           | ND     | 0.25               | mg/kg |                |                  |       |                 |      |              |                    |
| 3-Nitroaniline                   | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 4,6-Dinitro-2-methylphenol       | ND     | 0.50               | mg/kg | 63             |                  |       |                 |      |              |                    |
| 4-Bromophenyl phenyl ether       | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 4-Chloro-3-methylphenol          | ND     | 0.050              | mg/kg |                |                  |       | 8               |      |              |                    |
| 4-Chloroaniline                  | ND     | 0.050              | mg/kg | 70             |                  |       |                 |      |              |                    |
| 4-Chlorophenyi phenyl ether      | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 4-Nitroaniline                   | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| 4-Nitrophenol                    | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Acenaphthene                     | ND     | 0.050              | mg/kg |                |                  |       | CB.             |      |              |                    |
| Acenaphthylene                   | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Aniline                          | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Anthracene                       | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Azobenzene/1,2-Diphenylhydrazine | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Benzidine                        | ND     | 0.50               | mg/kg |                |                  |       |                 |      |              |                    |
| Benzo (a) anthracene             | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Benzo (a) pyrene                 | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Benzo (b) fluoranthene           | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Benzo (g,h,i) perylene           | - ND   | 0.10               | mg/kg |                |                  |       |                 |      |              |                    |
| Benzo (k) fluoranthene           | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Benzoic acid                     | ND     | 2.5                | mg/kg |                |                  |       |                 |      |              |                    |
| Benzyi alcohol                   | ND     | 0.050              | mg/kg |                |                  | *     |                 |      | 9.           |                    |
| Bis(2-chloroethoxy)methane       | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Bis(2-chloroethyl)ether          | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| Bis(2-chloroisopropyl)ether      | ND     | 0.050              | mg/kg |                |                  |       |                 |      |              |                    |
| , , , , , ,                      | 0.0305 | 0.050              | mg/kg |                |                  | 2     |                 | NR = |              | J                  |
| Bis(2-ethylhexyl)phthalate       | 0.0303 | 0,000              | many  |                |                  |       |                 |      |              |                    |

Page 44 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 86 16 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Received: 05/30/13 09:50

Date Reported:

06/05/13 16:04

## Semivolatile Organic Compounds by GC/MS - Quality Control

| •                                                  |    |      |        | Reporting |         | Spike       | Source      |       | % REC  |     | RPD   |        | Data |
|----------------------------------------------------|----|------|--------|-----------|---------|-------------|-------------|-------|--------|-----|-------|--------|------|
| Analyte                                            |    |      | Result | Limit     | Units   | Level       | Result      | %REC  | Limits | RPD | Limit | Qualit | iers |
| Blank (W3F0001-BLK1)                               |    |      |        |           |         | Analyzed:   | 06/04/13    | 14:03 |        |     |       |        |      |
| Butyl benzyl phthalate                             |    |      | ND     | 0.050     | mg/kg   |             |             |       | В      | 14  |       |        |      |
| Carbazole                                          |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Chrysene                                           |    |      | ND     | 0.050     | mg/kg " |             |             |       |        |     |       |        |      |
| Dîbenzo (a,h) anthracene                           |    |      | ND     | 0.10      | mg/kg   |             |             |       |        | 9   |       |        |      |
| Dibenzofuran                                       |    |      | ND     | 0.050     | mg/kg   |             |             |       | 8      |     |       |        |      |
| Diethyl phthalate                                  | 10 |      | ND     | 0.050     | mg/kg   |             |             |       | 8      | 25  |       |        |      |
| Dimethyl phthalate                                 |    |      | ND     | 0.25      | mg/kg   |             | 7.          |       |        |     |       |        |      |
| DI-n-butyl phthalate                               |    |      | 0.0315 | 0.050     | mg/kg   |             |             |       |        | NR  |       |        |      |
| Di-n-octyl phthalate                               |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Fluoranthene                                       |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Fluorene                                           |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Hexachlorobenzene                                  |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Hexachlorobutadiene                                |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Hexachlorocyclopentadiene                          |    |      | ND     | 0.050     | mg/kg   |             |             |       |        | 6   |       |        |      |
| Hexachloroethane                                   |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Indeno (1,2,3-cd) pyrene                           |    |      | ND     | 0.10      | mg/kg   |             |             |       |        |     |       |        |      |
| Isophorone                                         |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Naphthalene                                        |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Nitrobenzene                                       |    |      | ND     | 0.050     | mg/kg   |             |             | -     |        |     |       |        |      |
| N-Nitrosodimethylamine                             |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| N-Nitrosodi-n-propylamine                          |    |      | ND     | 0.050     | mg/kg   |             |             |       | ¥)     |     |       |        |      |
| N-Nitrosodiphenylamine                             |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Pentachlorophenol                                  |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Phenanthrene                                       |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Phenol                                             |    |      | ND     | 0.050     | mg/kg   |             |             |       |        |     |       |        |      |
| Pyrene                                             |    |      | ND     | 0.050     | mg/kg   |             |             |       | ¥2     |     |       |        |      |
| Pyridine                                           |    |      | ND     | 0.10      | mg/kg   |             |             |       |        |     |       |        |      |
| Surr: 2,4,6-Tribromophenol                         |    |      | 4.31   | 0.10      | mg/kg   | 5.00        |             | 86    | 40-97  |     |       |        |      |
| Surr. 2,4,6-mbromophenol<br>Surr. 2-Fluorobiphenyl |    |      | 2.47   | 17        | mg/kg   | 2.50        |             | 99    | 39-100 |     |       |        |      |
| - 60                                               |    |      | 7.19   |           | mg/kg   | 5.00        |             | 144   | 26-115 |     |       | S-     | -11  |
| Surr. 2-Fluorophenol<br>Surr. Nilrobenzene-d5      |    |      | 2.55   |           | mg/kg   | 2.50        |             | 102   | 49-105 |     |       |        |      |
|                                                    |    |      | 5.47   |           | mg/kg   | 5.00        |             | 109   | 36-105 |     |       | S-     | -11  |
| Surr. Phenol-d5                                    |    |      |        |           |         |             |             | 112   | 36-106 |     |       |        | -11  |
| Surr. Terphenyl-d14                                |    |      | 2.80   |           | mg/kg   | 2.50        |             |       | 30-100 |     |       |        |      |
| CS (W3F0001-BS1)                                   |    |      |        |           |         | Analyzed: ( | 05/04/13 14 |       | 00.400 | ND  |       |        | _    |
| 1,2,4-Trichlorobenzene                             |    |      | 1.94   | 0.050     | mg/kg   | 2.50        |             | 78    | 28-120 | NR  |       |        |      |
| 1,4-Dichlorobenzene                                |    |      | 1.98   | 0.050     | mg/kg   | 2.50        |             | 79    | 41-98  | NR  |       |        |      |
| 2,4-Dinitrotoluene                                 |    |      | 2.07   | 0.050     | mg/kg   | 2.50        |             | 83    | 43-121 | NR  |       |        |      |
| 2-Chlorophenol                                     |    |      | 1.96   | 0.050     | mg/kg   | 2.50        |             | 78    | 22-123 | NR  | *     |        |      |
| I-Chloro-3-methylphenol                            |    |      | 1.88   | 0.050     | mg/kg   | 2.50        |             | 75    | 26-126 | NR  |       | 30     |      |
| -Nitrophenol                                       | 9  |      | 1.81   | 0.050     | mg/kg   | 2.50        |             | 72    | 17-139 | NR  |       |        |      |
| cenaphthene                                        |    | - 84 | 2.07   | 0.050     | mg/kg   | 2.50        |             | 83    | 44-105 | NR  |       | 190    |      |
| N-Nitrosodi-n-propylamine                          |    |      | 2.00   | 0.050     | mg/kg   | 2.50        | 22          | 80    | 24-128 | NR  |       | * .    |      |
| Pentachlorophenol                                  |    |      | 1.80   | 0.050     | mg/kg   | 2.50        |             | 72    | 20-116 | NR  |       | 6      |      |

Page 45 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

Semivolatile Organic Compounds by GC/MS - Quality Control

| PROJECT TO | W3F000 | A property in | AND ARREST AND ARREST |
|------------|--------|---------------|-----------------------|
|            |        |               |                       |

| Analyte                        | Result | Reporting<br>Limit | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spike                    | Source     | %REC  | % REC    | RPD | RPD<br>Limit | Qualifier<br>Qualifier |
|--------------------------------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|-------|----------|-----|--------------|------------------------|
|                                | Result | Littak             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            |       | Limin    | RPD | Link         | - Continu              |
| LCS (W3F0001-BS1)              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | : 06/04/13 |       |          |     |              |                        |
| Phenol                         | 1.82   | 0.050              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            | 73    | 22-123   | NR  |              |                        |
| Pyrene                         | 213    | 0.050              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            | 85    | 42-118   | NR  |              |                        |
| Surr. 2,4,6-Tribromophenol     | 3.91   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            | 78    | 40-97    |     |              |                        |
| Surr: 2-Fluorobiphenyl         | 2.15   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            | 86    | 39-100   |     |              |                        |
| Surr. 2-Fluorophenol           | 4.65   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            | 93    | 26-115   |     |              |                        |
| Surr. Nitrobenzene-d5          | 1.99   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.50                     |            | 80    | 49-105   |     |              |                        |
| Surr: Phenol-d5                | 4.22   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                     |            | 84    | 36-105   |     |              |                        |
| Surr. Terphenyl-d14            | 2.35   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.50                     |            | 94    | 36-106   |     |              |                        |
| Matrix Spike (W3F0001-MS1)     | Source | e: 3E3001          | 4-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyzed                 | 06/04/13   | 15:03 |          |     |              |                        |
| 1,2,4-Trichlorobenzene         | 16.2   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 66    | 26-124   | NR  |              |                        |
| 1,4-Dichlorobenzene            | 16.9   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 59    | 28-117   | NR  |              |                        |
| 2,4-Dinitrotoluene             | 19.2   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 79    | 26-132   | NR  |              |                        |
| 2-Chlarophenal                 | 16.4   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24,4                     | ND         | 67    | 24-124   | NR  |              |                        |
| 4-Chloro-3-methylphenol        | 15.9   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 65    | 5-153    | NR  |              |                        |
| 4-Nitrophenol                  | 17.6   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 72    | 0.6-139  | NR  |              |                        |
| Acenaphthene                   | 17.6   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 72    | 33-117   | NR  |              |                        |
| N-Nitrosodi-n-propylamine      | 16.5   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 68    | 20-128   | NR. |              |                        |
| Pentachlorophenol              | 16,9   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | 0.394      | 68    | 7-125    | NR  |              |                        |
| Phenol                         | 15.8   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 65    | 40-120   | NR  |              |                        |
| Pyrene                         | 20.1   | 0.49               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     | ND         | 83    | 22-148   | NR  |              |                        |
| Surr. 2,4,6-Tribromophenal     | 34.6   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.8                     |            | 71    | 40-97    |     |              |                        |
| Surr. 2-Fluorobiphenyl         | 17.3   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     |            | 71    | 39-100   |     |              |                        |
| Surr. 2-Fluorophenol           | 35.6   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.8                     |            | 73    | 26-115   |     |              |                        |
| Surr. Nitrobenzene-d5          | 16.1   |                    | ту/кд                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     |            | 66    | 49-105   |     |              |                        |
| Surr. Phenol-d5                | 34.3   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48.8                     |            | 70    | 36-105   |     |              |                        |
| Surr: Terphenyl-d14            | 21.4   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                     |            | 88    | 36-106   |     |              |                        |
| atrix Spike Dup (W3F0001-MSD1) | Source | 3E30014            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyzed: 06/04/13 15:33 |            |       |          |     |              |                        |
| 1,2,4-Trichlorobenzene         | 14.9   | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 62    | 26-124   | 8   | 30           |                        |
| 1,4-Dichlorobenzene            | 15.5   | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 65    | 28-117   | 9   | 30           |                        |
| 2,4-Dinitrotoluene             | 15.8   | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 66    | 26-132   | 19  | 30           |                        |
| 2-Chlorophenol                 | 15.3   | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 64    | 24-124   | 7   | 30           |                        |
| 4-Chloro-3-methylphenal        | 14.4   | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 60    | 5-153    | 10  | 30           |                        |
| 4-Nitrophenol                  | 13.6   | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 57    | 0.6-139  | 25  | 30           |                        |
| Acenaphthene                   |        | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23,9                     | ND         | 67    | 33-117   | 10  | 30           |                        |
| N-Nitrosodi-n-propylamine      |        | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 59    | 20-128   | 15  | 30           |                        |
| entachlorophenol               |        | 0.48               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.9                     | 0.394      | 50    | 7-125    | 31  | 30           | MS-05                  |
| Phenol                         |        | 0.48               | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23.9                     | ND         | 61    | 40-120   | 9   | 30           |                        |
| Pyrene                         |        | 0.48               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     | ND         | 65    | 22-148   | 25  | 30           |                        |
| Surr: 2,4,6-Tribromophanol     | 27.8   | u.70               | ing/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.8                     | (10)       | 58    | 40-97    | 20  | 44           |                        |
| Surr. 2-Fluorobiphenyi         | 14.9   |                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.9                     |            | 62    | 39-100   |     |              |                        |
| Surr. 2-Fluorophenol           | 31.0   |                    | the state of the s | 47.8                     |            | 65    | 26-115   |     |              |                        |
|                                |        |                    | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23.9                     |            | 61    | 49-105   |     |              |                        |
| Surr: Nitrobenzene-d5          | 14.5   |                    | FT1 17 ( ) C 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.0                     |            | 67    | 444-1115 |     |              |                        |

Page 46 of 48





LADWP - Environmental Laboratory 4 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E

3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: \*\*
Date Reported:

05/30/13 09:50

06/05/13 16:04

Semivolatile Organic Compounds by GC/MS - Quality Control

Batch W3F0001 - EPA 8270C

| Analyte        | 3 Å          |        | Result | Reporting<br>Limit | Units | Spika<br>Level | Source<br>Result | %REC  | % REC<br>Limits | RPD | RPO<br>Limit | Data<br>Qualifiers |
|----------------|--------------|--------|--------|--------------------|-------|----------------|------------------|-------|-----------------|-----|--------------|--------------------|
| Matrix Spike I | Oup (W3F0001 | -MSD1) | Source | e: 3E30014         | -01   | Analyzed:      | 06/04/13         | 15:33 |                 | 1   |              |                    |
| Surr: Terphe   | nyl-d14      |        | 15.7   |                    | mg/kg | 23.9           |                  | 66    | 36-106          |     |              |                    |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: Project ID:

3E30014.

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

Notes and Definitions

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate. S-11

The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS MS-05

and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

Detected but below the Reporting Limit; therefore, result is an estimated concentration.

NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL) ND

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

Percent Récovery % Rec

Sub Subcontracted analysis, original report available upon request

Method Detection Limit MDL

Minimum Detectable Activity MDA

Method Reporting Limit MRL

Not Reportable NR

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Page 48 of 48

# JONES ENVIRONMENTAL LABORATORY RESULTS

Client:

Alta Environmental, Inc

Client Address:

3777 Long Beach Blvd.

Long Beach, CA 90807

Attn:

Steve Morrill

Project Name:

Tyrone

Project Address: 7600 Tryone Ave.

Van Nuys, CA

Report date:

6/4/2013

JEL Ref. No.:

A-7098 ODWP-13-1198

Client Ref. No.:

Date Sampled: Date Received: 6/4/2013 6/4/2013

Date Analyzed:

6/4/2013

Physical State:

Soil Gas

#### ANALYSES REQUESTED

1. EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sampling – Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers. Tubing placed in the ground for soil gas sampling was purged three different times as recommended by DTSC/RWQCB regulations. This purge test determined how many purges of the soil gas tubing were needed throughout the project. One, three and ten purge volumes were analyzed to make this determination.

A tracer gas mixture of n-propanol and n-pentane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No n-propanol or n-pentane was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min except when noted differently on the chain of custody record using a gas tight syringe. 1 purge volume was used since this purging level gave the highest results for the compound(s) of greatest interest.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for some length of time. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, Matrix Spike (MS) and Matrix Spike Duplicates (MSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity.

All samples were analyzed within 30 minutes of sampling.

Approval:

Steve Jones, Ph.D. Laboratory Manager

P.O. BOX 5387 | FULLERTON, CA 92838 (714) 449-9937 | FAX (714) 449-9685

## JONES ENVIRONMENTAL LABORATORY RESULTS

Client:

Alta Environmental, Inc

Client Address:

3777 Long Beach Blvd.

Long Beach, CA 90807

Attn:

Steve Morrill

Project:

Tyrone

**Project Address:** 

7600 Tryone Ave.

Van Nuys, CA

Report date:

6/4/2013 A-7098

JEL Ref. No.: A-7098 Client Ref. No.: ODWP-13-1198

**Date Sampled:** 6/4/2013

Date Received: 6/4

6/4/2013

Date Analyzed: 6/4/2013

Physical State: Soil Gas

EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | VP3-15<br>1P | VP3-15<br>3P | VP3-15<br>10P | VP3-5     | VP2-5     |                           |           |
|-----------------------------|--------------|--------------|---------------|-----------|-----------|---------------------------|-----------|
| JEL ID:                     | A-7098-01    | A-7098-02    | A-7098-03     | A-7098-04 | A-7098-05 | Practical<br>Quantitation | Units     |
| Analytes:                   |              |              |               |           |           | <u>Limit</u>              |           |
| Benzene                     | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Bromobenzene                | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Bromodichloromethane        | ND           | ND           | ND            | ND        | ND        | 0.008                     | $\mu g/L$ |
| Bromoform                   | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| n-Butylbenzene              | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| sec-Butylbenzene            | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| tert-Butylbenzene           | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Carbon tetrachloride        | 0.033        | 0.014        | 0.029         | ND        | ND        | 0.008                     | μg/L      |
| Chlorobenzene               | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Chloroethane                | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Chloroform                  | 0.896        | 0.810        | 0.872         | 0.316     | ND        | 0.008                     | μg/L      |
| Chloromethane               | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 2-Chlorotoluene             | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 4-Chlorotoluene             | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Dibromochloromethane        | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,2-Dibromo-3-chloropropane | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,2-Dibromoethane (EDB)     | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Dibromomethane              | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,2- Dichlorobenzene        | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,3-Dichlorobenzene         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,4-Dichlorobenzene         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| Dichlorodifluoromethane     | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,1-Dichloroethane          | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,2-Dichloroethane          | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,1-Dichloroethene          | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| cis-1,2-Dichloroethene      | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| trans-1,2-Dichloroethene    | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,2-Dichloropropane         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,3-Dichloropropane         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 2,2-Dichloropropane         | ND =         | ND           | ND            | ND        | ND        | 0.008                     | μg/L      |
| 1,1-Dichloropropene         | ND           | ND           | ND            | - ND      | ND        | 0.008                     | μg/L      |

## JONES ENVIRONMENTAL LABORATORY RESULTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 8        | 260B-Volatil | e Organics b  | y GC/MS +   | Oxygenates  |                           |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|-------------|-------------|---------------------------|-------|
| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VP3-15<br>1P | VP3-15<br>3P | VP3-15<br>10P | VP3-5       | VP2-5       |                           |       |
| JEL ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A-7098-01    | A-7098-02    | A-7098-03     | A-7098-04   | A-7098-05   | Practical<br>Quantitation | Units |
| Analytes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |               |             |             | Limit                     |       |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Freon 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           | ND           | ND            | ND          | ND          | 800.0                     | μg/L  |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| 4-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.057        | 0.048        | 0.054         | 0.059       | ND          | 0.008                     | μg/L  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| I,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.83         | 2.55         | 2.89          | 2.26        | ND          | 0.008                     | μg/L  |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| The state of the s | ND           |              | ND            | ND          |             | 0.008                     | μg/L  |
| Xylenes<br>MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ND           | ND            |             | ND          | 0.008                     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND           | ND           |               | ND          | ND          | 0.008                     | µg/L  |
| Ethyl-tert-butylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Di-isopropylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND           | ND           | ND            | ND          | ND          |                           | µg/L  |
| tert-amylmethylether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| tert-Butylalcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND           | ND           | ND            | ND          | ND          | 0.040                     | µg/L  |
| TIC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |               |             |             |                           |       |
| n-propanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND           | ND           | ND            | ND          | ND          | 0.008                     | µg/L  |
| n-pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           | ND           | ND            | ND          | ND          | 0.008                     | μg/L  |
| Dilution Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | 1            | 1             | 1           | 1           |                           |       |
| Surrogate Recoveries:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |               |             |             | QC Limi                   | ts    |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89%          | 109%         | 103%          | 105%        | 109%        | 75 - 125                  |       |
| Toluene-dg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97%          | 99%          | 93%           | 98/%        | 100%        | 75 - 125                  |       |
| 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99%          | 97%          | 97%           | 97%         | 106%        | 75 - 125                  |       |
| · emerandi doningin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2270         | 2770         | 77.79         | 2770        | *34.50      | 15-140                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A2-060413-A  | A2-060413-A  | A2-060413-A   | A2-060413-A | A2-060413-A |                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7098_1       | 7098_1       | 7098_1        | 7098_1      | 7098_1      |                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |               |             |             |                           |       |

ND= Not Detected

P.O. BOX 5387 FULLERTON, CA 92838 (714) 449-9937 FAX (714) 449-9685

## JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address: Alta Environmental, Inc 3777 Long Beach Blvd.

Long Beach, CA 90807

Attn: Steve Morrill

Project: Tyrone
Project Address: 7600 Tryone Ave.

Van Nuys, CA

Report date: 6/4/2013

JEL Ref. No.: A-7098 Client Ref. No.: ODWP-13-1198

Date Sampled: 6/4/2013 Date Received: 6/4/2013

Date Analyzed: 6/4/2013 Physical State: Soil Gas

## EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | VP2-15    | VP1-5     | VP1-15    | VP9-5     | VP9-5 REP |                              |              |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|------------------------------|--------------|
| JEL ID:                     | A-7098-06 | A-7098-07 | A-7098-08 | A-7098-09 | A-7098-10 | Practical Ouantitation Limit | Units        |
| Analytes:                   | 4115      | 310       | 370       | 3.175     | 3.00      | 0.008                        |              |
| Benzene                     | ND        | ND        | ND        | ND        | ND        |                              | μg/L         |
| Bromobenzene                | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L<br>μg/L |
| Bromodichloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                        |              |
| Bromoform                   | ND        | ND        | ND        | ND        | ND.       |                              | μg/L         |
| n-Butylbenzene              | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| sec-Butylbenzene            | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| tert-Butylbenzene           | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| Carbon tetrachloride        | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| Chlorobenzene               | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| Chloroethane                | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| Chloroform                  | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| Chloromethane               | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| 2-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| 4-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| Dibromochloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,2-Dibromo-3-chloropropane | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| 1,2-Dibromoethane (EDB)     | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| Dibromomethane              | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,2- Dichlorobenzene        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| 1,3-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,4-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L         |
| Dichlorodifluoromethane     | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,1-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,2-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,1-Dichloroethene          | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| cis-1,2-Dichloroethene      | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| trans-1,2-Dichloroethene    | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,3-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 2,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |
| 1,1-Dichloropropene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L         |

P.O. Box 5387 **FULLERTON, CA 92838** FAX (714) 449-9685 (714) 449-9937

#### JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Alta Environmental Client Address:

3777 Long Beach Blvd.

Long Beach, CA 90807

Report date: JEL Ref. No.: 6/14/2013 ST-6995

Client Ref. No.:

Date Sampled:

Date Received:

LDWP-13-1198

Attn:

Project:

Sample ID:

Steve Morrill

SV16-5'

Tyrone Property

**Project Address:** 

1600 Tyrone Ave Van Nuys, CA

Date Analyzed:

6/12/2013 6/12/2013

**Physical State:** 

6/13/2013 Soil Gas

#### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

SV16-5'

SV16-15'

| Sample 15.                  | 3 1 10-3   | 3 7 10-13  | REP        |   |                           |           |   |
|-----------------------------|------------|------------|------------|---|---------------------------|-----------|---|
| JEL ID:                     | ST-6995-01 | ST-6995-02 | ST-6995-03 |   | Practical<br>Quantitation | Units     |   |
| Analytes:                   |            |            |            |   | <u>Limit</u>              |           |   |
| Benzene                     | ND         | ND         | ND         |   | 0.020                     | $\mu$ g/L |   |
| Bromobenzene                | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| Bromodichloromethane        | ND         | ND         | ND         |   | 0.020                     | $\mu g/L$ |   |
| Bromoform                   | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| n-Butylbenzene              | ND         | ND         | ND         |   | 0.020                     | $\mu$ g/L |   |
| sec-Butylbenzene            | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| tert-Butylbenzene           | ND         | ND         | ND         |   | 0.020                     | μg/L      | 7 |
| Carbon tetrachloride        | ND         | ND         | ND         |   | 0.020                     | $\mu$ g/L |   |
| Chlorobenzene               | ND         | ND         | ND         |   | 0.020                     | $\mu$ g/L |   |
| Chloroethane                | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| Chloroform                  | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| Chloromethane               | ND         | ND         | ND         |   | 0.020                     | $\mu$ g/L |   |
| 2-Chlorotoluene             | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 4-Chlorotoluene             | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| Dibromochloromethane        | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,2-Dibromo-3-chloropropane | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,2-Dibromoethane (EDB)     | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| Dibromomethane              | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,2- Dichlorobenzene        | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,3-Dichlorobenzene         | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,4-Dichlorobenzene         | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| Dichlorodifluoromethane     | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,1-Dichloroethane          | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,2-Dichloroethane          | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,1-Dichloroethene          | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| cis-1,2-Dichloroethene      | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| trans-1,2-Dichloroethene    | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
| 1,2-Dichloropropane         | ND         | ND         | ND         | * | 0.020                     | μg/L      |   |
| 1,3-Dichloropropane         | ND         | ND         | ND         |   | 0.020                     | $\mu$ g/L |   |
| 2,2-Dichloropropane         | ND         | ND         | ND         |   | 0.020                     | $\mu g/L$ |   |
| 1, I-Dichloropropene        | ND         | ND         | ND         |   | 0.020                     | μg/L      |   |
|                             |            |            |            |   |                           |           |   |

# JONES ENVIRONMENTAL LABORATORY RESULTS

|                           | EPA 8      | 260B-Volatil | e Organics by  | y GC/MS + Oxygenates |                       |              |
|---------------------------|------------|--------------|----------------|----------------------|-----------------------|--------------|
| Sample ID:                | SV16-5'    | SV16-15'     | SV16-5'<br>REP |                      |                       |              |
| JEL ID:                   | ST-6995-01 | ST-6995-02   | ST-6995-03     |                      | Practical             |              |
| Analytes:                 |            |              |                |                      | Quantitation<br>Limit | <u>Units</u> |
| cis-1,3-Dichloropropene   | ND         | ND           | ND             |                      | 0.020                 | ~/T          |
| trans-1,3-Dichloropropene | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Ethylbenzene              | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Freon 113                 | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Hexachlorobutadiene       | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Isopropylbenzene          | ND         | ND           | ND             |                      |                       | μg/L         |
| 4-Isopropyltoluene        | ND         | ND           | ND             |                      | 0.020<br>0.020        | μg/L         |
| Methylene chloride        | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Naphthalene               | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| n-Propylbenzene           | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Styrene                   | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| 1,1,1,2-Tetrachloroethane | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| 1,1,2,2-Tetrachloroethane | ND         | ND           | ND 4           |                      | 0.020                 | μg/L         |
| Tetrachloroethylene       | ND         | ND           | ND             | 9                    | 0.020                 | μg/L<br>μg/L |
| Toluene                   | ND         | ND           | ND             |                      | 0.020                 |              |
| 1,2,3-Trichlorobenzene    | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| 1,2,4-Trichlorobenzene    | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| 1,1,1-Trichloroethane     | ND         | ND           | ND             |                      | 0.020                 | μg/L<br>μg/L |
| 1,1,2-Trichloroethane     | ND         | ND           | ND             |                      | 0.020                 | μg/L<br>μg/L |
| Trichloroethylene         | ND         | ND           | ND             |                      | 0.020                 | μg/L<br>μg/L |
| Trichlorofluoromethane    | ND         | ND           | ND             |                      | 0.020                 | μg/L<br>μg/L |
| 1,2,3-Trichloropropane    | ND         | ND           | ND             |                      | 0.020                 |              |
| 1,2,4-Trimethylbenzene    | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| 1,3,5-Trimethylbenzene    | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Vinyl chloride            | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Xylenes                   | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| MTBE                      | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Ethyl-tert-butylether     | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Di-isopropylether         | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| tert-amylmethylether      | ND         | ND           | ND             | 41                   | 0.020                 | μg/L         |
| tert-Butylalcohol         | ND         | ND           | ND             |                      | 0.100                 | μg/L<br>μg/L |
|                           | 110        | 1415         | ND             |                      | 0.100                 | μg/L         |
| TIC:                      |            |              | =              |                      |                       |              |
| n-propanol                | ND         | ND           | ND             |                      | 0.020                 | $\mu g/L$    |
| n-pentane                 | ND         | ND           | ND             |                      | 0.020                 | μg/L         |
| Dilution Factor           | 1          | 1            | 1              |                      |                       |              |
| Surrogate Recoveries:     |            |              |                |                      | OC Limits             |              |
| Dibromofluoromethane      | 95%        | 95%          | 99%            |                      | 75 - 125              |              |
| Toluene-d <sub>8</sub>    | 96%        | 91%          | 96%            |                      | 75 - 125              |              |
| 4-Bromofluorobenzene      | 94%        | 86%          | 95%            |                      | 75 - 125              |              |
|                           |            |              |                |                      |                       |              |

ND= Not Detected

B1-061313- B1-061313- B1-061313-ST-6995 ST-6995 ST-6995

P.O. BOX 5387 **FULLERTON, CA 92838** FAX (714) 449-9685 (714) 449-9937

#### JONES ENVIRONMENTAL LABORATORY RESULTS

Client:

Alta Environmental

3777 Long Beach Blvd.

Long Beach, CA 90807

Steve Morrill

Project: **Project Address:** 

Client Address:

Attn:

Tyrone Property 1600 Tyrone Ave

Van Nuys, CA

Report date: JEL Ref. No.:

6/14/2013 ST-6995

Client Ref. No.: LDWP-13-1198

Date Sampled: 6/12/2013

Date Received: 6/12/2013 Date Analyzed: 6/13/2013

**Physical State:** Soil Gas

# EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | METHOD     | SAMPLING   |    |                  |              |
|-----------------------------|------------|------------|----|------------------|--------------|
| SWII DIE I                  | BLANK      | BLANK      |    |                  |              |
| JEL ID:                     | ST-6995-04 | ST-6995-05 |    | <b>Practical</b> |              |
| JEL ID.                     | 31-0993-04 | 31-0993-03 |    | Quantitation     | <b>Units</b> |
| Analytes:                   |            |            |    | <u>Limit</u>     |              |
| Benzene                     | ND         | ND         |    | 0.020            | μg/L         |
| Bromobenzene                | ND         | ND         |    | 0.020            | μg/L         |
| Bromodichloromethane        | ND         | ND         |    | 0.020            | μg/L         |
| Bromoform                   | ND         | ND         |    | 0.020            | μg/L         |
| n-Butylbenzene              | ND         | ND         |    | 0.020            | $\mu g/L$    |
| sec-Butylbenzene            | ND         | ND         |    | 0.020            | μg/L         |
| tert-Butylbenzene           | ND         | ND         |    | 0.020            | μg/L         |
| Carbon tetrachloride        | ND         | ND         |    | 0.020            | μg/L         |
| Chlorobenzene               | ND         | ND         |    | 0.020            | μg/L         |
| Chloroethane                | ND         | ND         |    | 0.020            | μg/L         |
| Chloroform                  | ND         | ND         |    | 0.020            | μg/L         |
| Chloromethane               | ND         | ND         |    | 0.020            | μg/L         |
| 2-Chlorotoluene             | ND         | ND         |    | 0.020            | $\mu g/L$    |
| 4-Chlorotoluene             | ND         | ND         |    | 0.020            | μg/L         |
| Dibromochloromethane        | ND         | ND         |    | 0.020            | μg/L         |
| 1,2-Dibromo-3-chloropropane | ND         | ND         | 20 | 0.020            | μg/L         |
| 1,2-Dibromoethane (EDB)     | ND         | ND         |    | 0.020            | μg/L         |
| Dibromomethane              | ND         | ND         | ¥0 | 0.020            | $\mu g/L$    |
| 1,2- Dichlorobenzene        | ND         | ND         |    | 0.020            | μg/L         |
| 1,3-Dichlorobenzene         | ND         | ND         |    | 0.020            | μg/L         |
| 1,4-Dichlorobenzene         | ND         | ND         |    | 0.020            | μg/L         |
| Dichlorodifluoromethane     | ND         | ND         | 8  | 0.020            | $\mu$ g/L    |
| 1,1-Dichloroethane          | ND         | ND         |    | 0.020            | $\mu g/L$    |
| 1,2-Dichloroethane          | ND         | ND         |    | 0.020            | μg/L         |
| 1,1-Dichloroethene          | ND         | ND         |    | 0.020            | μg/L         |
| cis-1,2-Dichloroethene      | ND         | ND         |    | 0.020            | μg/L         |
| trans-1,2-Dichloroethene    | ND         | ND         |    | 0.020            | μg/L         |
| 1,2-Dichloropropane         | ND         | ND         |    | 0.020            | μg/L         |
| 1,3-Dichloropropane         | ND         | ND         |    | 0.020            | μg/L         |
| 2,2-Dichloropropane         | ND         | ND         |    | 0.020            | μg/L         |
| 1,1-Dichloropropene         | ND         | ND         |    | 0.020            | μg/L         |
|                             |            |            |    |                  |              |

# JONES ENVIRONMENTAL LABORATORY RESULTS

# EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                | METHOD<br>BLANK       | SAMPLING<br>BLANK     |                                  |
|---------------------------|-----------------------|-----------------------|----------------------------------|
| JEL ID:                   | ST-6995-04            | ST-6995-05            | <u>Practical</u>                 |
|                           | 01 0000 04            | 51 0//5 05            | <u>Quantitation</u> <u>Units</u> |
| Analytes:                 |                       |                       | <u>Limit</u>                     |
| cis-1,3-Dichloropropene   | ND                    | ND                    | 0.020 µg/L                       |
| trans-1,3-Dichloropropene | ND                    | ND                    | 0.020 µg/L                       |
| Ethylbenzene              | ND                    | ND                    | 0.020 µg/L                       |
| Freon 113                 | ND                    | ND                    | $0.020$ $\mu$ g/L                |
| Hexachlorobutadiene       | ND                    | ND                    | $0.020$ $\mu$ g/L                |
| Isopropylbenzene          | ND                    | ND                    | 0.020 µg/L                       |
| 4-Isopropyltoluene        | ND                    | ND                    | 0.020 µg/L                       |
| Methylene chloride        | ND                    | ND                    | 0.020 µg/L                       |
| Naphthalene               | ND                    | ND                    | 0.020 μg/L                       |
| n-Propylbenzene           | ND                    | ND                    | 0.020 μg/L                       |
| Styrene                   | ND                    | ND                    | 0.020 µg/L                       |
| 1,1,1,2-Tetrachloroethane | ND                    | ND                    | $0.020$ $\mu$ g/L                |
| 1,1,2,2-Tetrachloroethane | ND                    | ND                    | 0.020 μg/L                       |
| Tetrachloroethylene       | ND                    | ND                    | 0.020 µg/L                       |
| Toluene                   | ND                    | ND                    | 0.020 μg/L                       |
| 1,2,3-Trichlorobenzene    | ND                    | ND                    | 0.020 μg/L                       |
| 1,2,4-Trichlorobenzene    | ND                    | ND                    | 0.020 µg/L                       |
| 1,1,1-Trichloroethane     | ND                    | ND                    | 0.020 μg/L                       |
| 1,1,2-Trichloroethane     | ND                    | ND                    | 0.020 μg/L                       |
| Trichloroethylene         | ND                    | ND                    | 0.020 µg/L                       |
| Trichlorofluoromethane    | ND                    | ND                    | $0.020$ $\mu g/L$                |
| 1,2,3-Trichloropropane    | ND                    | ND                    | 0.020 µg/L                       |
| 1,2,4-Trimethylbenzene    | ND                    | ND                    | 0.020 µg/L                       |
| 1,3,5-Trimethylbenzene    | ND                    | ND                    | 0.020 µg/L                       |
| Vinyl chloride            | ND                    | ND                    | 0.020 μg/L                       |
| Xylenes                   | ND                    | ND                    | 0.020 µg/L                       |
| MTBE                      | ND                    | ND                    | $0.020$ $\mu$ g/L                |
| Ethyl-tert-butylether     | ND                    | ND                    | 0.020 μg/L                       |
| Di-isopropylether         | ND                    | ND                    | 0.020 µg/L                       |
| tert-amylmethylether      | ND                    | ND                    | 0.020 μg/L                       |
| tert-Butylalcohol         | ND                    | ND                    | 0.100 µg/L                       |
| tore Butylaroonor         | 110                   | 110                   | , re-                            |
| TIC:                      |                       |                       |                                  |
| n-propanol                | ND                    | ND                    | 0.020 µg/L                       |
| n-pentane                 | ND                    | ND                    | 0.020 µg/L                       |
| <b>Dilution Factor</b>    | 1                     | 1                     |                                  |
| Surrogate Recoveries:     |                       |                       | QC Limits                        |
| Dibromofluoromethane      | 98%                   | 98%                   | 75 - 125                         |
| Toluene-d <sub>8</sub>    | 101%                  | 96%                   | 75 - 125                         |
| 4-Bromofluorobenzene      | 100%                  | 99%                   | 75 - 125                         |
|                           | B1-061313-<br>ST-6995 | B1-061313-<br>ST-6995 |                                  |

ND= Not Detected

FULLERTON, CA 92838 FAX (714) 449-9685 P.O. Box 5387 (714) 449-9937

# JONES ENVIRONMENTAL **QUALITY CONTROL INFORMATION**

Client:

Alta Environmental

Client Address:

**Project Address:** 

3777 Long Beach Blvd.

Long Beach, CA 90807

Attn:

Steve Morrill

Project:

Tyrone Property 1600 Tyrone Ave

Van Nuys, CA

Date Sampled: Date Received:

Report date:

JEL Ref. No.:

Client Ref. No.:

6/12/2013 6/12/2013

LDWP-13-1198

6/14/2013

ST-6995

Date Analyzed: Physical State:

6/13/2013 Soil Gas

EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample Spiked:         | Ambient Air        |                     | GC#: | B1-061313-ST-6995          |            | 9                       |  |
|------------------------|--------------------|---------------------|------|----------------------------|------------|-------------------------|--|
| JEL ID:                | ST-6995-07         | ST-6995-08          |      |                            | ST-6995-06 |                         |  |
| Parameter              | MS<br>Recovery (%) | MSD<br>Recovery (%) | RPD  | Acceptability<br>Range (%) | LCS        | Acceptability Range (%) |  |
| 1,1-Dichloroethylene   | 71%                | 67%                 | 6.3% | 70-130                     | 76%        | 70-130                  |  |
| Benzene                | 100%               | 107%                | 6.1% | 70-130                     | 106%       | 70-130                  |  |
| Trichloroethylene      | 96%                | 98%                 | 1.9% | 70-130                     | 100%       | 70-130                  |  |
| Toluene                | 98%                | 100%                | 2.7% | 70-130                     | 106%       | 70-130                  |  |
| Chlorobenzene          | 97%                | 101%                | 4.4% | 70-130                     | 104%       | 70-130                  |  |
| Surrogate Recovery:    |                    |                     |      |                            |            |                         |  |
| Dibromofluoromethane   | 98%                | 96%                 |      | 75-125                     | 84%        | 75-125                  |  |
| Toluene-d <sub>8</sub> | 97%                | 96%                 |      | 75-125                     | 101%       | 75-125                  |  |
| 4-Bromofluorobenzene   | 98%                | 98%                 |      | 75-125                     | 82%        | 75-125                  |  |

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference; Acceptability range for RPD is  $\leq 15\%$ 



P.O. Box 5387
Fullerton, CA 92838
(714) 449-5937
Fax (714) 449-5985
www.jonesesviromentaliab.com

# Chain-of-Custody Record

| Analysis Requested  ST6995  Page of Lab Use Only Sample Condition as Received: Chilled Diver Dig.                                                                                           | Scaled Dyes Drope State By Sealed Dyes Drope State By Marks/Special Instructions Synward S#: 1490) Synward S#: 1490)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Number of Containers                            | The delivery of samples and the signature on this Chain of Custody form constitutes authorization to perform the analyses specified above under the Terms and Conditions set forth on the back hereof. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O 10P Analysis                                                                                                                                                                              | elienenen r r r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date / 2/13 3                                         | Mine / CUIS Date                                                                                                                                                                                       |
| Collect Project # Purge Number: N 1P C 3P C Proge Number: N 1P C 3P C Proge Number: N 1P C SP C Proge Rate: 200 C C/min Shut In Test Y / N C Propanol C C C C C C C C C C C C C C C C C C C | Laboraton Sample Laboraton Sample Time Analysis Sample Number Sample Number Sample Number Sample Number Sample Number Sample Sam | Dele 19/13 @ Recount of Esperature) Tight Constrainty | Date Breceived by Laboratory (signature) Time Corregony                                                                                                                                                |
| Project Name  Tup CONE Propries 1-4  Project Address  Tooks Name  Val. Name  Traject Contact  Traject Contact  Traject Contact  Traject Contact                                             | SVILG-15 SVILG-15 SVILG-5 REP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O Religious and M. Significants                       | 8 Reinquished by (signature)                                                                                                                                                                           |

| is a second |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |





July 25, 2013

George Faeustle
Los Angeles Department of Water and Power
Environmental Affairs
111 N. Hope Street, Room 1050
Los Angeles, California 92649

Re: Surface Soil and Soil Gas Sampling Report, Tyrone Site, 7600 Tyrone Avenue, Van Nuys, California 91405

Alta Environmental Project No. LDWP-13-1198

Dear Mr. Faeustle:

Alta Environmental is pleased to present the Surface Soil and Soil Gas Sampling Report for the Tyrone Site. Please refer to the report for our findings and conclusions.

If you have any questions, please call me at (562) 495-5777.

For and on behalf of Alta Environmental

Steve Morrill, PE

Senior Project Manager/Engineer III



# SURFACE SOIL AND SOIL GAS SAMPLING REPORT

Tyrone Site 7600 Tyrone Avenue Van Nuys, California 91405

Prepared for

City of Los Angeles Department of Water and Power Environmental Affairs 111 N. Hope Street, Room 1050 Los Angeles, California, 90012

LDWP-13-1198 July 25, 2013

# **CONTENTS**

| SIGN | ATORY                                            | - Jii |
|------|--------------------------------------------------|-------|
| EXE  | CUTIVE SUMMARY                                   | IV    |
| 1    | INTRODUCTION                                     | 1     |
| 2    | BACKGROUND                                       | 1     |
| 2.1  | Site Description                                 | 1     |
| 2.2  | Previous Site Investigations                     | 1     |
| 3    | REGIONAL GEOLOGY AND HYDROGEOLOGIC SETTING       | 2     |
| 3.1  | Geologic Setting                                 | 2     |
| 3.2  | Hydrogeologic Setting                            | 2     |
| 4    | SURFACE SOIL SAMPLING AND SOIL GAS INVESTIGATION | 3     |
| 4.1  | Pre-Field Activities                             | 3     |
| 4.2  | Geophysical Survey                               | 3     |
| 4.3  | Soil Matrix Sampling and Analysis                | 4     |
| 4.4  | Soil Gas Sampling and Analysis                   | 4     |
| 4.5  | Equipment Decontamination                        | 5     |
| 4.6  | Field Observations                               | 5     |
| 4.7  | Site Geology                                     | 5     |
| 5    | ANALYTICAL RESULTS                               | 5     |
| 6    | CONCLUSIONS                                      | 6     |
| 7    | RECOMMENDATIONS                                  | 7     |
| 8    | ASSUMPTIONS AND LIMITATIONS                      | 7     |

i

# CONTENTS

# 9 REFERNCES 7

# **Tables**

| Table 1 | Surface Soil Sample and Analysis Plan         |
|---------|-----------------------------------------------|
| Table 2 | Soil Gas Sampling and Analysis Plan           |
| Table 3 | Shallow Soil Sample Results - Title 22 Metals |
| Table 4 | Shallow Soil Sample Results - OCPs            |
| Table 5 | Shallow Soil Sample Results - PCBs            |
| Table 6 | Shallow Soil Sample Results – TPH             |
| Table 7 | Shallow Soil Sample Results - SVOCs           |
| Table 8 | Shallow Soil Sample Results - VOCs            |
| Table 9 | Soil Gas Sample Results - VOCs                |
|         |                                               |

# **Figures**

| Figure 1 Site | e Location | map |
|---------------|------------|-----|
|---------------|------------|-----|

Figure 2 Site Layout & Geophysical Survey Area

Figure 3 Boring Location Map

# **Appendices**

Appendix A Geophysical Survey Report – Spectrum Geophysics

Appendix B Laboratory Analytical Reports and Chain-of-Custody Documentation

Appendix C Boring Logs

# **SIGNATORY**

This report has been prepared by

Kristyn Drake

Associate Consultant II

Steve Morrill, PE

Senior Project Manager/Senior Engineer III

#### **EXECUTIVE SUMMARY**

Alta Environmental (Alta) conducted a Surface Soil and Soil Gas Investigation for the Los Angeles
Department of Water and Power (LADWP) on the former Quest Diagnostics property located at 7600
Tyrone Avenue, Van Nuys, California (the "Site). The Site is unoccupied and is listed for sale as a
commercial/industrial property. The purpose of the investigation was to assess potential hazardous
substance contamination at the Site prior to site acquisition. A Site Location Map is provided as Figure 1.

#### **Site Description**

The Site was an unoccupied bioscience laboratory prior to the investigation and consisted of nine buildings, parking areas, facility equipment, and chemical and hazardous material storage areas on the western and central section of the Site, and a vacant field containing an abandoned residential dwelling, bunny house, construction equipment, and construction material storage areas on the eastern portion of the Site. During field implementation of the investigation, the building structures on the Site were under active asbestos and lead-based paint abatement and demolition. Historical uses at the Site included agricultural activities up to 1965, when the initial building construction began at the Site. A Site Layout is provided as Figure 2.

#### **Previous Investigations**

Past environmental investigations at the Site included a Phase I Environmental Site Assessment (ESA) prepared for Quest Diagnostics, Inc. (ODIC, October 22, 2010), a Phase I ESA prepared for Shubin-Nadal Realty Investors (AMEC, August 22, 2012a), and a Screening Level Phase II Investigation prepared for Shubin-Nadal Realty Investors (AMEC, September 28, 2012b).

Based on the results of the Phase I ESAs (ODIC, 2010 and AMEC, 2012a) and Screening Level Phase II Investigation (AMEC, 2012b) the following conclusions were made:

- The soil gas data do not suggest a significant release has occurred at the site that would require
  mitigation for commercial development. Soil sample data suggest metals are not present at
  concentrations indicative of environmental impact and generally are consistent with typical background
  concentrations. The few low concentrations of volatile organic compounds (VOCs) and relatively low
  and heavier end hydrocarbons detected in shallow soil do not suggest significant impacts are present
  in the areas investigated (AMEC, 2012b).
- Based on information obtained from other properties in the general site vicinity of the Site, the
  anticipated depth to groundwater beneath the site is assumed to be between 200 and 250 feet below
  ground surface (bgs) (Regional Water Quality Control Board's [RWQCB's] online Geotracker
  database).

#### **Environmental Concerns and Investigation Objectives**

The primary objective of this investigation was to assess any subsurface impacts to the soil and soil gas at the Site from former use as a bioscience laboratory, historical structures, and former agricultural use.

#### Shallow Soil Matrix and Soil Gas Sampling

On May 28 and 29, 2013, a total of 30 shallow borings (B1 – B30) were drilled at the Site. All soil borings were continuously cored from surface to the terminus depth of 3 feet bgs using a direct-push drill rig. Soil matrix samples were collected from each boring at 1, 2, and 3 feet bgs using a core sampler lined with acetate sleeves. Soil boring locations are presented in Figure 3.

Following sample collection, the sample containers were properly capped, sealed, labeled, and stored in a chilled ice chest for transport under chain-of-custody documentation for analysis or archiving to LADWP's State of California-certified laboratory (Certificate No. 1207) located in Los Angeles, California. All soil samples designated for volatile analysis were preserved using in-field preservation kits in accordance with EPA Method 5035. The 1 and 3 foot samples from each boring were variously analyzed for Title 22 Metals by EPA Method 6010B, organochlorine pesticides (OCPs) by EPA Method 8081A, polychlorinated biphenyls (PCBs) by EPA Method 8082, total petroleum hydrocarbons (TPH) by EPA Method 8015M, semivolatile organic compounds (SVOCs) by EPA Method 8270C, and VOCs by EPA Method 8260B. The shallow soil sampling and analysis plan is presented as Table 1.

On May 30 and 31, 2013 soil gas probes were installed at 15 boring locations (VP1 through VP15) at 5 and 15 feet bgs. On June 4 and 5, 2013, the soil gas probes were sampled and analyzed by Jones Environmental, Inc.'s on-site mobile laboratory. Samples were not collected from gas probes at VP4 and VP5 due to inaccessibility from stockpiled demolition debris.

On June 12, 2013, soil gas probes were installed in boring location VP16 in the vicinity of the former septic tank/cesspool at 5 and 15 feet bgs. Following probe installation and a minimum 2 hours of equilibration time, the gas probes at VP16 were sampled using SUMMA® canisters and analyzed by Jones Environmental's fixed laboratory.

All soil gas samples collected for this investigation were analyzed for VOCs by EPA Method 8260B by Jones Environmental Laboratory. The soil gas samples included 28 primary samples, two (2) purge volume samples, and three (3) field replicates for a total of 33 soil gas samples. The soil gas sampling and analysis plan is presented as Table 2. Soil gas boring locations are presented in Figure 3.

#### **Findings**

The following surface soil sample results are presented in milligrams per kilogram (mg/kg) and micrograms per kilogram (µg/kg) as identified in Tables 3 through 8. The following soil gas sample results are presented in micrograms per liter (µg/L) as identified in Table 9. Some data have been qualified by the laboratory as "J-flagged" indicating that the detected concentration is an estimated value between the method detection limit (MDL) and the practical quantitation limit (PQL).

- No VOCs or PCBs were detected in any of the surface soil samples submitted for analysis.
- Surface soil samples variously exhibited detected concentrations of:
  - Title 22 Metals including antimony (not detected above the laboratory reporting limit [ND] to 4.2J mg/kg), barium (99 to 300 mg/kg), cadmium (1.8J to 4.1 mg/kg), chromium (10 to 23 mg/kg), cobalt (7.8 to 21 mg/kg), copper (7.7J to 22 mg/kg), lead (6.7 to 42 mg/kg), molybdenum (ND to 0.50J mg/kg), nickel (12.3 to 24 mg/kg), vanadium (19 to 38 mg/kg), zinc (36 to 124 mg/kg), and mercury (ND to 0.048 mg/kg). In addition, silver was detected in one sample (B22-1') at 7.4J mg/kg;
  - SVOCs including benzo(g,h,i)perylene (ND to 0.11J mg/kg), butyl benzyl phthalate (ND to 0.29J mg/kg), and indeno(1,2,3-cd)pyrene (ND to 0.17J mg/kg). In addition, dibenzo(a,h)antrhacene and pentachlorophenol were detected in one sample (B21-1') at 0.099J mg/kg and 0.39J mg/kg, respectively;

- OCPs including 2,4-DDD (ND to 36 μg/kg), 2,4-DDT (ND to 190 μg/kg), 4,4-DDE (ND to 740 μg/kg), 4,4-DDT (ND to 270 μg/kg), beta-hexachlorocyclohexane (beta-BHC; ND to 42 μg/kg), and toxaphene (ND to 2,400 μg/kg); and
- TPH as total extractable petroleum hydrocarbons (TEPH; ND to 60.6 mg/kg [as motor oil]);
- Soil gas samples exhibited detected concentrations of VOCs including carbon tetrachloride (ND to 0.035 μg/L), chloroform (ND to 0.896 μg/L), Freon 113 (ND to 2.82 μg/L), tetrachloroethylene (PCE; ND to 0.059 μg/L), and trichloroethylene (TCE; ND to 2.89 μg/L). In addition, 1,1-dichloroethene (1,1-DCE) was detected in one sample (VP13-15') at a concentration of 0.118 μg/L.

#### Conclusions

The following conclusions have been made based on the shallow soil and soil gas sample results:

- Concentrations of Title 22 Metals and SVOCs in soil are below the Environmental Protection Agency's, Pacific Southwest Region 9, Regional Screening Levels (RSLs) developed for a commercial/industrial scenario.
- Concentrations of OCPs in soil are below the California Environmental Protection Agency
  (Cal/EPA), Office of Environmental Health Hazard Assessment (OEHHA), residential and
  commercial/industrial California Human Health Screening Levels (CHHSLs), with the exception of
  toxaphene detected in one sample (B16-3'; 2,400 μg/kg), which exceeded the
  commercial/industrial CHHSL of 1,800 μg/kg.
- Concentrations of TPH detected in soil are below the Los Angeles California Regional Water
  Quality Control Board's (LARWQCB) maximum soil screening levels above drinking water aquifers
  greater than 150 feet bgs (LARWQCB, Table 4-1, May 1996) for TPH as gasoline (1,000 mg/kg),
  TPH as diesel (10,000 mg/kg), and TPH as motor oil (50,000 mg/kg).
- Concentrations of VOCs detected in soil gas are below the Cal/EPA (2010) CHHSLs for shallow soil gas (engineered fill) in a commercial/industrial land use scenario, for carbon tetrachloride (0.21 μg/L), PCE (1.6 μg/L), and TCE (4.4 μg/L). No CHHSLs are documented by Cal/EPA for the VOCs 1,1-DCE, Freon 113, and chloroform in soil gas.

It should be noted that the RSLs, CHHSLs, and Maximum Soil Screening Levels have been used as a general comparison, and are not regulatory standards and/or acceptable concentrations. These levels are used as benchmark values to determine whether further assessment and evaluation of the constituents detected in soil and soil gas, are required for the Site.

#### Recommendations

Based on analytical data, and the findings of this investigation, additional assessment work is not warranted at this time. However, any unknown subsurface structures or potentially contaminated soil encountered during site demolition and construction should be investigated for potential hazardous substances impacts to the property.

Additional assessment around sample location B16 at 3 feet bgs (B16-3') may be warranted in order to define the lateral and vertical extent of OCP (toxaphene) impacts in the area as necessary, and where disturbance of shallow soil in that area is anticipated during any site redevelopment activities.

## 1 INTRODUCTION

Alta Environmental, on behalf of the City of Los Angeles Department of Water and Power (LADWP), has prepared this Surface Soil and Soil Gas Sampling Report for the Tyrone Property (Site), a 17 acre property located at 7600 Tyrone Avenue, Van Nuys, California. A Site Location Map and Site Layout Map are provided as Figures 1 and 2, respectively.

The primary objective of the investigation was to assess the current surface soil conditions at the Site for potential chemicals of concern, including Title 22 Metals, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPH), semivolatile organic compounds (SVOCs), and volatile organic compounds (VOCs). A Soil Sampling and Analysis Plan (Alta Environmental, April 26, 2013) was completed and submitted to the LADWP for review. In addition, an investigation was conducted in the vicinity of the onsite structures to assess the current soil gas conditions at the Site for potential VOC impacts. The LADWP is considering acquisition of the Site.

## 2 BACKGROUND

## 2.1 Site Description

The Site is located at 7600 Tyrone Avenue, in Van Nuys, California. A Site Location Map is presented as Figure 1. The eastern portion of the Site consists of an approximately 4 acre vacant lot that is unpaved. The remaining western portion of the Site was under demolition and construction activities by the owner at the time of the investigation. A Site Layout Map is presented as Figure 2.

The Site is currently unoccupied but was previously developed with a bioscience laboratory on the western and central section that consisted of nine buildings, parking areas, facility equipment, and chemical and hazardous material storage areas. The eastern portion of the Site contained a vacant field (approximately four acres) containing an abandoned residential-type dwelling, bunny house, construction equipment, and construction material storage areas. The vacant field was also used as a farm for laboratory animals. Historical uses at the Site include agricultural activities up to 1965, when the initial building construction began at the Site.

## 2.2 Previous Site Investigations

Past environmental investigations at the Site included a Phase I Environmental Site Assessment (ESA) prepared for Quest Diagnostics, Inc. (ODIC, October 22, 2010), a Phase I ESA prepared for Shubin-Nadal Realty Investors (AMEC, August 22, 2012a), and a Screening Level Phase II Investigation prepared for Shubin-Nadal Realty Investors (AMEC, September 28, 2012b).

Based on the results of the Phase I ESAs (ODIC, 2010 and AMEC, 2012a) and Screening Level Phase II Investigation (AMEC, 2012b) the following conclusions were made:

The soil gas data do not suggest a significant release has occurred at the site that would require
mitigation for commercial development. Soil sample data suggest metals are not present at
concentrations indicative of environmental impact and generally are consistent with typical background
concentrations. The few low concentrations of VOCs and relatively low and heavier end hydrocarbons

detected in shallow soil do not suggest significant impacts are present in the areas investigated (AMEC, 2012b).

Based on information obtained from other properties in the general site vicinity of the Site, the
anticipated depth to groundwater beneath the site is assumed to be between 200 and 250 feet below
ground surface (bgs) (Regional Water Quality Control Board's [RWQCB's] online Geotracker
database).

## 3 REGIONAL GEOLOGY AND HYDROGEOLOGIC SETTING

The following Site geologic and hydrogeologic setting information has been adapted from AMEC's Phase I Environmental Site Assessment Report (AMEC, 2012a).

## 3.1 Geologic Setting

The subject property is located in the San Fernando Valley Groundwater Basin (SFGWB). This basin is bounded on the north and northeast by the San Gabriel Mountains, the north and northwest by the Santa Susana Mountains, on the south by the Santa Monica Mountains and Chalk Hills, on the west by the Simi Hills, and the east by the San Rafael Hills (California Department of Water Resources [CDWR], 2003). Water bearing units within the SFGWB consist of the lower Pleistocene Saugus Formation, and Pleistocene and Holocene age alluvium.

Alluvium of Holocene age consists mainly of coarse-grained unsorted gravel and sand deposited by alluvial fans that originate in the surrounding mountains and hills (CDWR, 2003). Maximum thicknesses throughout the basin range from 100 feet in the north to 400 feet in the east to 800 feet in the west and a maximum thickness of 900 feet near Burbank, California (CDWR, 2003). Pleistocene age alluvium is dominated by highly permeable, unconsolidated coarse-grained alluvial fan deposits interspersed with lower permeability paleosols (CDWR, 2003).

The Saugus Formation is made up of shallow and continental marine deposits; mainly conglomerates, sands, silts, and clays (CDWR, 2003). This formation is between 2000 and 3000 feet thick in the western and eastern margins of the basin, with its greatest thickness in the center of the basin around 6,400 feet. There are many structural features within the San Fernando Valley Basin, especially on the north side of the basin; however, there is only one that is near the subject property. The closest feature is the Northridge Hills fault, which trends northwest to southeast and is located approximately 2.4 miles northwest of the subject site (AMEC, 2012a).

During the soil and soil gas sampling conducted on May 28, 2013 through June 12, 2013, soils encountered by Alta Environmental included poorly graded fine grained sands, silty sands, sandy silts, and silts.

## 3.2 Hydrogeologic Setting

The general basin trend in groundwater flow is east-southeast towards the Los Angeles Narrows and into the Central Subbasin of the Coastal Plain of Los Angeles Basin with local depth to water of approximately 200 feet bgs (ULARA, 2012).

No groundwater wells were identified at the site; however, AMEC identified one groundwater well at 7777 Lemona Avenue and two wells at 7803 Lemona Avenue in Van Nuys, all of which are located between ½ to

% mile west of the site (ENSR, 2005). Depth to groundwater in these wells was measured at approximately 250 feet bgs on May 10, 2012 with a reported groundwater flow direction to the southeast. Surface elevations at the Lemona Avenue sites (approximately 779 feet above mean sea level [msl]) are similar to the subject property (770 msl); therefore depth to groundwater at the subject property is expected to be within a similar range at greater than 200 feet bgs (AMEC, 2012a).

## 4 SURFACE SOIL SAMPLING AND SOIL GAS INVESTIGATION

## 4.1 Pre-Field Activities

The following was conducted prior to the field investigation activities:

- A site-specific health and safety plan (HASP) was prepared in general accordance with the guidelines set forth in Title 8 of the California Code of Regulations (CCR), Section 5192 (8 CCR 5192), and Title 29 of the Code of Federal Regulations (CFR) Part 1926.650 (29 CFR 1926.650). All field personnel reviewed and signed the HASP prior to beginning the field work.
- Underground Service Alert (USA) was notified on May 3, 2013, a minimum of 48-hours prior to the start
  of the field sampling activities (USA ticket # A31231015-00A).

## 4.2 Geophysical Survey

On May 6, 2013, through May 17, 2013 Alta Environmental contracted with Spectrum Geophysics to perform a geophysical survey of the northeast portion of the Site (approximately 1 acre) and clearance of the soil gas boring locations around the vicinity of the existing buildings in the western portion of the Site.

During the geophysical survey of the northeast portion of the Site, an EM-61 high-sensitivity metal detector was used in an effort to identify areas where metallic objects (ie. USTs, metal debris, and conduits) may have been buried. Once identified, these EM-61 anomalies were investigated further using GPR and EM-utility locating methods.

A total of fifteen EM-61 anomalies were detected in the subsurface throughout the Site. The anomalies appeared to be associated with various buried construction debris and long piping runs, including the storm drain channel running along the northern boundary of the property. Various linear trending anomalies (water/sewer and gas connections) were also identified throughout the survey area with the shallow metal detector and GPR units.

It should be noted that the location of subsurface objects and utilities is dependent upon the recognition of physical phenomena at the ground surface. These phenomena can be magnetic fields or electro-magnetic waves that give rise to a surface expression which in turn is interpreted as representative of subsurface objects. These waves, however, may be attenuated and/or distorted by a number of factors including soil moisture, corrosion, and proximity to other surface and subsurface facilities. At the time of the survey, various surface interferences, including soil stockpiles, stockpiled construction debris, metallic debris, reinforced concrete pads, and metal fencing, existed at the Site. A copy of the geophysical survey report is provided as Appendix A.

## 4.3 Soil Matrix Sampling and Analysis

On May 28 and 29, 2013, a total of 30 shallow borings (B1 – B30) were drilled at the Site. All soil borings were continuously cored from surface to the terminus depth of 3 feet bgs using a direct-push drill rig. Soil matrix samples were collected from each boring at 1, 2, and 3 feet bgs using a core sampler lined with acetate sleeves. Soil boring locations are presented in Figure 3 (Boring Location Map).

Following sample collection, the sample containers were properly capped, sealed, labeled, and stored in a chilled ice chest for transport under chain-of-custody documentation for analysis or archiving to LADWP's State of California-certified laboratory (Certificate No. 1207) located in Los Angeles, California. All soil samples designated for volatile analysis were preserved using in-field preservation kits in accordance with EPA Method 5035. The 1 and 3 foot samples from each boring were variously analyzed for Title 22 Metals by EPA Method 6010B, OCPs by EPA Method 8081A, PCBs by EPA Method 8082, TPH by EPA Method 8015M, SVOCs by EPA Method 8270C, and VOCs by EPA Method 8260B. The shallow soil sampling and analysis plan is presented as Table 1.

Analytical results for soil and soil gas sampling are provided in Section 5 (Analytical Results). The laboratory analytical report and chain-of-custody documentation for the surface soil samples are presented in Appendix B.

## 4.4 Soil Gas Sampling and Analysis

On May 30 and 31, 2013 soil gas probes were installed at 15 boring locations (VP1 through VP15) at 5 and 15 feet bgs. On June 4 and 5, 2013, the soil gas probes were sampled and analyzed by Jones Environmental, Inc.'s on-site mobile laboratory. Samples were not collected from gas probes at VP4 and VP5 due to inaccessibility from stockpiled demolition debris. On June 12, 2013, soil gas probes were installed in boring location VP16 in the vicinity of the former septic tank/cesspool at 5 and 15 feet bgs. Following probe installation and a minimum 2 hours of equilibration time, the gas probes at VP16 were sampled using SUMMA® canisters and analyzed by the Jones Environmental fixed laboratory.

Soil Gas boring locations are presented in Figure 3. The gas probe installation, sampling, and analysis are summarized as follows:

**Probe Installation:** At each boring location, soil gas probes were installed at five (5) and 15 feet bgs. Each soil gas probe was placed within a one-foot sand pack. One foot of dry granular bentonite was placed on top of each sand pack to preclude the infiltration of hydrated bentonite grout. The boreholes were then grouted between probes and to the surface with hydrated bentonite. Nylaflo® tubing (¼ inch) was connected from the gas point to the surface. The end of the tubing was labeled with the gas well number, depth, and date and time of construction, and a three-way valve was installed to eliminate ambient air diffusion into the well.

Purge Volume Test: A three-volume purge test (one [1], three [3], and ten [10] purge volumes) was conducted at sampling location VP3-15' to establish the optimal purge volume to be used for the probes in accordance with the Department of Toxic Substances Control (DTSC) and Los Angeles/San Francisco Regional Water Quality Control Boards (RWQCB) Advisory – Active Soil Gas Investigations (April 2012) protocol. The purge flow rate was approximately 200 milliliters per minute (mL/min). Based on the purge volume test, the optimal purge volume was determined to be one (1) due to the highest detections of VOCs.

**Sample Collection:** Soil gas samples were collected from each probe following the removal of the appropriate purge volume in 100-milliliter glass air-tight syringes or SUMMA canisters. The sample syringes were not exposed to any sunlight that may degrade light-sensitive VOCs. Soil gas samples were collected at a sampling rate of 200 ml/min or less. The samples were immediately transferred to the on-site mobile laboratory for direct injection into a gas chromatograph, or transported to the fixed laboratory for analysis in accordance with the procedures presented in the DTSC and Los Angeles/San Francisco RWQCB's *Advisory – Active Soil Gas Investigations (April 2012)*, which are consistent with EPA Method 8260B. All soil gas samples collected were documented on a chain-of-custody form for the soil gas analysis.

**Leak Test:** A leak test was conducted at each soil gas probe location to determine whether leakage was present. A mixture of n-propanol and n-pentane was used as the source of the tracer compound. The tracer gas compound was not detected in any of the soil gas samples.

**Mobile Laboratory and Fixed Laboratory Analysis:** The soil gas samples collected for this investigation were analyzed for VOCs by EPA Method 8260B by an on-site mobile and fixed laboratory. The soil gas samples included 28 primary samples, two (2) purge volume samples, and three (3) field replicates for a total of 33 soil gas samples. The soil gas sampling and analysis plan is presented as Table 2.

The laboratory analytical report and chain-of-custody documentation for the soil gas samples are presented in Appendix B.

## 4.5 Equipment Decontamination

All reusable drilling and sampling equipment were cleaned before each use utilizing a three-bucket wash consisting of a non-phosphate detergent wash, tap water, and distilled water.

### 4.6 Field Observations

No odors or staining were observed in the soil samples collected during the investigation. In addition, no (0.0 parts per million [ppm]) photo-ionization detector (PID) readings were observed in the screened soil samples. No groundwater was encountered in the borings to a maximum depth of 15 feet bgs.

## 4.7 Site Geology

The soils encountered during the surface soil sampling and soil gas probe installation consisted of poorly graded fine grained sands, silty sands, sandy silts, and silts. Soil borings were logged continuously using the Unified Soils Classification System (UCSC) and screened with a PID calibrated to 50 parts per million (ppm) as hexane. The boring logs for each soil boring are provided in Appendix C.

## 5 ANALYTICAL RESULTS

The following surface soil sample results are presented in milligrams per kilogram (mg/kg) and micrograms per kilogram ( $\mu$ g/kg) as identified in Tables 3 through 8. The following soil gas sample results are presented in micrograms per liter ( $\mu$ g/L) as identified in Table 9. Some data have been qualified by the laboratory as "J-flagged" indicating that the detected concentration is an estimated value between the method detection limit (MDL) and the practical quantitation limit (PQL).

No VOCs or PCBs were detected in any of the surface soil samples submitted for analysis.

- Surface soil samples variously exhibited detected concentrations of:
  - Title 22 Metals including antimony (not detected above the laboratory reporting limit [ND] to 4.2J mg/kg), barium (99 to 300 mg/kg), cadmium (1.8J to 4.1 mg/kg), chromium (10 to 23 mg/kg), cobalt (7.8 to 21 mg/kg), copper (7.7J to 22 mg/kg), lead (6.7 to 42 mg/kg), molybdenum (ND to 0.50J), nickel (12.3 to 24 mg/kg), vanadium (19 to 38 mg/kg), zinc (36 to 124 mg/kg), and mercury (ND to 0.048 mg/kg). In addition, silver was detected in one sample (B22-1') at 7.4J mg/kg;
  - SVOCs including benzo(g,h,i)perylene (ND to 0.11J mg/kg), butyl benzyl phthalate (ND to 0.29J mg/kg), and indeno(1,2,3-cd)pyrene (ND to 0.17J mg/kg). In addition, dibenzo(a,h)antrhacene and pentachlorophenol were detected in one sample (B21-1') at 0.099J mg/kg and 0.39J mg/kg, respectively;
  - OCPs including 2,4-DDD (ND to 36 μg/kg), 2,4-DDT (ND to 190 μg/kg), 4,4-DDE (ND to 740 μg/kg), 4,4-DDT (ND to 270 μg/kg), beta-hexachlorocyclohexane (beta-BHC; ND to 42 μg/kg), and toxaphene (ND to 2,400 μg/kg); and
  - o TPH as total extractable petroleum hydrocarbons (TEPH; ND to 60.6 mg/kg [as motor oil]);
- Soil gas samples exhibited detected concentrations of VOCs including carbon tetrachloride (ND to 0.035 μg/L), chloroform (ND to 0.896 μg/L), Freon 113 (ND to 2.82 μg/L), tetrachloroethylene (PCE; ND to 0.059 μg/L), and trichloroethylene (TCE; ND to 2.89 μg/L). In addition, 1,1-dichloroethene (1,1-DCE) was detected in one sample (VP13-15') at a concentration of 0.118 μg/L.

### 6 CONCLUSIONS

The surface soil and soil gas investigation completed at the Site between May 28, 2013 and June 12, 2013 included the advancement of 30 surface soil borings and 16 soil gas borings. Based on the shallow soil sample and the soil gas sample analytical results, Alta Environmental makes the following conclusions:

- Concentrations of Title 22 Metals and SVOCs in soil are below the California Environmental Protection Agency's (CalEPA, Region 9) Regional Screening Levels (RSLs) developed for a commercial/industrial scenario.
- Concentrations of OCPs in soil are below the Cal/EPA, Office of Environmental Health Hazard
  Assessment (OEHHA), residential and commercial/industrial California Human Health Screening
  Levels (CHHSLs), with the exception of toxaphene detected in one sample (B16-3'; 2,400 μg/kg),
  which exceeded the commercial/industrial CHHSL of 1,800 μg/kg.
- Concentrations of TPH detected in soil are below the Los Angeles California Regional Water
  Quality Control Board's (LARWQCB) maximum soil screening levels above drinking water aquifers
  greater than 150 feet bgs (LARWQCB, Table 4-1, May 1996) for TPH as gasoline (1,000 mg/kg),
  TPH as diesel (10,000 mg/kg), and TPH as motor oil (50,000 mg/kg).
- Concentrations of VOCs detected in soil gas are below the Cal/EPA (2010) CHHSLs for shallow soil gas (engineered fill) in a commercial/industrial land use scenario, for carbon tetrachloride (0.21 μg/L), PCE (1.6 μg/L), and TCE (4.4 μg/L). No CHHSLs are documented by OEHHA/CalEPA for the VOCs 1,1-DCE, Freon 113, and chloroform in soil gas.

It should be noted that the RSLs, CHHSLs, and Maximum Soil Screening Levels have been used as a general comparison, and are not regulatory standards and/or acceptable concentrations. These levels are used as benchmark values to determine whether further assessment and evaluation of the constituents detected in soil and soil gas, are required for the Site.

## 7 RECOMMENDATIONS

Based on analytical data, and the findings of this investigation, additional assessment work is not warranted at this time. However, any unknown subsurface structures or potentially contaminated soil encountered during site demolition and construction should be investigated for potential hazardous substances impacts to the property.

Additional assessment around sample location B16 at 3 feet bgs (B16-3') may be warranted in order to define the lateral and vertical extent of OCP (toxaphene) impacts in the area as necessary, and where disturbance of shallow soil in that area is anticipated during any site redevelopment activities.

## 8 ASSUMPTIONS AND LIMITATIONS

This report was prepared exclusively for use by the City of Los Angeles Department of Water and Power, and may not be relied upon by any other person or entity without Alta Environmental's express written permission. The information, conclusions and recommendations described in this report apply to conditions existing at certain locations when services were performed and are intended only for the specific purposes, locations, time frames and project parameters indicated. Alta Environmental cannot be responsible for the impact of any charges in environmental standards, practices or regulations after performance of services.

In performing our professional services, we have applied present engineering and scientific judgement and used a level of effort consistent with the current standard of practice for similar types of studies.

As applicable, Alta Environmental has relied in good faith upon representations and information furnished by individuals with respect to operations and existing property conditions, to the extent that they have not been contradicted by data obtained from other sources. Accordingly, Alta Environmental accepts no responsibility for any deficiencies, omissions, misrepresentations, or fraudulent acts of persons interviewed.

Alta Environmental will not accept any liability for loss, injury claim, or damage arising directly or indirectly from any use or reliance on this report. Alta Environmental makes no warranty, expressed or implied.

This report is issued with the understanding that the client, the property owner, or its representative is responsible for ensuring that the information, conclusions, and recommendations contained herein are brought to the attention of the appropriate regulatory agencies, as required.

### 9 REFERNCES

- 1. Alta Environmental, Soil Sampling and Analysis Plan, Former Quest Diagnostics Property, 7600 Tyrone Avenue, Van Nuys, California 91405, April 26, 2013.
- 2. AMEC, 2012a. Phase I Environmental Site Assessment, Quest Diagnostics Inc. Facility, 7600 Tyrone Avenue, Van Nuys, California, Project No. IR12162750. August 22, 2012a.

- 3. AMEC, 2012b. Screening Level Phase II Investigation Results, Quest Diagnostics Facility, 7600 Tyrone Avenue, Van Nuys, California, Project No. IR12162750. September 28, 2012b.
- 4. California Environmental Protection Agency (Cal/EPA), Office of Environmental Health Hazard Assessment, *Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, Soil Screening Numbers.* September 29, 2010 Updated.
- 5. California Department of Water Resources (CDWR), 2003, California's Groundwater: Bulletin 118.
- 6. Environmental Protection Agency (EPA), Pacific Southwest Region 9, *Regional Screening Levels* (RSLs), Formerly PRGs, Screening levels for Chemical Contaminants, Summary Table. November, 2012.
- California Regional Water Quality Control Board, Los Angeles Region (LARWQCB), Interim Site
  Assessment and Cleanup Guidebook, May 1996 Guidance for VOC-impacted Sites Soil Screening
  Levels, Table 4-1: Maximum Soil Screening Levels (mg/kg) for TPH and BTEX above Drinking Water
  Aquifers. May, 1996.
- 8. Department of Toxic Substances Control and California Regional Water Quality Control Board, Los Angeles Region, *Advisory Active Soil Gas Investigations*, January 2003.
- 9. ENSR International, "Groundwater Monitoring Report, 7777 and 7803 Lemona Avenue, Van Nuys, California", July 2005.
- 10. ODIC Environmental (ODIC), 2010. *Phase I Environmental Site Assessment, 7600 Tyrone Avenue, Van Nuys, California 91405*, ODIC Project No. 6349473ESAI. October 22, 2010.
- 11. Upper Los Angeles River Area Watermaster, Annual Report, "Watermaster Service in the Upper Los Angeles River Area (ULARA) Los Angeles County, California, 2010 2011 Water Year, October 1, 2010 September 30, 2011".

Tables
Tables 1 through 9

## TABLE 1

## Surface Soil Sample and Analysis Plan Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

| Swring Nos. | Sample Rationals                                        | Analytical Program     |
|-------------|---------------------------------------------------------|------------------------|
| B1 - B12    | Lead based paint from existing and historic structures. | Lead (6010B)           |
| B13 - B20   | Former agriculture activities                           | Arsenic (6010B)        |
| B 13 - B20  | Former agriculture activities.                          | OCPs (8081A)           |
|             |                                                         | Metals (6010B/7471A)   |
| B21 – B24   | Various surface soil stains, equipment                  | TPH Full Scan (8015M)  |
| B21 - B24   | storage, and hazardous waste storage.                   | SVOCs (8270C)          |
|             |                                                         | PCBs (8082)            |
|             |                                                         | Metals (6010B/7471A)   |
|             |                                                         | TPH Full Scan (8015M)  |
| B25 - B28   | Import soil.                                            | VOCs (8260B)           |
|             |                                                         | SVOCs (8270C)          |
|             |                                                         | PCBs (8082)            |
| DOC DOC     | Dallaced the and accordant offer                        | TPH diesel/oil (8015M) |
| B29 – B30   | Railroad ties and saw dust piles.                       | SVOCs (8270C)          |

### NOTES:

OCPs - Organochlorine Pesticides by EPA Method 8081A

PCBs - Polychlorinated Biphenyls by EPA Method 8082

VOCs - Volatile Organic Compounds by EPA Method 8260B

SVOCs - Semi Volatile Organic Compounds by EPA Method 8270C

Metals - Title 22 Metals by EPA Method 6010B/7471A

TPH Full Scan - Total Petroleum Hydrocarbons as gasoline, diesel, and oil by EPA Method 8015M

TPH diesel/oil - Total Petroleum Hydrocarbons as diesel and oil by EPA Method 8015M

Lead - Lead by EPA Method 6010B

Arsenic - Arsenic by EPA Method 6010B



LDWP-13-1198 1 of 1

# TABLE 2 Soil Gas Sampling and Analysis Plan Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

| ample 10 | Sample<br>Depth<br>(fit logs) | Sunace Type               | Sampling<br>Method       | Sample Rationale                                                                                    | Analytical Program |
|----------|-------------------------------|---------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|--------------------|
| VP1      | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Emergency generator location, east side of Building G                                               | VOCs               |
| VP2      | 5<br>15                       | Planter Area -<br>Unpaved | Geoprobe/ Direct<br>Push | Floor drain, along perimeter of Building F                                                          | VOCs               |
| VP3      | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Emergency generator, rinsing area, uncovered floor drain, potential location of "floor drain blank" | VOCs               |
| VP4      | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Former diesel generator                                                                             | VOCs               |
| VP5      | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Miscelaneous storage area, unknown buckets of liquid                                                | VOCs               |
| VP6      | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Former diesel generator and boilers                                                                 | VOCs               |
| VP7      | 5<br>15                       | Planter Area -<br>Unpaved | Geoprobe/ Direct<br>Push | Floor drains, along perimeter of Building C                                                         | VOCs               |
| VP8      | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Floor drains, along perimeter of Building C                                                         | VOCs               |
| VP9      | 5<br>15                       | Planter Area -<br>Unpaved | Geoprobe/ Direct<br>Push | Second boring along perimeter of Building F                                                         | VOCs               |
| VP10     | 5<br>15                       | Planter Area -<br>Unpaved | Geoprobe/ Direct<br>Push | One of two borings along perimeter of Building A; side of fume hoods                                | VOCs               |
| VP11     | 5<br>15                       | Planter Area -<br>Unpaved | Geoprobe/ Direct<br>Push | Second of two borings along perimeter of Building A;<br>side of fume hoods                          | VOCs               |
| VP12     | 5<br>15                       | Planter Area -<br>Unpaved | Geoprobe/ Direct<br>Push | South side of Building D                                                                            | VOCs               |
| VP13     | 5<br>15                       | Planter Area -<br>Unpaved | Geoprobe/ Direct<br>Push | South side of Building E                                                                            | VOCs               |
| VP14     | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Perimeter of Building G                                                                             | VOCs               |
| VP15     | 5<br>15                       | Asphalt and/or concrete   | Geoprobe/ Direct<br>Push | Perimeter of Building G                                                                             | VOCs               |
| VP16     | 5<br>15                       | Unpaved                   | Geoprobe/ Direct<br>Push | Vicinity of Former Septic Tank/Cesspool                                                             | VOCs               |

Notes:

VOCs analysis analyzed by EPA Method 8260B. bgs – below ground surface



LDWP-13-1198 1 of 1

TABLE 3
Shallow Soil Sample Results - Title 22 Metals
Tyrone Property
7800 Tyrone Avenue, Van Nuys, CA

|                | puccus         | 0.00002      | 0.0001      | 10        | 43            |           |           | •         |           |           |           |           |           |           |           |           | •         |           |           |           |           | •         | •         |          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | 0.024     | 0.042     | 0.013     |
|----------------|----------------|--------------|-------------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0              |                | 5.0          |             | 23,000    | 310,000       |           |           |           |           |           | •         |           |           | •         |           |           |           |           |           |           |           |           | •         | •        |           | •         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | •         | •         | 11        | 194       | 48        |
|                | шпрвикд.       | 5.0          | 2.0         | 380       | 5,200         |           |           |           |           |           | •         |           | •         |           | •         | •         |           | •         | •         | •         | •         |           |           |          |           | •         |           |           | •         |           |           |           | •         |           |           |           |           |           |           |           |           |           |           | 24 25     | 28        | 28        |
|                | millerit       | 5.0          | 0.9         | 1.6       | 20            |           | •         |           |           | •         | •         | •         | •         |           | •         | •         | •         |           | •         |           | •         |           |           | •        |           |           |           |           |           | •         | •         |           |           |           |           |           |           |           | •         |           |           | •         | •         | 2 2       | 2 2       | Q         |
|                | - miles        | 5.0          | 6.0         | 390       | 5,100         | •         |           |           |           |           | •         |           |           |           |           | •         | •         |           | •         |           |           |           |           | •        |           |           |           |           |           | •         |           | •         |           |           |           |           |           |           |           | •         |           |           |           | Q S       | 7.4.1     | QN        |
|                | muineles       | 5.0          | 6.0         | 380       | 5,100         |           |           |           | •         |           | •         | •         | •         |           |           | •         | •         |           | •         | •         |           | •         | •         | •        |           |           |           |           |           | •         |           |           |           |           |           | •         |           |           |           |           |           |           | •         | 2         | N C       | QN        |
| (0)            | ilesialis      | 6.0          | 6.0         | 1,500     | 20,000        | •         |           |           | •         |           |           |           |           | •         |           | •         | •         | •         | •         |           |           | •         |           |          | •         | •         | •         |           |           |           |           |           |           |           |           |           |           | 8         |           |           |           |           | •         | 77.       | 18        | 18        |
| 471A (mg       | munebdyfold    | 5.0          | 2.0         | 380       | 5,100         |           |           |           |           |           | •         | •         | •         | •         | •         | •         | •         | •         |           | •         | •         |           | •         | •        |           |           |           | •         | •         | •         |           |           |           |           |           |           |           |           |           | •         |           |           |           | 2 2       | 202       | S         |
| d GIMBER       | 5663           | 6.0          | 6.0         | 400       | 800           | 9.8       | 12        | 11        | 16        | 12        | 12        | =         | 12        | 25        | =         | 5.7       | 9         | 2         | - Co      | 24        | 7.5       | 77        | *         | 9        | 0 0       | 2 5       | 24        | 100       | •         | •         | •         |           |           |           |           |           |           |           | •         | •         |           |           |           | 20 3      | 45        | 11        |
| P.A. Markhad G | cobbec         | 5.0          | 5.0         | 3,100     | 41,000        |           |           |           |           |           |           |           |           | •         | •         |           |           |           |           |           |           | •         | •         | •        |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | •         | 77        | 0 10      | 15        |
| Mercals by EPA | HedoO          | 5.0          | 0.9         | 23        | 300           |           |           |           |           |           | •         |           | •         |           | •         | •         |           |           | •         |           |           |           | •         |          |           | •         |           |           |           | •         |           |           |           |           |           | •         |           |           |           |           | •         |           | •         | 17        | 10        | 14        |
| Flote 322 Me   | மருக்கபுற      | 5.0          | 5.0         | 180,000*  | 180,000*      |           |           |           |           |           |           |           |           | •         |           | •         |           |           | •         | •         | •         |           |           | •        |           | •         |           |           |           |           |           |           |           |           |           |           |           |           |           | •         | •         |           |           | 22.5      | 138       | 16.4      |
|                | mulmbro        | 2.5          |             | 7.0       | 900           | •         |           |           |           | •         |           | •         | •         |           |           | •         |           | •         |           |           | •         |           | •         |          |           |           |           | •         |           |           | •         |           |           |           |           |           |           |           |           | •         | •         | •         |           | 3.4       | 2.6.2     | 247       |
|                | աոլլեթը        | 2.5          | 2.5         | 180       | 2,000         | •         | ۰         |           |           |           | •         | •         |           |           | •         |           |           | •         |           | •         |           | •         | •         |          |           | •         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           | •         | 2 2       | 202       | QN        |
|                | muhad          | 5.0          | 5.0         | 15,000    | 190,000       |           |           |           |           |           | •         |           |           |           |           | •         |           |           |           |           |           |           |           |          |           |           |           |           |           | •         | •         |           |           |           |           |           |           |           |           | •         |           |           |           | 263       | 170       | 301       |
|                | SimenA         | 0.0          | 929         | 0.39      | 1.60          |           |           |           |           |           | •         |           |           | •         | •         |           |           |           |           |           |           |           | •         |          |           |           |           |           | QN        | 2         | 2         | 2         | 2 2       | 2         | Q         | 2         | 2         | QN        | Q         | 2         | 2         | Q         | 2         | 29        | 22        | QN        |
|                | ynomina        | 9.0          | 9.0         | 310       | 4,100         | •         |           |           |           |           | •         |           |           | •         | •         | •         | •         | •         | •         |           | •         | •         | •         |          |           |           |           |           |           | •         |           |           |           |           |           | •         |           |           |           | •         | •         | •         |           | 20.0      | 2.87      | 3.6.      |
|                | Sumple<br>Oute | MDL (mg/kg): | RL (mg/kg): | Resident. | Commulindust. | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | SIZBIZOUS | STOSPOSO | SYZOKZU13 | 2/20/2013 | 5/28/2013 | 5/28/2013 | 5/29/2013 | 5/29/2013 | 5/29/2013 | 5/29/2013 | 5/28/2013 | 5/29/2013 | 5/29/2013 | 5/29/2013 | 5/29/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 | 5/28/2013 |
|                | Sample 10      |              |             | RSLS      | (mg/kg):      | B1-1'     | B1-3'     | B2-1'     | B2-3'     | B3-1'     | B3-3'     | - A-      | 84-3      | B5-1'     | 85-3'     | .l-98     | B6-3      | B7-1'     | 87-3      | B8-1      | 88-3      | B9-1'     | 200       | 10000    | 010-2     | 044.0     | 812-1     | B12-3'    | B13-1'    | B13-3'    | B14-1'    | B14-3     | 1975      | 818-1     | B16-3'    | B17-1     | B17-3'    | B18-1'    | B18-3'    | B19-1'    | B19-3'    | B20-1     | B20-3     | B21-1'    | B22-1'    | B22-3'    |



TABLE 3 Shallow Soil Sample Results - Title 22 Metals Tyrone Property 7600 Tyrone Avenue, Van Nuys, CA

|           |                |          |         |         |           |         | Title 22 Ma | tain by | EPA Matho | d 8010E/ | 7471A (mg  | y/kg)  |            |        |           |           |         |         |
|-----------|----------------|----------|---------|---------|-----------|---------|-------------|---------|-----------|----------|------------|--------|------------|--------|-----------|-----------|---------|---------|
| Sample ID | Sample<br>Date | Antimony | Areavie | Bartum  | Beryllium | Cadmium | Chroinlum   | Cobell  | Copper    | P. Care  | Metybdenum | Hotel  | - Şelenium | Silvar | Thuilliam | Varietium | Zije    | Mercury |
|           | MDL (mg/kg):   | 5.0      | 5.0     | 5.0     | 2.5       | 2.5     | 5.0         | 5.0     | 5.0       | 5.0      | 5.0        | 5.0    | 5.0        | 5.0    | 5.0       | 5.0       | 5,0     | 0.00002 |
|           | RL (mg/kg):    | 5.0      | 5.0     | 5.0     | 2.5       | 2.5     | 5.0         | 6.0     | 5.0       | 6.0      | 5.0        | 6.0    | 5.0        | 5.0    | 5.0       | 5.0       | 6.0     | 0.0001  |
| RSLs      | Resident       | 310      | 0.39    | 15,000  | 160       | 70      | 180,000*    | 23      | 3,100     | 400      | 390        | 1,500  | 390        | 390    | 1.6       | 390       | 23,000  | 10      |
| (mo/kg):  | CommJindust.   | 4,100    | 1.60    | 190,000 | 2,000     | 800     | 180,000*    | 300     | 41,000    | 800      | 5,100      | 20,000 | 5,100      | 5,100  | 20        | 5,200     | 310,000 | 43      |
| B23-1'    | 5/29/2013      | 3.3J     | ND      | 218     | ND        | 3.3     | 20          | 15      | 21        | 39       | ND         | 20     | ND         | ND     | ND        | 31        | 124     | 0.048   |
| B23-3'    | 5/29/2013      | 4.0J     | ND      | 300     | ND        | 4       | 23          | 20      | 22        | 15       | ND         | 24     | ND         | ND     | ND        | 38        | 79      | 0.021   |
| B24-1'    | 5/29/2013      | 3.3J     | ND      | 205     | ND        | 3.2     | 19          | 18      | 18        | 42       | ND         | 20     | ND         | ND     | ND        | 30        | 93      | 0.024   |
| B24-3'    | 5/29/2013      | 4.2J     | ND      | 296     | ND        | 4.1     | 23          | 21      | 22        | 15       | ND         | 24     | ND         | ND     | ND        | 37        | 78      | 0.023   |
| B25-1'    | 5/28/2013      | 3.3J     | ND      | 194     | ND        | 2.42J   | 16.4        | 13.5    | 13.5      | 10.5     | ND         | 16.6   | ND         | ND     | ND        | 28        | 48      | 0.009   |
| B25-3'    | 5/28/2013      | 4.2.     | ND      | 281     | ND        | 3.0J    | 23          | 16      | 19        | 13       | ND         | 24     | ND         | ND     | ND        | 37        | 60      | 0.013   |
| B28-1'    | 5/28/2013      | 1.3J     | ND      | 81      | ND        | 1.1J    | 7.8         | 5.5     | 11.6      | 6        | ND         | 9.3    | ND         | ND     | ND        | 18        | 26      | 0.021   |
| B26-3'    | 5/28/2013      | 3.1J     | ND      | 195     | ND        | 2.9J    | 18          | 16      | 13        | 11       | ND         | 20     | ND         | ND     | ND        | 31        | 56      | 0.0.12  |
| B27-1'    | 5/29/2013      | 2.7J     | ND      | 190     | ND        | 3.1     | 18          | 14      | 14        | 12       | 0.50J      | 20     | ND         | ND     | ND        | 30        | 59      | 0.020   |
| B27-3'    | 5/29/2013      | 3.8J     | ND      | 256     | ND        | 3.6     | 23          | 18      | 20        | 14       | ND         | 23     | ND         | ND     | ND        | 35        | 74      | 0.020   |
| B28-1'    | 5/29/2013      | 2.0J     | ND      | 99      | ND        | 1.8J    | 10          | 7.8     | 7.7J      | 8.7      | 0.44J      | 12.3   | ND         | ND     | ND        | 19        | 36      | 0.0093  |
| B28-3'    | 5/29/2013      | 4.0J     | ND      | 263     | ND        | 3.7     | 22          | 19      | 21        | 18       | ND         | 22     | ND         | ND     | ND        | 35        | 78      | 0.019   |

mg/kg = milligrams per kilogram ND = Not Detected; below MDL

MDL = Method Detection Limit

RL = Reporting Limit

J = Concentration above the MDL and below the RL



<sup>+=</sup> Not Analyzed

<sup>&</sup>lt;sup>1</sup>EPA Region 9 Regioani Screenig Levels (RSLs) for residential and commercial settings

<sup>\*</sup>No RSL Information available; Protection of groundwater Soil Screening Level (SSL) based on mediumum contaminant level (MCL) provided for reference

TABLE 4
Shallow Soll Sample Results - OCPs
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

| OCCUPATION AND ADDRESS OF THE PARTY OF THE P | CHHSLs   | * (ug/kg) |           | Sample ID: | B13-1'     | B13-3'    | B14-1'    | B14-31      | B16-1'        | B15-3'    | B16-11    | B16-3"    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|------------|------------|-----------|-----------|-------------|---------------|-----------|-----------|-----------|
| OCPs by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Comm./    | 1         | Date:      | \$/29/2013 | 5/29/2013 | 5/25/2013 | E/28/2013   | 5728/2013     | B/28/2018 | 5/28/2013 | 5/28/2012 |
| EPA Method 8081A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Resident | Indust    | MOL       | MRL:       |            |           | (         | OCP Concent | raiton (µg/kg | )         |           |           |
| 2,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,300    | 9,000     | 21 - 25   | 21 - 25    | ND         | ND        | ND.       | ND          | ND            | ND        | ND        | ND        |
| 2,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _        |           | 21 - 25   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| 2,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,600    | 6,300     | 21 - 25   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | 190       |
| 4,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _        | -         | 4.0 - 4.8 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| 4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,600    | 6,300     | 6.3 - 7.7 | 21 - 25    | 40         | ND        | ND        | ND          | ND            | 15        | ND        | 740       |
| 4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,600    | 6,300     | 4.5 - 5.5 | 21 - 25    | 10         | ND        | ND        | ND          | ND            | 7.8       | ND        | 270       |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | _         | 9.5 - 12  | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| alpha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | -         | 11 - 15   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| alpha-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _         | 11 - 13   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA       | NA        | 6.5 - 7.9 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | 37        |
| Chlordane (tech)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -         | 84 - 100  | 410 - 500  | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| cis-Nonachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _        | -         | 21 - 25   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| DCPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - L    | -         | 21 - 25   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | _         | 4.7 - 5.7 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _        | _         | 6.2 - 7.5 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | _         | 4.7 - 5.7 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | _         | 2.6 - 3.2 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | 4.4 - 5.5 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _        |           | 11 - 13   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | 1         | 5.8 - 7.0 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Endrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _        | -         | 3.8 - 4.6 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | -         | 11 - 13   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| gamma-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | 1         | 8.2 - 10  | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | -         | 11 - 14   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        |           | 7.5 - 9.1 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Kepone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | I         | 180 - 220 | 410 - 500  | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | _         | 4.5 - 5.5 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Mirex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -        | _         | 6.4 - 7.8 | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Oxychlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           | 21 - 25   | 21 - 25    | ND         | ND        | ND        | ND          | ND            | ND        | ND        | ND        |
| Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 460      | 1,800     | 71 - 85   | 620 - 750  | ND         | ND        | ND        | ND          | ND            | ND        | ND        | 2,400     |
| trans-Nonachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | 1         | 21 - 25   | 21 - 25    | ND         | ND.       | ND        | ND          | ND            | ND        | ND        | ND        |

OCPs = Organochlorine Pesticides

MDL = Method Detection Limit

MRL = Method Reporting Limit

μg/kg = mkrograms per kilogram

ND = Not detected at or above the MDL

NA = Information not available

- = Not applicable

\*California Human Health Screening Levels (CHHSLs) for residential and commercial settings are provided for detected concentrations of OCPs

Indicates concentration exceeds the commercial/industrial CHHSL



TABLE 4
Shallow Soil Sample Results - OCPs
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

| Acres to            | CHHSLs   | * (ug/kg) |           | Sample ID: | B18-1'    | B18-3     | B19-1'    | B19-3"      | B20-11         | B20-31    | B:26-11   | B28-3    |
|---------------------|----------|-----------|-----------|------------|-----------|-----------|-----------|-------------|----------------|-----------|-----------|----------|
| OCPs by             |          | Comm./    |           | Date:      | S/28/2013 | 5/28/2013 | 5/25/2013 | #/ZE/2013   | 5728/2015      | 5/23/2013 | 5/28/2013 | 5/28/201 |
| EPA Method 8081A    | Resident | Indust    | MOL       | MRL:       |           |           | (         | OCP Concent | traiton (µg/kg | 1)        |           |          |
| 2,4'-DDD            | 2,300    | 9,000     | 21 - 25   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | 36       |
| 2,4'-DDE            | _        | _         | 21 - 25   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| 2,4'-DDT            | 1,600    | 6,300     | 21 - 25   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | 94       |
| 4,4'-DDD            | _        | _         | 4.0 - 4.8 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| 4,4'-DDE            | 1,600    | 6,300     | 6.3 - 7.7 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | 440      |
| 4,4'-DDT            | 1,600    | 6,300     | 4.5 - 5.5 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | 260      |
| Aldrin              | _        | _         | 9.5 - 12  | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| alpha-BHC           | -        | -         | 11 - 15   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| alpha-Chlordane     | _        | _         | 11 - 13   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| beta-BHC            | NA       | NA.       | 6.5 - 7.9 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | 42       |
| Chlordane (tech)    |          | _         | 84 - 100  | 410 - 500  | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| cis-Nonachlor       |          | -         | 21 - 25   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| DCPA                |          | -         | 21 - 25   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| delta-BHC           | - tercal | -         | 4.7 - 5.7 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND.      |
| Dieldrin            |          | -         | 6.2 - 7.5 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Endosulfan I        |          | _         | 4.7 - 5.7 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Endosulfan II       | _        | -         | 2.6 - 3.2 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Endosulfan sulfate  |          |           | 4.4 - 5.5 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Endrin              | _        | -         | 11 - 13   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Endrin aldehyde     | -        |           | 5.8 - 7.0 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Endrin ketone       | -        | -         | 3.8 - 4.6 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND:      |
| gamma-BHC (Lindane) |          | _         | 11 - 13   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| gamma-Chlordane     | -        | _         | 8.2 - 10  | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Heptachlor          |          | -         | 11-14     | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Heptachlor epoxide  | _        | -         | 7.5 - 9.1 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Kepone              |          | -         | 180 - 220 | 410 - 500  | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Methoxychlor        |          | -         | 4.5 - 5.5 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Mirex               |          |           | 6.4 - 7.8 | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Oxychlordane        | -        | _         | 21 - 25   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |
| Toxaphene           | 460      | 1,800     | 71 - 85   | 620 - 750  | ND        | ND        | ND        | ND          | ND             | ND        | ND        | 1,500    |
| trans-Nonachior     | _        | _         | 21 - 25   | 21 - 25    | ND        | ND        | ND        | ND          | ND             | ND        | ND        | ND       |

OCPs = Organochlorine Pesticides

MDL = Method Detection Limit

MRL = Method Reporting Limit

μg/kg = mkrograms per kilogram

ND = Not detected at or above the MDL

NA = Information not available

- = Not applicable

\*California Human Health Screening Levels (CHHSLs) for residential and commercial settings are provided for detected concentrations of OCPs



TABLE 5
Shallow Soil Sample Results - PCBs
Tyrone Property
7600 Tyrone Avenue, Van Nuys, CA

| 1000000   | Samuela.       |             | PCBs        | by EPA Me   | thed 8082 ( | mg/kg)      |             |
|-----------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sample ID | Sample<br>Date | PCB<br>1221 | PCB<br>1232 | PCB<br>1242 | PCB<br>1248 | PCB<br>1254 | PCB<br>1260 |
|           | MDL (mg/kg):   | 0.07        | 0.07        | 0.07        | 0.07        | 0.07        | 0.07        |
| l. v. d   | PQL (mg/kg):   | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         | 0.2         |
| B23-1'    | 5/29/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B23-3'    | 5/29/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B24-1'    | 5/28/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B24-3'    | 5/28/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B25-1'    | 5/28/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B25-3'    | 5/28/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B26-1'    | 5/28/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B26-3'    | 5/28/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B27-1'    | 5/29/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B27-3'    | 5/29/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B28-1'    | 5/29/2013      | ND          | ND          | ND          | ND          | ND          | ND          |
| B28-3'    | 5/29/2013      | ND          | ND          | ND          | ND          | ND          | ND          |

PCB = Polychlorinated Biphenyls

MDL = Method Detection Limit

PQL = Practical Quantitation Limit

mg/kg = milligrams per kilogram

ND = Indicates constituents not detected; below MDL



| 100       |                                      | 1                | PH by EPA Meth  | od 8015M (mg/k  | a)                     |
|-----------|--------------------------------------|------------------|-----------------|-----------------|------------------------|
| Sample ID | Sample<br>Date                       | TEPH<br>(C9-C36) | GR0<br>(C4-C12) | DRO<br>(C10-28) | Motor Oil<br>(C29-C38) |
|           | MDL (mg/kg):                         | 4                | 1.1             | 29              | 35                     |
|           | PQL (mg/kg):                         | 20               | 5.5             | 145             | 175                    |
| B21-1'    | 05/28/13                             | 12.6J            | ND              | ND              | ND                     |
| B21-3'    | 05/28/13                             | ND               | ND              | ND              | ND                     |
| B22-1'    | 05/28/13                             | 12.6J            | ND              | ND              | ND                     |
| B22-3'    | 05/28/13                             | ND               | ND              | ND              | ND                     |
| B23-1'    | 05/29/13                             | ND               | ND              | ND              | ND                     |
| B23-3'    | 05/29/13                             | 4.2J             | ND              | ND              | ND                     |
| B24-1'    | 05/29/13                             | 60.6             | ND              | ND              | 60.6J                  |
| B24-3'    | 05/29/13                             | 4,4J             | ND              | ND              | ND                     |
| B25-1'    | 05/28/13                             | 12.5J            | ND              | ND              | ND                     |
| B25-3'    | 05/28/13                             | ND               | ND              | ND              | ND                     |
| B26-1'    | 05/28/13                             | 4,4J             | ND              | ND              | ND                     |
| B26-3'    | 05/28/13                             | ND               | ND              | ND              | ND                     |
| B27-1'    | 05/29/13                             | 4.0J             | ND              | ND              | ND                     |
| B27-3'    | 05/29/13                             | 13.1J            | ND              | ND              | ND                     |
| B28-1'    | 05/29/13                             | ND               | ND              | ND              | ND                     |
| B28-3'    | 05/29/13                             | ND               | ND              | ND              | ND                     |
| B29-1"    | 05/28/13                             | 12.6J            | ND              | ND              | ND                     |
| B29-3'    | 05/28/13                             | 4.1J             | ND              | ND              | ND                     |
| B30-1'    | 05/28/13                             | 12.7J            | ND              | ND              | ND                     |
| B30-3'    | 05/28/13                             | 12.4J            | ND              | ND              | ND                     |
|           | n Soil Screening<br>Levels* (mg/kg): | -                | 1,000           | 10,000          | 50,000                 |

### NOTES:

ND = Indicates constituents not detected; below MDL

MDL = Method Detection Limit

PQL = Practical Quantitation Limit

J = Concentration above the MDL but below the PQL

TEPH = total extractable petroleum hydrocarbons

TPH = total petroleum hydrocarbons

GRO = gasoline range organics

DRO = diesel range organics

mg/kg = milligrams per kilogram

- = information not available



<sup>\*</sup> The LARWQCB Maximum Soil Screening Levels are are provided for TPH in soil above drinking water aquifers greater than 150 bgs (LARWQCB Table 4-1, May 1996)

| en en                                   | RSLa Soil   |        | 1                          | Sumple 10:                | 921-1     | 827 3    | BIZE-4"             | 1004          | 833-4    |
|-----------------------------------------|-------------|--------|----------------------------|---------------------------|-----------|----------|---------------------|---------------|----------|
| SVOCE<br>by EPA Webset 82700            | Resident    | CommJ  | 400                        | Date:                     | E/36/2013 | 72 1011  | 2734 (02)           | 9/20/1001     | 2001.000 |
| ,2,4-Trichlorobenzene                   | HONE IN THE | Indust | 0.080 - 0.090              | 0,44 - 0,50               | ND        | ND       | Concentration<br>ND | (mg/kg)<br>ND | ND       |
| 2-Dichlorobenzene                       |             | _      | 0.097 - 0.11               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| 3-Dichforobenzene                       | =           |        | 0.071 - 0.080              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND.      |
| 4-Dichlorobenzene                       |             | -      | 0.11 - 0.12                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| 4,5-Trichlorophenol                     |             | =      | 0.097 - 0.11               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| 4,6-Trichioropheno                      | -           | -      | 0.097 - 0.11               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| 4-Dichloropheno                         | -           |        | 0.12 - 0.13                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| 4-Dimethylpheno                         | _           | _      | 0.11 - 0.12                | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| 4-Dinitropheno                          | -           | (max)  | 3.4 - 3.8                  | 22 - 25                   | ND        | ND       | ND.                 | ND            | ND       |
| 4-Dinitrotoluene                        | -           |        | 0,088 - 0,10               | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| ,8-Dinifrotoluene                       | -           | -      | 0.071 - 0.080              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| -Chicronaphthalene                      | _           | _      | 0,071 - 0,080              | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| -Chloropheno                            |             | -      | 0.088 - 0.10               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| -Methylnaphthalens                      | _           | _      | 0,080 - 0,090              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| -Methylpheno                            | -           | And .  | 0.11 - 0.12                | 0.44 - 0.50               | ND-       | ND       | ND                  | ND            | ND       |
| -Nitroaniline                           |             |        | 0.12 - 0.13                | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| Nitrophenol                             | -           | -      | 0.19 - 0.22                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| & 4-Methylpheno                         | -           | -      | 0.11 - 0.12                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| ,3'-Dichlorobenzidine                   | -           | -      | 1.3 - 1.5                  | 2.2 - 2.5                 | ND        | ND       | ND                  | ND            | ND       |
| -Nitroaniline                           | -           | -      | 0.13 - 0.15                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| ,6-Dinitro-2-methylpheno                |             | _      | 1.4 - 1.5<br>0.082 - 0.070 | 4.4 - 5.0                 | ND        | ND<br>ND | ND                  | ND<br>ND      | ND       |
| Chlero 2 mathytehona                    | =           | -2     | 0.087 - 0.11               | 0.44 - 0.50               | ND<br>ND  | ND<br>ND | ND<br>ND            | ND<br>ND      | ND<br>ND |
| -Chioro-3-methylpheno<br>-Chioroaniline |             | _=     | 0.12 - 0.13                | 0.44 - 0.50               | ND ND     | ND ND    | ND<br>ND            | ND ND         | ND ND    |
| -Chicrophenyl phenyl athe               | =           |        | 0.12 - 0.13                | 0.44 - 0.50               | ND        | ND ND    | ND                  | ND            | ND       |
| -Nitroeniline                           | =           |        | 0.12 - 0.13                | 0.44 - 0.50               | ND        | ND       | ND                  | ND ND         | ND       |
| -Nitrophenol                            |             |        | 0,13 - 0,15                | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| cenaphthens                             | _           |        | 0.080 - 0.090              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| cenaphthylene                           | -           | -      | 0,080 - 0,090              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| niline                                  | _           | -      | 0.2 - 0.23                 | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| nihracene                               | -           | -      | 0,071 - 0,080              | 0.44 - 0.50               | ND.       | ND       | ND                  | ND            | ND       |
| zobenzene/1,2-Diphenylhydrazine         | _           | _      | 0.088 - 0.10               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| enzidine                                | -           | -      | 1.1 - 1.3                  | 4.4 - 5.0                 | ND        | ND       | ND                  | I ND          | ND       |
| enzo(a)anthracens                       |             | -      | 0.082 - 0.070              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| enzo(a)pyrene                           | -           |        | 0.071 - 0.080              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| enzo(b)fluoranthene                     | -           | _      | 0.082 - 0.070              | 0.44 - 0.50               | ND.       | ND       | ND                  | ND            | ND       |
| enzo(g,h,l)perylene                     | NA          | NA     | 0.053 - 0.060              | 0.88 - 1.0                | ND        | ND       | ND                  | ND            | ND       |
| enzo(k)fluoranthene                     | -           | -      | 0.12 - 0.13                | 0.44 - 0.50               | ND.       | ND       | ND                  | ND            | ND       |
| enzolc add                              | _           | _      | 1.7 - 1.9                  | 22 - 25                   | ND        | ND       | ND                  | ND            | ND       |
| lenzyl alcoho                           |             | -      | 0.12 - 0.13                | 0.44 - 0.50               | ND        | ND .     | ND                  | ND            | ND       |
| ls(2-chloroethcxy)methans               | -           | -      | 0.080 - 0.090              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| is(2-chloroethyl)ether                  |             | 1      | 0,097 - 0,11               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| is(2-chloroisopropyl)ether              | _           | (mail  | 0.12 - 0.14                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| is(2-ethythexyl)phthalate               | -           |        | 0.11 - 0.12                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| utyl benzyl phthelate                   | 260         | 910    | 0.13 - 0.15                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| arbazole                                |             |        | 0,080 - 0,090              | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| hrysene                                 | 0.046       | 0.04   | 0.080 - 0.090              | 0.44 - 0.50<br>0.68 - 1.0 | ND        | ND       | ND                  | ND            | ND       |
| ibanzo(a,h)anthracane<br>Ibanzofuran    | 0.016       | 0.21   | 0.044 - 0.050              | 0.44 - 0.50               | 0.099J    | ND<br>ND | ND<br>ND            | ND<br>ND      | ND<br>ND |
| Methyl phtheliate                       | =           | ==     | 0.053 - 0.060              | 0.44 - 0.50               | ND<br>ND  | ND ND    | ND ND               | ND            | ND<br>ND |
| Imethyl phthalate                       | _           | _      | 0.78 - 0.86                | 2.2 - 2.5                 | ND        | ND       | ND                  | ND ND         | ND       |
| I-n-butyl phthalate                     |             |        | 0.071 - 0.060              | 0.44 - 0.50               | ND ND     | ND       | ND                  | ND            | ND ND    |
| In-octyl phthalate                      | -           |        | 0.12 - 0.14                | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| enerinanou                              |             |        | 0.097 - 0.11               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| luorene                                 | _           | _      | 0,062 - 0,070              | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| exachlorobenzene                        | _           | -      | 0.071 - 0.080              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| exachlorobutadiene                      | -           |        | 0,080 - 0,090              | 0,44 - 0,50               | ND        | ND       | ND                  | ND            | ND       |
| exachlorocydopentediene                 | _           | -      | 0.11 - 0.12                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| exachloroethane                         |             | _      | 0.082 - 0.070              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| deno(1,2,3-od)pyrene                    | 0.15        | 2.1    | 0.080 - 0.090              | 0.68 - 1.0                | 0.15J     | ND       | ND                  | ND            | ND       |
| ophorone                                |             | _      | 0,088 - 0,10               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| aphthalene                              | -           |        | 0.097 - 0.11               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| trobenzene                              |             | 100    | 0.097 - 0.11               | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| Nitrosodimethytamine                    | -           | (rest) | 0.080 - 0.090              | 0.44 - 0.50               | ND.       | ND       | ND                  | ND            | ND       |
| -Nitrosodi-n-propylamine                |             | -      | 0.080 - 0.090              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| -Nitrosodiphenylamine                   | -           | -      | 0.082 - 0.070              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| entachloropheno                         | 0.89        | 2.7    | 0.14 - 0.16                | 0.44 - 0.50               | 0.39J     | ND       | ND                  | ND            | ND       |
| henanthrens                             |             |        | 0.071 - 0.080              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| hend                                    | -           | -      | 0.13 - 0.15                | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| yrene                                   | -           | _      | 0,071 - 0,080              | 0.44 - 0.50               | ND        | ND       | ND                  | ND            | ND       |
| Pyridine                                | -           | _      | 0.044 - 0.050              | 0.88 - 1.0                | ND        | ND       | ND                  | ND            | ND       |

SVOC = Samivojatije Organic Compound MDL = Method Detection Limit

MRL - Method Reporting Limit

ND = indicated constituents not detected; below method detection limit

mg/kg = militerame per kilogram J = Analyte detected. However, concentration is an estimated value, between the MDL and the MRL RSLs = Regional Screening Levels

NA = Information not available



| The state of the s | RELE BOI           | (mg/m)  |               | Sample 10:  | 873-4        | 504-1°   | BE(19)        | 225-1         | 231-7    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|---------------|-------------|--------------|----------|---------------|---------------|----------|
| SMOCIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Resident           | Comm./  | 100           | Date:       | 2/21/2017/19 | CHAC     | Concentration | 5/20/0011     | 3)21670  |
| 2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RESERVATION OF THE | Indust  | 0,080 - 0,090 | 0,44 - 0,50 | ND           | ND       | ND            | (mg/kg)<br>ND | ND       |
| 2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                  | -       | 0.097 - 0.11  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 3-Dichforobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                  | _       | 0.071 - 0.080 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND.      |
| 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | -       | 0.11 - 0.12   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | =       | 0.097 - 0.11  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 4,6-Trichioropheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                  | -       | 0.097 - 0.11  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 4-Dichloropheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |         | 0.12 - 0.13   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 4-Dimethylpheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | _       | 0.11 - 0.12   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 4-Dinitropheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                  | (max)   | 3.4 - 3.8     | 22 - 25     | ND           | ND       | ND            | ND            | ND       |
| 4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                  |         | 0,088 - 0,10  | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| 8-Dinifrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                  |         | 0.071 - 0.080 | 0.44 - 0.50 | ND           | ND       | ND.           | ND            | ND       |
| -Chicronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                  | _       | 0,071 - 0,080 | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| -Chloropheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |         | 0.086 - 0.10  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| -Methylnaphthalens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                  | _       | 0,080 - 0,090 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| -Methylpheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                  | _       | 0.11 - 0.12   | 0.44 - 0.50 | ND.          | ND       | ND            | ND            | ND       |
| -Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | Asset . | 0.12 - 0.13   | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                  |         | 0.19 - 0.22   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| & 4-Methylpheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                | -       | 0.11 - 0.12   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 3'-Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                  | -       | 1.3 - 1.5     | 2.2 - 2.5   | ND           | ND       | ND            | ND            | ND       |
| Ntroanline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  | -       | 0.13 - 0.15   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| 6-Dinifro-2-methylpheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |         | 1.4 - 1.5     | 4.4 - 5.0   | ND           | ND       | ND            | ND            | ND       |
| Bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                  | -       | 0.082 - 0.070 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| Chioro-3-methylpheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >==1               | _       | 0.097 - 0.11  | 0.44 - 0.50 | ND           | ND<br>ND | ND            | ND            | ND       |
| -Chloroaniline<br>-Chlorophenyl phenyl ethe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                  | =       | 0.12 - 0.13   | 0.44 - 0.50 | ND<br>ND     | ND<br>ND | ND<br>ND      | ND<br>ND      | ND<br>ND |
| -Chicrophenyi phenyi sine<br>-Ntroeniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                  |         | 0.12 - 0.13   | 0.44 - 0.50 | ND           | ND<br>ND | ND            | ND ND         | ND       |
| -Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                  |         | 0,13 - 0,15   | 0,44 - 0,50 | ND           | ND ND    | ND            | ND ND         | ND       |
| cenaphthens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                  |         | 0.080 - 0.090 | 0.44 - 0.50 | ND           | ND       | ND            | ND ND         | ND       |
| cenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                  | _       | 0,080 - 0,090 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| niline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | _       | 0.2 - 0.23    | 0.44 - 0.50 | ND           | ND ND    | ND            | ND            | ND       |
| nthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | _       | 0,071 - 0,080 | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| zobenzene/1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                  | _       | 0.088 - 0.10  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| enzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                  | -       | 1.1 - 1.3     | 4.4 - 5.0   | ND           | ND       | ND            | ND            | ND       |
| enzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4)                | -       | 0.082 - 0.070 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| enzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                  | -       | 0.071 - 0.080 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| enzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                  |         | 0.082 - 0.070 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| enzo(g,h,l)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                 | NA      | 0.053 - 0.080 | 0.68 - 1.0  | ND           | ND       | ND            | 0.11J         | ND       |
| enzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                  | _       | 0.12 - 0.13   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| enzolc acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                  | _       | 1.7 - 1.9     | 22 - 25     | ND           | ND       | ND            | ND            | ND       |
| enzyl alcoho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :-                 | -       | 0.12 - 0.13   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| ls(2-chloroethoxy)methans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                  | _       | 0.080 - 0.090 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| ls(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                  | _       | 0,097 - 0,11  | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| is(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                  | (mail   | 0.12 - 0.14   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| ls(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                  |         | 0,11 -0,12    | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| utyl benzyl phthelate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 260                | 910     | 0.13 - 0.15   | 0.44 - 0.50 | ND           | ND       | ND            | 0.28J         | ND       |
| arbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |         | 0,080 - 0,090 | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| hrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.045              | 0.04    | 0.080 - 0.090 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| benzo(a,h)arithracane<br>benzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.016              | 0.21    | 0.044 - 0.050 | 0.68 - 1.0  | ND<br>ND     | ND<br>ND | ND<br>ND      | ND<br>ND      | ND<br>ND |
| fethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                  | ==      | 0.053 - 0.060 | 0.44 - 0.50 | ND           | ND       | ND            | ND ND         | ND       |
| Imethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                  |         | 0.78 - 0.86   | 2.2 - 2.5   | ND           | ND       | ND<br>ND      | ND            | ND       |
| I-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                  |         | 0.071 - 0.080 | 0.44 - 0.50 | ND           | ND       | ND            | ND ND         | ND       |
| I-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                  |         | 0.12 - 0.14   | 0.44 - 0.50 | ND           | ND ND    | ND            | ND            | ND       |
| novaumene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  |         | 0.097 - 0.11  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| uorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                  | _       | 0,062 - 0,070 | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| exachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                  | =       | 0.071 - 0.080 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| exachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | _       | 0,080 - 0,090 | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| psachtorocydopentediene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                  | _       | 0.11 - 0.12   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| exachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _       | 0,062 - 0,070 | 0,44 - 0,50 | ND           | ND       | ND            | ND            | ND       |
| deno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15               | 2.1     | 0.080 - 0.090 | 0.68 - 1.0  | ND           | ND       | ND            | 0.18J         | ND       |
| phorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  | _       | 0,088 - 0,10  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| phthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  | -       | 0.097 - 0.11  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| trobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | -       | 0.097 - 0.11  | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | -       | 0.080 - 0.090 | 0.44 - 0.50 | ND.          | ND       | ND            | ND            | ND       |
| Nitrosodi-n-propylamina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | _       | 0.080 - 0.090 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |         | 0.082 - 0.070 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| entechloropheno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89               | 2.7     | 0.14 - 0.16   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| henanthrens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |         | 0.071 - 0.080 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| hend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                  | -       | 0.13 - 0.15   | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| yrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                  | _       | 0,071 - 0,080 | 0.44 - 0.50 | ND           | ND       | ND            | ND            | ND       |
| yridina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                  | -       | 0.044 - 0.050 | 0.88 - 1.0  | ND           | ND       | ND            | ND            | ND       |

SVOC = Samivojatije Organic Compound MDL = Method Detection Limit

MRL - Method Reporting Limit

ND = indicated constituents not detected; below method detection limit

mg/kg = militerame per kilogram J = Analyte detected. However, concentration is an estimated value, between the MDL and the MRL RSLs = Regional Screening Levels

NA = Information not available



| 10000                                                 | RSLa Sol        |         |                            | Sample (D)               | E778-1"    | 925-1    | B2T-4'        | 227-4         | 211      |
|-------------------------------------------------------|-----------------|---------|----------------------------|--------------------------|------------|----------|---------------|---------------|----------|
| SMOCE                                                 | Service Control | Comm./  | -                          | Date:                    | E/214/2013 | 72 leath | arearet a     | 6/36/0013     | Water.   |
| ,2,4-Trichlorobenzene                                 | Reeldent        | Indust  | 0,080 - 0,090              | 0,44 - 0,50              | ND         | ND       | Concentration | (mg/kg)<br>ND | ND       |
| ,2-Dichlorobenzene                                    | -               | _       | 0.097 - 0.11               | 0.44 - 0.50              | ND         | ND       | ND ND         | ND            | ND ND    |
| 3-Dichforobenzene                                     | -               | _       | 0.071 - 0.080              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| 4-Dichlorobenzene                                     |                 |         | 0.11 - 0.12                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| 4,5-Trichlorophenol                                   | _               | _       | 0.097 - 0.11               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| 4,6-Trichloropheno                                    | -               | -       | 0.097 - 0.11               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| 4-Dichloropheno                                       | _               | -       | 0.12 - 0.13                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| 4-Dimethylpheno                                       | -               | _       | 0.11 - 0.12                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| 4-Dinitropheno                                        |                 | -       | 3.4 - 3.8                  | 22 - 25                  | ND         | ND       | ND            | ND            | ND       |
| 4-Dinitrotoluene                                      | -               | -       | 0,088 - 0,10               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| ,8-Dinifrotoluene                                     | 1               | -       | 0.071 - 0.080              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| -Chicronaphthalene                                    | _               | _       | 0,071 - 0,080              | 0,44 - 0,50              | ND:        | ND       | ND            | ND            | ND       |
| -Chloropheno                                          | -               |         | 0.088 - 0.10               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| -Methylnaphthalens                                    | _               | -       | 0,080 - 0,090              | 0,44 - 0,50              | ND .       | ND       | ND            | ND            | ND       |
| -Methylpheno                                          | -               | -       | 0.11 - 0.12                | 0.44 - 0.50              | ND-        | ND       | ND            | ND            | ND       |
| -Nitroaniline                                         |                 |         | 0.12 - 0.13                | 0,44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| Nitrophenol                                           | -               |         | 0.19 - 0.22                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| & 4-Methylpheno                                       | -               | 100     | 0.11 - 0.12                | 0.44 - 0.50              | ND         | ND       | ND            | ND<br>ND      | ND       |
| ,3'-Dichlorobenzidine                                 | _               | -       | 1.3 - 1.5                  | 2.2 - 2.5                | ND         | ND<br>ND | ND            | ND<br>ND      | ND       |
| -Ntroaniline                                          | -               | - 2     | 0.13 - 0.15                | 0.44 - 0.50<br>4.4 - 5.0 | ND<br>ND   | ND ND    | ND<br>ND      | ND<br>ND      | ND<br>ND |
| ,6-Dinitro-2-methylpheno<br>-Bromophenyl phenyl ether | =               | -2      | 1.4 - 1.5<br>0.082 - 0.070 | 0.44 - 0.50              | ND ND      | ND<br>ND | ND<br>ND      | ND<br>ND      | ND:      |
| -Chloro-3-methyloheno                                 | -               |         | 0.087 - 0.11               | 0.44 - 0.50              | ND         | ND ND    | ND            | ND ND         | ND       |
| -Chloroaniline                                        |                 |         | 0.12 - 0.13                | 0.44 - 0.50              | ND         | ND       | ND            | ND.           | ND       |
| -Chicrophenyl phenyl athe                             | _               |         | 0.080 - 0.090              | 0.44 - 0.50              | ND:        | ND ND    | ND            | ND            | ND       |
| -Nitroeniline                                         | =               |         | 0.12 - 0.13                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| -Nitrophenol                                          | _               |         | 0.13 - 0.15                | 0,44 - 0,50              | ND         | ND       | ND            | ND            | ND       |
| cenaphthena                                           |                 |         | 0.080 - 0.090              | 0.44 - 0.50              | ND.        | ND       | ND            | ND            | ND       |
| cenaphthylene                                         | -               | _       | 0,080 - 0,090              | 0,44 - 0,50              | ND         | ND       | ND            | ND            | ND       |
| niline                                                | _               | -       | 0.2 - 0.23                 | 0.44 - 0.50              | ND-        | ND       | ND            | ND            | ND       |
| nthracene                                             |                 | -       | 0,071 - 0,080              | 0,44 - 0,50              | ND         | ND       | ND            | ND            | ND       |
| zobenzene/1,2-Diphenylhydrazine                       |                 | _       | 0.088 - 0.10               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| enzidine                                              | -               | -       | 1.1 - 1.3                  | 4.4 - 5.0                | ND         | ND       | ND            | ND ND         | ND       |
| enzo(a)anthracene                                     |                 |         | 0.082 - 0.070              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| enzo(a)pyrana                                         |                 | _       | 0.071 - 0.080              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| enzo(b)fluoranthene                                   | _               | -       | 0.082 - 0.070              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| enzo(g,h,l)perylene                                   | NA              | NA      | 0.053 - 0.060              | 0.68 - 1.0               | ND         | ND       | ND            | ND            | ND       |
| enzo(k)fluoranthens                                   | _               | -       | 0.12 - 0.13                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| enzolc sold                                           | _               | _       | 1.7 - 1.9                  | 22 - 25                  | ND         | ND       | ND            | ND            | ND       |
| enzyl alcoho                                          |                 | -       | 0.12 - 0.13                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| ls(2-chloroethoxy)methana                             | -               | _       | 0.080 - 0.090              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| ls(2-chloroethyl)ether                                |                 |         | 0,097 - 0,11               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| lie(2-chloroisopropyl)ether                           | _               | (max)   | 0.12 - 0.14                | 0.44 - 0.50              | ND<br>ND   | ND<br>ND | ND<br>ND      | ND<br>ND      | ND<br>ND |
| is(2-ethylhexyl)phthalate<br>lutyl benzyl phthalate   | 260             | 910     | 0,11 - 0,12                | 0.44 - 0.50              | ND ND      | ND<br>ND | ND<br>ND      | ND ND         | ND       |
| arbazole                                              | 200             | 910     | 0,080 - 0,090              | 0,44 - 0,50              | ND         | ND       | ND            | ND            | ND       |
| hrysene                                               |                 |         | 0.080 - 0.090              | 0.44 - 0.50              | ND         | ND ND    | ND            | ND            | ND       |
| Mbenzo(a,h)anthracane                                 | 0.016           | 0.21    | 0.044 - 0.050              | 0.88 - 1.0               | ND         | ND       | ND            | ND            | ND       |
| benzofuran                                            | -               | - V.A.1 | 0.080 - 0.090              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| Methyl phthelate                                      |                 |         | 0.053 - 0.060              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| Imethyl phthalate                                     | -               | _       | 0.76 - 0.86                | 2.2 - 2.5                | ND         | ND       | ND            | ND            | ND       |
| I-n-butyl phthalate                                   | -               | -       | 0.071 - 0.060              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| I-n-octyl phthalate                                   | -               |         | 0.12 - 0.14                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| luoranthene                                           |                 | -       | 0.097 - 0.11               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| uorene                                                | _               | 1       | 0,062 - 0,070              | 0,44 - 0,50              | ND         | ND       | ND            | ND            | ND       |
| lexachlorobenzene                                     |                 | _       | 0.071 - 0.080              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| exachlorobutediene                                    |                 | -       | 0,080 - 0,090              | 0,44 - 0,50              | ND         | ND       | ND            | ND            | ND       |
| lexachlorocydopentediene                              | -               | -       | 0.11 - 0.12                | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| exachloroethane                                       |                 |         | 0.082 - 0.070              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| deno(1,2,3-od)pyrene                                  | 0.15            | 2.1     | 0.080 - 0.090              | 0.68 - 1.0               | ND         | ND       | ND            | ND            | ND       |
| ophorone                                              | -               | _       | 0,088 - 0,10               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| aphthalene                                            |                 | 100     | 0.097 - 0.11               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| trobenzene                                            |                 |         | 0.097 - 0.11               | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| Nitrosodimethylamine                                  |                 |         | 0.080 - 0.090              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| -Nitrosodi-n-propylamina                              |                 | _       | 0.080 - 0.090              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| Nitrosodiphenylamine                                  | 0.00            |         | 0.082 - 0.070              | 0.44 - 0.50              | ND         | ND       | ND            | ND            | ND       |
| entechloropheno                                       | 0.89            | 2.7     | 0.14 - 0.16                | 0.44 - 0.50              | ND         | ND       | ND            | ND<br>ND      | ND<br>ND |
| henanthrens                                           |                 |         | 0.071 - 0.080              | 0.44 - 0.50              | ND         | ND<br>ND | ND            | ND ND         | ND<br>ND |
| hend<br>yrana                                         | =               | =       | 0.13 - 0.15                | 0.44 - 0.50              | ND<br>ND   | ND       | ND<br>ND      | ND<br>ND      | ND       |
|                                                       |                 |         |                            |                          |            |          |               |               |          |

SVOC = Samivojatije Organic Compound MDL = Method Detection Limit

MRL - Method Reporting Limit

ND = indicated constituents not detected; below method detection limit

mg/kg = militerame per kilogram J = Analyte detected. However, concentration is an estimated value, between the MDL and the MRL RSLs = Regional Screening Levels

NA = Information not available



| Europe.                                 | RSLa SO            | (mg/top) | 1                          | Sumple (C:  | 975-7     | 329-1     | EZIG          | 230-1    | E11-7    |
|-----------------------------------------|--------------------|----------|----------------------------|-------------|-----------|-----------|---------------|----------|----------|
| SMOCIA                                  | Resident           | Comm./   | 100                        | Date:       | E/20/2013 | Carrier . | Concentration | 6/200011 | SOURCE.  |
| 2,4-Trichlorobenzene                    | RESERVATION OF THE | Indust   | 0,080 - 0,090              | 0,44 - 0,50 | ND        | ND        | ND            | (mg/kg)  | ND.      |
| 2-Dichlorobenzene                       | -                  | -        | 0.097 - 0.11               | 0.44 - 0.50 | ND        | ND        | ND ND         | ND       | ND       |
| 3-Dichforobenzene                       | _                  | _        | 0.071 - 0.080              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| 4-Dichlorobenzene                       |                    | -        | 0.11 - 0.12                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| 4.5-Trichlorophenol                     | -                  | _        | 0.097 - 0.11               | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| 4,6-Trichlorophenol                     | -                  | -        | 0.097 - 0.11               | 0.44 - 0.50 | ND        | ND        | ND.           | ND       | ND       |
| 4-Dichloropheno                         | -                  | -        | 0.12 - 0.13                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| 4-Dimethylpheno                         | =                  | _        | 0.11 - 0.12                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| 4-Dinitropheno                          |                    |          | 3.4 - 3.8                  | 22 - 25     | ND        | ND        | ND            | ND       | ND       |
| 4-Dinitrotoluene                        | -                  |          | 0,088 - 0,10               | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| 8-Dinitrotoluene                        |                    | -        | 0.071 - 0.080              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| -Chicronaphthalene                      | _                  | _        | 0,071 - 0,080              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| -Chloropheno                            |                    | _        | 0.088 - 0.10               | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| Methylnaphthalens                       | _                  | _        | 0,080 - 0,090              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| Methylpheno                             | -                  | And .    | 0.11 - 0.12                | 0.44 - 0.50 | ND.       | ND        | ND            | ND       | ND       |
| Ntroaniline                             |                    |          | 0.12 - 0.13                | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| Nitrophenol                             | -                  | -        | 0.19 - 0.22                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| & 4-Methylpheno                         | -                  | -        | 0.11 - 0.12                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| 3'-Dichlorobenzidine                    | -                  | -        | 1.3 - 1.5                  | 2.2 - 2.5   | ND        | ND        | ND            | ND       | ND       |
| -Nitroaniline                           | -                  | -        | 0.13 - 0.15                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| 8-Dinitro-2-methylpheno                 | -                  | _        | 1.4 - 1.5<br>0.082 - 0.070 | 4.4 - 5.0   | ND        | ND<br>ND  | ND            | ND<br>ND | ND       |
| Stomophenyl phenyl ether                | -                  | -2       |                            | 0.44 - 0.50 | ND ND     | ND<br>ND  | ND<br>ND      | ND<br>ND | ND       |
| -Chioro-3-methylpheno<br>-Chioroaniline | ==                 | _=       | 0.097 - 0.11               | 0.44 - 0.50 | ND<br>ND  | ND ND     | ND            | ND ND    | ND<br>ND |
| Chicrophenyl phenyl athe                |                    |          | 0.080 - 0.090              | 0.44 - 0.50 | ND:       | ND        | ND            | I ND     | ND       |
| -Nitroeniline                           |                    |          | 0.12 - 0.13                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| Nitrophenol                             | =                  |          | 0,13 - 0,15                | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| cenaphthene                             | _                  |          | 0.080 - 0.090              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| cenaphthylene                           | -                  | -        | 0,080 - 0,090              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| niline                                  |                    | -        | 0.2 - 0.23                 | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| nthracene                               | _                  | -        | 0,071 - 0,080              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| zobenzene/1,2-Diphenylhydrazine         |                    | _        | 0.088 - 0.10               | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| enzidine                                | -                  | Asset .  | 1.1 - 1.3                  | 4.4 - 5.0   | ND        | ND        | ND            | I ND     | ND       |
| enzo(a)anthracene                       |                    |          | 0.082 - 0.070              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| enzo(a)pyrene                           | _                  |          | 0.071 - 0.080              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| enzo(b)fluoranthene                     | _                  | _        | 0.082 - 0.070              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| enzo(g,h,l)perylene                     | NA                 | NA       | 0.053 - 0.060              | 0.88 - 1.0  | ND        | 0.12J     | ND            | ND       | ND       |
| enzo(k)fluoranthene                     | -                  | _        | 0.12 - 0.13                | 0.44 - 0.50 | - ND      | ND        | ND            | ND       | ND       |
| enzolc acid                             | _                  | _        | 1.7 - 1.9                  | 22 - 25     | ND        | ND        | ND            | ND       | ND       |
| enzyl alcoho                            | :-                 | -        | 0.12 - 0.13                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| ls(2-chloroethoxy)methana               | -                  | -        | 0.080 - 0.090              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| ls(2-chloroethyl)ether                  | _                  | _        | 0,097 - 0,11               | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| is(2-chloroisopropyl)ether              | _                  | (mail    | 0.12 - 0.14                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| ls(2-ethylhexyl)phthalate               | _                  |          | 0,11 -0,12                 | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| utyl benzyl phthelate                   | 260                | 910      | 0.13 - 0.15                | 0.44 - 0.50 | 0.29J     | ND        | ND            | ND       | ND       |
| arbazole                                |                    |          | 0,080 - 0,090              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| hrysene                                 | 0.045              | 0.04     | 0.080 - 0.090              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| benzo(a,h)anthracane                    | 0.016              | 0.21     | 0.044 - 0.050              | 0.88 - 1.0  | ND        | ND<br>ND  | ND<br>ND      | ND<br>ND | ND       |
| ibenzofuran<br>lethyi phthelate         | =                  | ==       | 0.080 - 0.090              | 0.44 - 0.50 | ND<br>ND  | ND        | ND            | ND<br>ND | ND<br>ND |
| Imethyl phthalate                       | _                  |          | 0.78 - 0.86                | 2.2 - 2.5   | ND        | ND        | ND ND         | ND ND    | ND       |
| I-n-butyl phthalate                     |                    |          | 0.071 - 0.080              | 0.44 - 0.50 | ND        | ND        | ND ND         | ND       | ND ND    |
| In-octyl phthalate                      | _                  |          | 0.12 - 0.14                | 0.44 - 0.50 | ND        | ND        | ND ND         | ND       | ND       |
| notatitude                              | -                  |          | 0.097 - 0.11               | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| nousual                                 | =                  | _        | 0,062 - 0,070              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| exachlorobenzene                        | _                  | =        | 0.071 - 0.080              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| exachlorobutadiene                      |                    | _        | 0,080 - 0,090              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| pachlorocydopentediene                  | -                  | -        | 0.11 - 0.12                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| exachloroethane                         |                    | _        | 0,062 - 0,070              | 0,44 - 0,50 | ND        | ND        | ND            | ND       | ND       |
| deno(1,2,3-cd)pyrene                    | 0.15               | 2.1      | 0.080 - 0.090              | 0.68 - 1.0  | ND        | 0.17J     | ND            | ND       | ND       |
| phorone                                 | -                  | _        | 0,088 - 0,10               | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| phthalene                               | -                  |          | 0.097 - 0.11               | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| trobenzene                              |                    |          | 0.097 - 0.11               | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| Nitrosodimethylamine                    |                    | -        | 0.080 - 0.090              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| Nitrosodi-n-propylamina                 |                    | _        | 0.080 - 0.090              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| Nitrosodiphenylamine                    |                    |          | 0.082 - 0.070              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| entechloropheno                         | 0.89               | 2.7      | 0.14 - 0.16                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| henanthrens                             |                    |          | 0.071 - 0.080              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| hend                                    | -                  | -        | 0.13 - 0.15                | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| yrene                                   | _                  | _        | 0,071 - 0,080              | 0.44 - 0.50 | ND        | ND        | ND            | ND       | ND       |
| yridina                                 | -                  | _        | 0.044 - 0.050              | 0.88 - 1.0  | ND        | ND        | ND            | ND       | ND       |

SVOC = Samivojatije Organic Compound MDL = Method Detection Limit

MRL - Method Reporting Limit

ND = indicated constituents not detected; below method detection limit

mg/kg = militerame per kilogram J = Analyte detected. However, concentration is an estimated value, between the MDL and the MRL RSLs = Regional Screening Levels

NA = Information not available



| Voca                                             | -        | Pampie ID:<br>Date: | MODEL T    | 836-9<br>4/25/2017 | #200-17<br>#200-013 | 808-51<br>47:34:2013 |
|--------------------------------------------------|----------|---------------------|------------|--------------------|---------------------|----------------------|
| by EPA Method 62006                              | 1100     | POL:                | - Property | VOC Concent        | ration (unika)      | 7507407              |
| catona                                           | 32       | 160                 | ND         | ND ND              | ND ND               | ND                   |
| rt-Arnyl methyl ether (TAME)                     | 23       | 115                 | ND         | ND                 | ND                  | ND                   |
| enzene                                           | 28       | 130                 | ND         | ND                 | ND                  | ND                   |
| romobenzene                                      | 26       | 130                 | ND         | ND                 | ND                  | ND                   |
| romochioromethane                                | 24       | 120                 | ND         | ND                 | ND                  | ND                   |
| romodichioramethane                              | 22       | 110                 | ND         | ND                 | ND                  | ND                   |
| romoform                                         | 23       | 115                 | ND         | ND                 | ND                  | ND                   |
| romomethane                                      | 20       | 100                 | ND         | ND                 | ND                  | ND                   |
| lethyl ethyl ketone (MEK)                        | 26       | 130                 | ND         | ND                 | ND                  | ND                   |
| nt-Butyl alcohol (TBA)                           | 373      | 1865                | ND         | ND                 | ND                  | ND                   |
| utybenzene                                       | 29       | 145                 | ND         | ND<br>ND           | ND                  | ND.                  |
| ec-Butylbenzene<br>et-Butylbenzene               | 27<br>29 | 135<br>145          | ND<br>ND   | ND ND              | ND<br>ND            | ND<br>ND             |
| rt-Butyl athyl ather (ETBE)                      | 20       | 100                 | ND         | ND                 | ND                  | ND ND                |
| arbon deutide                                    | 116      | 580                 | ND ND      | ND                 | ND                  | ND.                  |
| arbon Tetrachloride                              | 32       | 180                 | ND         | ND                 | ND                  | ND                   |
| hlorobenzene                                     | 28       | 140                 | ND         | ND                 | ND                  | ND                   |
| hloroethane                                      | 42       | 210                 | ND         | ND ND              | ND                  | ND                   |
| Chloroethyl vinyl ether                          | 23       | 115                 | ND         | ND                 | ND                  | ND                   |
| hioroform                                        | 30       | 150                 | ND         | ND                 | ND                  | ND                   |
| hioromethane                                     | 70       | 350                 | ND         | ND                 | ND                  | ND                   |
| Chlorotoluene                                    | 27       | 135                 | ND         | ND                 | ND                  | ND                   |
| -Chloroto Juene                                  | 28       | 140                 | ND         | ND                 | ND                  | ND                   |
| bromochloromethane                               | 25       | 125                 | ND         | ND                 | ND                  | ND                   |
| 2-Dibromo-3-chloropropane                        | 31       | 155                 | ND         | ND                 | ND                  | ND                   |
| 2-Dibromoethane (EDB)                            | 23       | 115                 | ND         | ND                 | ND                  | ND                   |
| ibromomethane                                    | 33       | 165                 | ND         | ND                 | ND                  | ND                   |
| 2-Dichlorobenzene                                | 27       | 135                 | ND         | ND                 | ND                  | ND                   |
| 3-Dichlorobenzene                                | 27       | 135                 | ND         | ND                 | ND                  | ND                   |
| 4-Dichlorobenzene<br>Ichlorodifluoromathane      | 33       | 165<br>185          | ND<br>ND   | ND<br>ND           | ND<br>ND            | ND<br>ND             |
| 1-Dichloroethane                                 | 29       | 145                 | ND ND      | ND ND              | ND                  | ND                   |
| 2-Dichloroethane                                 | 22       | 110                 | ND         | ND                 | ND ND               | ND ND                |
| 1-Dichloroethens                                 | 28       | 140                 | ND         | ND                 | ND                  | ND                   |
| -1,2-Dichloroethene                              | 28       | 130                 | ND         | ND                 | ND                  | ND                   |
| ans-1,2-Dichloroethene                           | 32       | 160                 | ND         | ND                 | ND                  | ND                   |
| 2-Dichloropropane                                | 22       | 110                 | ND         | ND                 | ND                  | ND                   |
| 3-Dichloropropane                                | 21       | 105                 | ND         | ND                 | ND                  | ND                   |
| 2-Dichloropropane                                | 38       | 190                 | ND         | ND                 | ND                  | ND                   |
| 1-Dichloropropene                                | 27       | 135                 | ND         | ND                 | ND                  | ND                   |
| s-1,3-Dichloropropene                            | 26       | 130                 | ND         | ND                 | ND                  | ND                   |
| ans-1,3-Dichloropropene                          | 29       | 145                 | ND         | ND                 | ND                  | ND                   |
| iisopropyl ether (DIPE)                          | 26       | 130                 | ND         | ND                 | ND                  | ND                   |
| thylbenzene                                      | 30       | 150                 | ND         | ND                 | ND                  | ND                   |
| exachiorobutadiene                               | 44       | 220                 | ND         | ND                 | ND                  | ND                   |
| Hexanone                                         | 21       | 105                 | ND         | ND                 | 20                  | ND                   |
| opropylbenzene                                   | 33       | 165                 | ND         | ND<br>ND           | ND ND               | ND                   |
| -laopropyttoluene<br>lethyl-t-butyl ather (MTBE) | 28       | 140                 | ND<br>ND   | ND<br>ND           | ND<br>ND            | ND<br>ND             |
| ethylene chloride                                | 31       | 155                 | ND ND      | ND.                | ND<br>ND            | ND<br>ND             |
| lethyl iodine (lodomethane)                      | 20       | 100                 | ND<br>ND   | ND ND              | ND<br>ND            | ND ND                |
| Methyl-2-pentanone (MIBK)                        | 19       | AE I                | ND         | ND                 | ND                  | ND.                  |
| aphthalana                                       | 30       | 150                 | ND         | ND                 | ND                  | ND                   |
| ropylbanzane                                     | 30       | 150                 | ND         | ND                 | ND                  | ND                   |
| tyrene (Phenylethylene)                          | 33       | 165                 | ND         | ND                 | ND                  | ND                   |
| 1,1,2-Tetrachloroethane                          | 23       | 115                 | ND         | ND                 | ND                  | ND                   |
| 1,2,2-Tetrachloroethane                          | 40       | 200                 | ND         | ND                 | ND                  | ND                   |
| etrachioroethylene (PCE)                         | 27       | 135                 | ND         | ND                 | ND                  | ND                   |
| pluens                                           | 25       | 125                 | ND         | ND                 | ND                  | ND                   |
| 2,3-Trichlorobenzene                             | 29       | 145                 | ND         | ND                 | ND                  | ND                   |
| 2,4-Trichlorobenzene                             | 31       | 155                 | ND         | ND                 | ND                  | ND                   |
| 1,1-Trichkoroethane                              | 26       | 130                 | ND         | ND                 | ND                  | ND                   |
| 1,2-Trichloroethane                              | 23       | 115                 | ND         | ND                 | ND                  | ND                   |
| richtoroethylene (TCE)                           | 24       | 120                 | ND         | ND                 | ND                  | ND                   |
| richlorofiuoromethane                            | 35       | 175                 | ND         | ND                 | ND                  | ND                   |
| 2,3-Trichloropropane                             | 22       | 110                 | ND         | ND                 | ND                  | ND                   |
| 2,4-Trimethylbenzene                             | 25       | 125                 | ND         | ND                 | ND                  | ND                   |
| 3,5-Trimethylbenzene                             | 28       | 140                 | ND         | ND                 | ND                  | ND                   |
| Inyl acetate                                     | 52       | 260                 | ND         | ND                 | ND                  | ND                   |
| Inyl Chloride                                    | 36       | 180                 | ND         | ND                 | ND                  | ND                   |
| n & p-Xylene<br>-Xylene                          | 75<br>28 | 375<br>140          | ND<br>ND   | ND                 | ND<br>ND            | ND<br>ND             |

NOTES:

VOC = Voletile Organic Compound

MDL = Method Detection Limit

PQL = Practical Quentitation Limit

ND = Indicated constituents not detected; below method detection limit

µg/kg = micrograms per kilogram



| Voca                          | -         | Sample ID:<br>Date: | MODULET 3 | 4/39/2013  | 8/20/2015       | 27,002,013 |  |
|-------------------------------|-----------|---------------------|-----------|------------|-----------------|------------|--|
| by EPA Method 62005           | MDL: POL: |                     |           | VDC Concen | tration (µg/kg) |            |  |
| cetone                        | 32        | 160                 | ND        | ND         | ND I            | ND         |  |
| ert-Armyl methyl ether (TAME) | 23        | 115                 | ND        | ND         | ND              | ND         |  |
| lanzane                       | 28        | 130                 | ND        | ND         | ND              | ND         |  |
| Iromobenzene                  | 26        | 130                 | ND        | ND         | ND              | ND         |  |
| romochioromethane             | 24        | 120                 | ND        | ND         | ND              | ND         |  |
| iromodichioramethane          | 22        | 110                 | ND        | ND         | ND              | ND         |  |
| romoform                      | 23        | 115                 | ND        | ND         | ND              | ND         |  |
| Promomethane                  | 20        | 100                 | ND        | ND         | ND              | ND         |  |
| fethyl ethyl ketone (MEK)     | 26        | 130                 | ND        | ND         | ND              | ND         |  |
| ert-Butyl alcohol (TBA)       | 373       | 1865                | ND        | ND         | ND              | ND         |  |
| lulybenzene                   | 29        | 145                 | ND        | ND         | ND              | ND         |  |
| ec-Bulylbenzene               | 27        | 135                 | ND        | ND         | ND              | ND         |  |
| ort-Butylbenzene              | 29        | 145                 | ND        | ND         | ND              | ND         |  |
| ort-Butyl ethyl ether (ETBE)  | 20        | 100                 | ND        | ND         | ND              | ND ND      |  |
| arbon disulfida               | 116       | 580                 | ND        | ND         | ND              | ND         |  |
| Carbon Tetrachlorida          | 32        | 180                 | ND        | ND         | ND              | ND         |  |
| hlorobenzene                  | 28<br>42  | 140                 | ND        | ND         | ND<br>ND        | ND         |  |
| Chloroethane                  | 23        | 210                 | ND        | ND         |                 | ND         |  |
| -Chloroethyl vinyl ether      | 30        | 115<br>150          | ND<br>ND  | ND<br>ND   | ND<br>ND        | ND<br>ND   |  |
| Chloroform<br>Chloromethane   | 70        | 350                 | ND<br>ND  | ND ND      | ND              | ND ND      |  |
| -Chlorotoluene                | 27        | 135                 | ND<br>ND  | ND ND      | ND<br>ND        | ND<br>ND   |  |
| -ChlorotoJuene                | 28        | 140                 | ND        | ND ND      | ND              | ND ND      |  |
| Obromochloromethane           | 25        | 125                 | ND        | ND         | ND ND           | ND ND      |  |
| .2-Dibromo-3-chloropropane    | 31        | 155                 | ND<br>ND  | ND<br>ND   | ND ND           | ND         |  |
| ,2-Dibromoethane (EDB)        | 23        | 115                 | ND        | ND         | ND              | ND         |  |
| Dibromomethane                | 33        | 165                 | ND        | ND         | ND              | ND         |  |
| ,2-Dichlorobenzene            | 27        | 135                 | ND        | ND         | ND ND           | ND         |  |
| ,3-Dichlorobenzene            | 27        | 135                 | ND        | ND         | ND              | ND         |  |
| .4-Dichlorobenzene            | 33        | 185                 | ND        | ND         | ND              | ND         |  |
| Ochlorodifluoromethene        | 37        | 185                 | ND        | ND         | ND              | ND         |  |
| .1-Dichloroethene             | 29        | 145                 | ND        | ND         | ND              | ND         |  |
| .2-Dichloroethane             | 22        | 110                 | ND        | ND         | ND              | ND         |  |
| ,1-Dichlorosthene             | 28        | 140                 | ND        | ND         | ND              | ND         |  |
| is-1,2-Dichloroethene         | 26        | 130                 | ND        | ND         | ND              | ND         |  |
| rans-1,2-Dichloroethene       | 32        | 180                 | ND        | ND         | ND              | ND         |  |
| ,2-Dichloropropene            | 22        | 110                 | ND        | ND         | ND              | ND         |  |
| ,3-Dichloropropane            | 21        | 105                 | ND        | ND         | ND              | ND         |  |
| ,2-Dichloropropane            | 38        | 190                 | ND        | ND         | ND              | ND         |  |
| ,1-Dichloropropene            | 27        | 135                 | ND        | ND         | ND              | ND         |  |
| is-1,3-Dichloropropene        | 26        | 130                 | ND        | ND         | ND              | ND         |  |
| rana-1,3-Dichloropropene      | 29        | 145                 | ND        | ND         | ND              | ND         |  |
| Disopropyl ether (DIPE)       | 28        | 130                 | ND        | ND         | ND              | ND         |  |
| thylbenzene                   | 30        | 150                 | ND        | ND         | ND              | ND         |  |
| lexachiorobutadiene           | 44        | 220                 | ND        | ND         | ND              | ND         |  |
| Hexanone                      | 21        | 105                 | ND        | ND         | ND              | ND         |  |
| sopropylberizene              | 33        | 185                 | ND        | ND         | ND              | ND         |  |
| -laopropylitoluene            | 28        | 140                 | ND        | ND         | ND              | ND         |  |
| fethyl-t-butyl ether (MTBE)   | 23        | 115                 | ND        | ND         | ND              | ND         |  |
| fethylene chloride            | 31        | 155                 | ND        | ND         | ND              | ND         |  |
| Methyl iodine (lodomethane)   | 20        | 100                 | ND        | ND         | ND              | ND         |  |
| -Methyl-2-pentanone (MIBK)    | 19        | 95                  | ND        | ND         | ND              | ND         |  |
| laphthalene                   | 30        | 150                 | ND        | ND         | ND              | ND         |  |
| ropylbenzene                  | 30        | 150                 | ND        | ND         | ND              | ND         |  |
| tyrene (Phenylethylene)       | 33<br>23  | 165<br>115          | ND<br>ND  | ND<br>ND   | ND<br>ND        | ND         |  |
| 1,1,2-Tetrachloroethane       |           | 200                 |           |            |                 | ND ND      |  |
| 1,2,2-Tetrachloroethane       | 27        | 135                 | ND<br>ND  | ND<br>ND   | ND<br>ND        | ND<br>ND   |  |
| etrachloroethylene (PCE)      | 25        | 125                 | ND<br>ND  | ND ND      | ND ND           | ND         |  |
| ,2,3-Trichlorobenzene         | 28        | 145                 | ND        | ND         | ND              | ND         |  |
| ,2,4-Trichlorobenzene         | 31        | 155                 | ND        | ND         | ND              | ND<br>ND   |  |
| ,1,1-Trichloroethane          | 26        | 130                 | ND        | ND         | ND              | ND         |  |
| ,1,2-Trichlorosthane          | 23        | 115                 | ND        | ND         | ND ND           | ND         |  |
| richloroethylene (TCE)        | 24        | 120                 | ND        | ND         | ND              | ND         |  |
| richlorofiuoromethane         | 35        | 175                 | ND        | ND         | ND ND           | ND         |  |
| ,2,3-Trichloropropane         | 22        | 110                 | ND        | ND         | ND ND           | ND         |  |
| ,2,4-Trimethylbenzene         | 25        | 125                 | ND        | ND         | ND              | ND         |  |
| ,3,5-Trimethylbenzene         | 28        | 140                 | ND        | ND         | ND              | ND         |  |
| /inyl acetate                 | 52        | 280                 | ND        | ND         | ND              | ND         |  |
| /Inyl Chloride                | 36        | 180                 | ND        | ND         | ND ND           | ND         |  |
| n & p-Xylene                  | 75        | 375                 | ND        | ND         | ND              | ND         |  |
| -Xylana                       | 28        | 140                 | ND        | ND         | ND              | ND         |  |

### NOTES:

VOC = Voletile Organic Compound
MDL = Method Detection Limit
PQL = Practical Quentitation Limit
ND = Indicated constituents not detected; below method detection limit
µg/kg = micrograms per kijogram



| VIOCar by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHHBL     |        | Sample (D: | Abiri    | VPI-15    | VP7-5   | VPT11    | VP3-E          | VPS-18 1P | VP3-1E 3P | VP3-15 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|------------|----------|-----------|---------|----------|----------------|-----------|-----------|----------|
| EPA Memod \$250S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Berthers  | Commi  | Outo:      | BAGN 3   | BANCON 18 | MAJ2013 | SARO I I | trations (µg/L | BARGE18   | 8/A/2015  | B/A/EP/1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resident. | Indust | 0.008      | MPs      | MB        |         |          |                |           | NIP       | NIP      |
| lanzene<br>Iromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |        | 0.008      | ND       | ND<br>ND  | ND      | ND<br>ND | ND<br>ND       | ND<br>ND  | ND<br>ND  | ND<br>ND |
| romoperzene<br>Fromodichioromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _         | _      | 0.008      | ND<br>ND | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| A STATE OF THE STA | _         |        | 0.008      |          |           | ND      |          | ND             | ND        | ND        | ND       |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |        |            | ND       | ND        |         | ND       |                | ND ND     |           |          |
| -Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |        | 800.0      | ND       | ND        | ND      | ND       | ND             |           | ND        | ND       |
| ec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| ert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Carbon tetrachioride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.083     | 0.21   | 0.008      | ND       | ND        | ND      | ND       | ND             | 0.033     | 0.014     | 0.029    |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _         |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _         | _      | 0.000      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA        | NA     | 800.0      | ND       | ND        | ND      | ND       | 0.316          | 0.896     | 0.81      | 0.872    |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _         |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |        | 800.0      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 4-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _         |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| ,2-Dibromoethana (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         | _      | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Dibromomethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -         | -      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,2- Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·         | N-5    | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -      | 800.0      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _         |        | 800.0      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -         | 1      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA        | NA     | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| dis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | j      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 1      | 800.0      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | į      | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _         | j      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,1-Dichloropropens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| da-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         | 1 0-0  | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | _      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Freon 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA        | NA     | 0.008      | 2.82     | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _         | -      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| sopropylbanzana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 4-Isopropyttoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Naphthalens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _         |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,1,2,2-Tetrachioroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -         | _      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.47      | 1.6    | 0.008      | ND       | ND        | ND      | ND       | 0.089          | 0.057     | 0.048     | 0.064    |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _         | _      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,1,2-Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _         |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND.      |
| Frichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3       | 4.4    | 0.000      | ND       | ND        | ND      | ND       | 2.26           | 2.83      | 2.55      | 2.89     |
| Inchlorefluoremethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -         |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,2,3-Trichloropropana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| ,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _         |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| /inyl chlorids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -         |        | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | _      | 0.008      |          | ND        | 1000    | ND       |                |           |           |          |
| Kylenes<br>MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -      | 0,008      | ND       |           | ND      |          | ND             | ND        | ND        | ND<br>ND |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         | _      |            | ND       | ND        | ND      | ND       | ND             | ND ND     | ND        | ND       |
| Ethyl-tert-butylether (ETBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | -      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| OHsopropylether (DIPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         | -      | 0.008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| ert-amylmethylether (TAME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _         |        | 0,008      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |
| ert-Butylalcohol (TBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         | _      | 0.040      | ND       | ND        | ND      | ND       | ND             | ND        | ND        | ND       |

NOTES: Volatile Organic Compound
PQLs = Precital Quertilistics Limits
ND = Not Detected Above the PQL
P = Purge Volume
RBP = replicate

µg/L = micrograme per liter
NA = information not available
— Not applicable
"Cell formis Human Health Screening Levels (CHHSLs) for residential and commercial estings
are provided for detected concentrations of VOCs



| y OCar by                                            | CHHBL     |          | Simple (D:<br>Outo: | VF4-8                                          | VF4-18                                            | HAA.                                           | UPS-4E                                         | A-States                        | Maria 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VP7-6<br>8/4/2013 | NPT II    |
|------------------------------------------------------|-----------|----------|---------------------|------------------------------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| EHA Warmed \$2606                                    | Resident. | foodust. | POL:                | (HA)                                           | (I/A)                                             |                                                | VOC Concen                                     | The second second second second | The second secon | 9/4/01/5          | 145.45.50 |
| enzene                                               |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| romobenzene                                          |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Promodichioromethane                                 |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Bromoform                                            |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| -Butylbenzene                                        |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ec-Butylbenzene                                      |           | _        | 0,008               |                                                |                                                   |                                                | 9                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| art-Butylbenzene                                     |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Carbon tetrachioride                                 | 0.083     | 0.21     | 0.008               |                                                |                                                   |                                                | 1                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | 0.035     |
| hlorobenzene                                         | _         |          | 0,000               |                                                |                                                   |                                                | 1 3                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Chloroethane                                         |           |          | 0.000               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Chloroform                                           | NA        | NA       | 0.008               |                                                |                                                   |                                                | 1 9                                            | ND                              | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.022             | 0.363     |
| Chloromethane                                        | _         |          | 0,008               |                                                |                                                   |                                                | - 5                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| -Chiorotoluene                                       | _         |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| I-Chlorotoluene                                      |           |          | 0.008               |                                                |                                                   |                                                | 9                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Dibromochloromethane                                 |           |          | 0.008               |                                                |                                                   |                                                | 9                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2-Dibromo-3-chloropropane                           | _         |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2-Dibromoethane (EDB)                               |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Dibromomethane                                       |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2- Dichlorobenzene                                  |           |          | 0.008               |                                                | ,34                                               |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,3-Dichlorobenzene                                   |           |          | 0.008               | 60                                             | 100                                               | 107                                            | 646                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| .4-Dichlorobenzene                                   |           |          | 800.0               | SAMPLE COLLECTED - PROBE LOCATION INACCESSIBLE | NO SAMPLE COLLECTED - PROBE LOCATION INACCESSIBLE | SAMPLE COLLECTED - PROBE LOCATION INACCESSIBLE | SAMPLE COLLECTED - PROBE LOCATION INACCESSIBLE | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Dichlorodifluoromethane                              | _         |          | 0.008               | - E                                            | - S                                               | 65                                             | 5                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,1-Dichloroethane                                    |           |          | 800,0               | est<br>UL                                      | 80                                                | - E                                            | 87<br>W                                        | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2-Dichloroethane                                    | _         |          | 0.008               | Ö                                              | ᇊ                                                 | g                                              | 5                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,1-Dichloroethene                                    | NA        | NA       | 0,008               | š                                              | ₹                                                 | š                                              | 3                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| is-1.2-Dichloroethene                                |           |          | 0.008               | 5                                              | 5                                                 | 5                                              | 5                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| rens-1,2-Dichloroethene                              |           |          | 0.008               | Q                                              | Q I                                               | Q                                              | Q                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| .2-Dichloropropane                                   |           |          | 0.008               | 5                                              | 5                                                 | - E                                            | 5                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,3-Dichloropropane                                   |           |          | 0.008               | Ž.                                             | 2                                                 | Q                                              | 2                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| 2.2-Dichloropropane                                  |           |          | 0.008               | 3                                              | 2                                                 | 3                                              | 3                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,1-Dichloropropens                                   |           |          | 0,008               | 监                                              | H H                                               | #                                              | 80                                             | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ala-1,3-Dichloropropene                              | -         | -        | 0.008               | Ö                                              | 2                                                 | 8                                              | 2                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| rans-1,3-Dichloropropene                             |           |          | 0.008               | <u>a</u>                                       | a                                                 | ā                                              | 2                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Ethylbenzene                                         | _         |          | 0,008               | ó                                              | á                                                 | 9                                              | á                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| reon 113                                             | NA        | NA       | 0.008               | 2                                              | 쁘                                                 | 2                                              | <b>H</b>                                       | 0.651                           | 0.964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                | 0.067     |
| lexachlorobutadiene                                  | _         | _        | 0.008               | 22                                             | B                                                 | 2                                              | <u> </u>                                       | ND.                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| sopropyibanzana                                      | _         |          | 0.008               | 103                                            | 3                                                 | 1                                              | 1                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| 1-isopropyttoluene                                   | -         | -        | 0.008               | 8                                              | 8                                                 | 8                                              | 8                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Methylene chloride                                   |           |          | 0,008               | щ                                              | щ                                                 | щ                                              | щ                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Vaphthalene                                          |           |          | 0.008               | ₫                                              | _ ₫                                               | 五                                              | ₫                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| 1-Propylbenzene                                      |           |          | 0.008               | 2                                              | 4                                                 | -                                              | - 2                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Styrene                                              |           |          | 0.008               | us.                                            | 60                                                |                                                | w C                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| 1,1,1,2-Tetrachioroethane                            |           |          | 0.008               | 오                                              | ž                                                 | 옾                                              | 2                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| 1.1.2.2-Tetrachloroethane                            |           |          | 0.008               |                                                | 7.0                                               |                                                | 1.5                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Tetrachioroethylene (PCE)                            | 0.47      | 1.6      | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Toluene                                              | -         | 148      | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2,3-Trichlorobenzene                                |           |          | 0.008               |                                                |                                                   |                                                | 1 4                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2,4-Trichlorobenzene                                | _         |          | 0.008               |                                                |                                                   |                                                | . 4                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,1,1-Trichloroethane                                 |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,1,2-Trichloroethane                                 | =         |          | 0,008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| richloroethylene (TCE)                               | 1.3       | 4.4      | 800.0               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| richiorofluoromethane                                | -         | -        | 0.008               |                                                |                                                   |                                                | 1                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2,3-Trichloropropane                                |           |          | 0.008               |                                                |                                                   |                                                | 1 1 9                                          | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,2,4-Trimethylbenzene                                |           |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| ,3,5-Trimethylbenzene                                |           |          | 0.008               |                                                |                                                   |                                                | 4                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| /inyl chlorids                                       |           |          | 0.008               |                                                |                                                   |                                                | 1 4                                            | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Vienes                                               | _         |          | 0.008               |                                                |                                                   |                                                | 4                                              | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| MTBE.                                                |           |          | 0.008               |                                                |                                                   |                                                | 4                                              | ND                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |
|                                                      | _         | _        |                     |                                                |                                                   |                                                |                                                |                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| Ethyl-tert-butylether (ETBE)  DHsopropylether (DIPE) | _         | -        | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| PHSopropylemer (DIPE) art-armylmethylether (TAME)    | -         |          | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |
| BICBUTHITHUMBUTAL (IAME)                             | _         | _        | 0.008               |                                                |                                                   |                                                |                                                | ND                              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                | ND        |

### NOTES:

NOTER:

VOC = Volatile Organic Compound

PQLs = Precitat Quartilation Limits

ND = Not Detected Above the PQL

P = Purgs Volume

REP = replicate

µgL = inforquence per liter

NA = information not available

— Not applicable

"California Human Health Screening Levels (CHHSLs) for residential and commercial estillings
are provided for detected concentrations of VOCs



| YOCalby<br>EPA Warned \$7608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elition.  | (ug/L)                                  | Sample ID: | VP9-6  | NAMES OF THE REAL PROPERTY. | VPS4     | VPG-E REF   | VPS-16        | MP 0-6  | VPIBAS    | MP114    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|------------|--------|-----------------------------|----------|-------------|---------------|---------|-----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Broddon   | Indust.                                 | POL:       | BAGD18 | MANAGERIN                   | BM/2013  | VOC Concent | Millery Frank | BANDOTS | Statement | BIESEN'S |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Resident. | 111111111111111111111111111111111111111 | 0.008      | ND     | ND                          | ND       | ND ND       | ND ND         | ND      | ND        | ND       |
| Iromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =         |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Fromodichioromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND ND         | ND      | ND        | ND       |
| romoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| -Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =         |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| ec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         | 0.008      | ND     | ND                          |          | ND          | ND            | ND      | ND        | ND       |
| THE RESERVE OF THE PARTY OF THE | _         | _                                       | 0.008      | ND     | ND                          | ND<br>ND | ND          | ND ND         | ND      | ND        | ND       |
| ert-Butylbenzene<br>Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 0.04                                    | 0.008      | ND     | 0.017                       |          | ND          | ND ND         | ND      | ND        | ND       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.083     | 0.21                                    | 0.008      |        | ND                          | ND       | ND          | ND            |         |           |          |
| hlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _         | -                                       |            | ND     |                             | ND       |             |               | ND      | ND        | ND       |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | - No                                    | 0.000      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA        | NA                                      | 800.0      | 0.163  | 0.454                       | ND       | ND          | ND            | ND      | ND        | ND       |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _         | -                                       | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                                         | 800.0      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| I-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _         |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,2-Dibromoethane (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _         | _                                       | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -         |                                         | 800.0      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,2- Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | - C                                     | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | -                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         | 800.0      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -         | -                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA        | NA                                      | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         | _                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _         | 1                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·         |                                         | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | 1                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         | ĺ                                       | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -         |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 1                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _         |                                         | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Freon 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA     | NA                                      | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| -lexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _         | -                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| sopropylbanzana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 4-isopropyttoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Wathylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Vaphthalens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100       | -                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 7-1                                     | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _         | -                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Tetrachioroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.47      | 1.6                                     | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Foluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| ,1,2-Trichlomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -         |                                         | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| richloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3       | 4.4                                     | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| richiorefluoremethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _         |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| ,2,3-Trichloropropana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| ,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Vinyl chlorids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| (ylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _         |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =         |                                         | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| Ethyl-tert-butylether (ETBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                         | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| OHsopropylether (DIPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -         | _                                       |            |        |                             |          | 719         | -             |         |           | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _                                       | 0.008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| ert-amylmethylether (TAME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _         |                                         | 0,008      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |
| ert-Butylalcohol (TBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         | _                                       | 0.040      | ND     | ND                          | ND       | ND          | ND            | ND      | ND        | ND       |

NOTES: Volatile Organic Compound
PQLs = Precital Quartilistics Limits
ND = Not Detected Above the PQL
P = Purge Volume
RBP = replicate

ug/L = micrograme per liter
NA = information not evaluable
— Not explaints
"Cell form



| y CCar by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHHBL      |                 | Sample (D: | VP11-1E  | VP11-E REP | VP12-6 | VP12-18  | VPISE          | WPHS-15  | VP14-8<br>B/AGD15 | VP14-1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|------------|----------|------------|--------|----------|----------------|----------|-------------------|----------|
| EPA Warned \$7505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Resident.  | Commi<br>Indust | PCL:       | 8/6/2011 | MEMILIS    | BERNIS | Minute I | trations (µg/L | Bridgets | S/Crash.          | B/4/2011 |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PER COLUMN | [1] [1] 1       | 0.008      | ND       | ND I       | ND     | ND ND    | ND ND          | ND       | ND                | ND.      |
| Promobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | _               | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Promodichioromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _          |                 | 0.008      | ND       | ND         | ND     | ND ND    | ND             | ND       | ND                | ND       |
| A STATE OF THE PARTY OF THE PAR | _          |                 | 0.008      |          | -          |        |          |                |          |                   |          |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |            | ND<br>ND | ND         | ND     | ND       | ND             | ND<br>ND | ND                | ND       |
| -Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                 | 800.0      |          | ND         | ND     | ND       | ND             |          | ND                | ND       |
| ec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| ert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Carbon tetrachioride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.083      | 0.21            | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _          |                 | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _          | _               | 0.000      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA         | NA              | 800.0      | ND       | ND         | 0.039  | ND       | ND             | ND       | ND                | ND       |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _          |                 | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 2-Chiorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| I-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| ,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| ,2-Dibromoethana (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _          | _               | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -          | -               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,2- Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                 | 800.0      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | ( - )           | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -          | -               | 800.0      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _          |                 | 800.0      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _          | 1               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA         | NA              | 0.008      | ND       | ND         | ND     | ND       | ND             | 0.118    | ND                | ND       |
| sis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | j               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| rans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 1               | 800.0      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _          | Ī               | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _          | j               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -          | -               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,1-Dichloropropens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | _               | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _          |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | _               | 0.008      | ND.      | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | _               | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Freon 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA         | NA              | 0.008      | 0.068    | ND         | 0.184  | 0.629    | 0.203          | 1.13     | ND                | ND       |
| -lexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _          | -               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| sopropylbanzane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 4-isopropyttoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -               | 0.008      | ND       | ND         | ND     | ND.      | ND             | ND       | ND.               | ND       |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                 | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _          |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | _               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                 | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1.1.2.2-Tetrachioroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _          | -               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Tetrachloroethylene (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.47       | 1.6             | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _          | _               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _          |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,1,2-Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _          |                 | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Frichloroethylene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3        | 4.4             | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Inchlorefluoremethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -          |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| 1,2,3-Trichloropropana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| ,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _          |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| ,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| /inyl chlorids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                 | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                 | 0.008      | ND       | ND         | ND     | ND ND    | ND             | ND       | ND                | ND       |
| (ylenes<br>WTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -               | 0,008      |          |            |        |          |                |          |                   | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | _               |            | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| Ethyl-tert-butylether (ETBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -          | -               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| OHsopropylether (DIPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _          | -               | 0.008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| ert-amylmethylether (TAME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _          |                 | 0,008      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |
| ert-Butylalcohol (TBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _          | _               | 0.040      | ND       | ND         | ND     | ND       | ND             | ND       | ND                | ND       |

NOTES: Volatile Organic Compound
PQLs = Precital Quartilistics Limits
ND = Not Detected Above the PQL
P = Purge Volume
RBP = replicate

ug/L = micrograme per liter
NA = information not evaluable
— Not explaints
"Cell form



| VOCs by                      | CHHOL                                 |        | Sample ID: | VP16-8   | VPH 6-16 | April 1   | VIPALLS NEW | VETE  |
|------------------------------|---------------------------------------|--------|------------|----------|----------|-----------|-------------|-------|
| EPA Method #2006             |                                       | Comm.  | Union      | EM 2013  | Br4/2013 | Bribbers  | 8127014     | DATAS |
|                              | निव्यक्तियाः                          | noust. | Filher     |          |          | entration |             | 715   |
| Benzene                      |                                       | _      | 0,008      | ND       | ND       | ND        | ND          | ND    |
| Bromobenzene                 |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Bromodichioromethane         | _                                     |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Bromoform                    |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| n-Butylbenzene               |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| sec-Butylbenzene             | _                                     | 1      | 800,0      | ND       | ND       | ND        | ND          | ND    |
| bart-Butylbenzene            |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Carbon tetrachloride         | 0.063                                 | 0.21   | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Chlorobenzene                |                                       | -      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Chloroethane                 |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Chloroform                   | NA                                    | NA     | 800.0      | ND       | ND       | ND        | ND          | ND    |
| Chloromethane                | _                                     | I      | 0,008      | ND       | ND       | ND        | ND          | ND    |
| 2-Chlorotoluene              |                                       | ļ      | 800.0      | ND       | ND       | ND        | ND          | ND    |
| 4-Chlorotoluene              | _                                     |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Dibromochloromethane         | · · · · · · · · · · · · · · · · · · · | _      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,2-Dibromo-3-chioropropane  |                                       |        | 800.0      | ND       | ND       | ND        | ND          | ND    |
| 1,2-Dibromoethane (EDS)      |                                       | -      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Dibromomethane               | -                                     | _      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,2- Dichlorobenzene         |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,3-Dichlorobenzene          | _                                     | _      | 0.006      | ND       | ND       | ND        | ND          | ND    |
| 1,4-Dichlorobenzene          | -                                     | -      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Dichloredifluoremethane      |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,1-Dichloroethane           | _                                     | -      | 0,008      | ND       | ND       | ND        | ND          | ND    |
| 1,2-Dichlomethane            |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,1-Dichloroethene           | NA NA                                 | NA     | 0.008      | ND       | ND       | ND        | ND          | ND    |
| cis-1.2-Dichloroethene       | _                                     |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| rans-1.2-Dichloroethene      |                                       |        | 800.0      | ND       | ND       | ND        | ND          | ND    |
| 1,2-Dichloropropane          |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,3-Dichloropropane          |                                       | _      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 2,2-Dichloropropane          |                                       | _      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,1-Dichloropropene          |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| cla-1,3-Dichloropropene      | -                                     | _      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| rans-1,3-Dichloropropene     |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Ethylbanzana                 |                                       |        | 0,008      | ND       | ND       | ND        | ND          | ND    |
| Freon 113                    | NA                                    | NA     | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Hexachlorobutadiene          | _                                     | -      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| sopropylbanzana              |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 4-isopropyitoluene           | -                                     |        | 800.0      | ND       | ND       | ND        | ND          | ND    |
| Methylene chloride           |                                       | ==     | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Nachthalene                  | =                                     |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| n-Propylbenzene              | 1 = 1                                 | =      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Styrene                      |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,1,1,2-Tetrachioroethane    | =                                     | =      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| 1,1,1,2-Tetrachioroethane    | =                                     | =      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Tetrachloroethylene (PCE)    | 0.47                                  | 1.6    | 0.008      | ND ND    | ND       | ND        | ND ND       | ND    |
| Toluene                      | 1                                     |        | 800.0      | ND       | ND       | ND        | ND ND       | ND    |
| 1,2,3-Trichlorobenzene       | _                                     |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
|                              |                                       |        | 0.008      |          |          |           |             |       |
| 1,2,4-Trichlorobenzene       | -                                     |        |            | ND<br>ND | ND ND    | ND        | ND          | ND    |
| 1,1,1-Trichloroethane        | 1                                     |        | 800.0      | ND       | ND       | ND        | ND          | ND    |
| 1,1,2-Trichloroethane        | -                                     | -      | 0.000      | ND       | ND       | ND        | ND          | ND    |
| Trichloroethylene (TCE)      | 1.3                                   | 4,4    | 0.000      | ND       | ND       | ND        | ND          | ND    |
| Trichlorofluoromethane       |                                       |        | 800.0      | ND       | ND       | ND        | ND          | ND    |
| 1,2,3-Trichloropropans       | -                                     | _      | 0,008      | ND       | ND       | ND        | ND          | ND    |
| 1,2,4-Trimethylbenzene       | _                                     |        | 800.0      | ND       | ND       | ND        | ND          | ND    |
| 1,3,5-Trimethylbenzene       |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Vinyl chloride               | _                                     | -      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| Xylenes                      |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| MTBE                         |                                       | -      | 0,008      | ND       | ND       | ND        | ND          | ND    |
| Ethyl-tert-butylether (ETBE) |                                       | -      | 0.008      | ND       | ND       | ND        | ND          | ND    |
| DHsopropylether (DIPE)       |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| tert-amylmethylether (TAME)  |                                       |        | 0.008      | ND       | ND       | ND        | ND          | ND    |
| tert-Butylalcohol (TBA)      | _                                     |        | 0.040      | ND       | ND       | ND        | ND          | ND    |

NoTES:

VOC = Volatile Organic Compound

PQLs = Precital Quarditation Limits

ND = Not Detected Above the PQL

P = Purge Valume

REP = replicate

µgL = micrograms per liter

NA = information not available

— Not applicable

"Castionia Human Health Screening Lavels (CHHSLs) for residential and communic provided for detected concentrations of VCCs.



Figures 1 through 3



Los Angeles Department of Water and Power PROJECT #: LDWP-13-1198

7600 Tyrone Avenue Van Nuya, California

ENVIRONMENTAL

3777 Long Seach Blvd., Annex Bidg. Long Beach, CA 90607 (562) 495-5777 www.altsenviron.com DRAWN; KD APPROVED: 8M SCALE: DATE: 8/13/19 NONE







## Results of Geophysical Investigation

Area of Geophysical Investigation Quest Diagnostics 7600 Tyrone Avenue Van Nuys, California

Prepared for:

Alta Environmental Inc.

Long Beach, California

Date of Investigation: May 17th, 2013

Prepared by:

RJ Weed, Senior Project Manager

Spectrum Geophysics 20434 Corisco Street Chatsworth, CA 91311





20434 Corisco Street Chatsworth, CA 91311

Tel: 818-886-4500 Fax: 818-886-4511

## Warranty:

Spectrum Geophysics was retained to conduct a geophysical investigation of the above facility to characterize the shallow subsurface. Our findings are subject to certain limitations due to site conditions and the instruments employed. We conducted this investigation in a manner consistent with our profession using similar methods. No other warranty as to the performance or deliverables is expressed or implied.

San Diego

Chatsworth

Santa Ana

www.spectrum-geophysics.com

## Contents

Introduction

Methods

Results

Recommendations

Limitations

# **Attached Figures**

Figure 1 Area of Geophysical Investigation

Figure 2 Contour Map of EM-61 Top-Coil Data

Spectrum Geophysics 2

Results of Geophysical Investigation Quest Diagnostics 7600 Tyrone Avenue Van Nuys, California

## Introduction

On May 17<sup>th</sup>, 2013, Spectrum Geophysics conducted a geophysical investigation on a portion of the Quest Diagnostics facility located in Van Nuys, California.

The purpose of the investigation was to delineate the surface trace of detectable steel underground storage tanks (USTs) within the area of investigation.

The area of investigation, as designated by Kristyn Drake of Alta Environmental, was soil covered and was roughly 1-acre in size.

Site interferences included reinforced concrete, bollards, chainlink fencing, large soil piles with debris, and scattered metallic surface debris.

## Methods

The equipment used in this investigation consisted of a Geonics EM-61 high-sensitivity metal detector, a shallow-focus metal detector (M-scope), and electromagnetic (EM) utility-locating equipment. A NavCom SF2050-G GPS unit and a digital field computer were used during EM-61 data acquisition.

## EM-61 High Sensitivity Metal Detector

The EM-61 high-sensitivity detector was used in an effort to delineate areas where metallic objects (such as underground storage tanks, and metal piping) may be buried. The EM-61 transmitter generates short pulses of electromagnetic energy that travel downward and outward and have a primary field associated with them. This energy becomes "trapped" in conductive materials and causes a secondary magnetic field to be generated in these materials. Between pulses, the receiver measures the voltage of the decay of this



EM-61 data acquisition (archive photo)

secondary magnetic field that is proportional to the conductivity of the subsurface materials.

Spectrum Geophysics 3

EM-61 readings were collected along roughly parallel lines spaced approximately 2.5 feet apart within the accessible areas of the investigation and stored concurrently with GPS eastings and northings in a digital field computer. These data were processed in the field and used to generate contour maps to assist in identifying anomalous areas that may be caused by buried metallic features.

## Electromagnetic (EM) Utility Location

Passive and active EM utility-locating methods were used in an effort to identify possible sources of EM-61 anomalies and to delineate the surface trace of detectable underground utilities and abandoned piping.



Electromagnetic (EM) utility location (archive photo)

Passive locating is possible when electrically

conductive conduits are energized by ambient radio frequencies (RF) that are often produced by 50/60 cycle electrical, radio, audio, television, and communication transmissions. A receiver tuned to these frequencies can be used to locate the re-radiated signal emitted by the conductor (i.e., conduit).

Active locating is initiated by conducting an EM signal at a known frequency (8 and 33 kHz for this site) on a conduit exposed at the surface. A receiver, tuned to these frequencies, is then used to locate the signal maxima (or surface trace) of the applied signal.

## Ground Penetrating Radar

EM-61 anomalies that could not be attributed to aboveground cultural features or detected underground conduits were further



Data collection using the Noggin GPR (archive photo)

investigated using GPR methods. GPR data were collected over suspect areas and interpreted in the field for anomalies whose signatures might indicate the presence of features of interest.

A high frequency radio signal is transmitted into the ground via the antenna. As radio waves propagate into the ground, these

Spectrum Geophysics 4

signals are reflected off structures with differing electrical properties. These reflected signals are then captured by the receiver and are presented as vertical profiles on the GPR unit.

The areal extents and/or surface traces of detected features were marked on the ground with spray paint.

#### Results

A map of the area of investigation is presented in Figure 1. A contour map of the EM-61 top coil data is presented in Figure 2.

#### EM-61

Fifteen distinct anomalies were observed on the EM-61 Top Coil Data contour map (Figure 2).

Anomaly A was located along Eastings 6428188 to 6428418 and between Northings 1899131 and 1829043. A gas line and a conduit were detected using EM utility-locating methods. Surface interference consisted of three steel drums, two concrete pads, a storm drain vault lid, a fence, and surface metallic debris that were observed in the area, however, they could not be determined as the sole sources of the anomaly. A storm channel was also noted in the area, however, because of depth limitations it could not be detected. GPR provided no further information as to a source.

Anomaly B was located along Eastings 6428311 to 6428325 and between Northings 1899066 and 1899052. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly C was located along Eastings 6428280 to 6428289 and between Northings 1898990 and 1898981. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly D was located along Eastings 6428276 to 6428289 and between Northings 1898962 and 1898949. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly E was located along Eastings 6428474 to 6428321 and between Northings 1898941 and 1898912. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly F was located along Eastings 6428373 to 6428390 and between Northings 1898944 and 1898916. A small buried metallic feature was detected using hand-held metal detection, however, it could not be verified as the sole source of the anomaly. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly G was located along Eastings 6428478 to 6428556 and between Northings 1899037 and 1899003. EM-utility locating methods and GPR provided no further information as to a source. The source(s) of this anomaly appear to be located in or beneath the soil/debris pile.

Anomaly H was located along Eastings 6428473 to 6428492 and between Northings 1898974 and 1898960. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly I was located along Eastings 6428455 to 6428396 and between Northings 1898930 and 1898915. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly J was located along Eastings 6428509 to 6428520 and between Northings 1898981 and 1898969. A small buried metallic feature was detected using hand held metal detection, however, it could not be verified as the sole source of the anomaly. EM-utility locating methods and GPR provided no further information as to a source although two conduits or possible footings may project to the south and one to the east as indicated by the linear trending (LT) anomalies.

Anomaly K was located along Eastings 6428529 to 6428549 and between Northings 1898971 and 1898956. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly L was located along Eastings 6428556 to 6428590 and between Northings 1899026 and 1829006. A storm channel was noted in the area, however, because of depth limitations it could not be detected. EM-utility locating methods and GPR provided no further information as to a source.

*Anomaly M* was located along Eastings 6428591 to 6428605 and between Northings 1898942 and 1898959. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly N was located along Eastings 6428569 to 6428588 and between Northings 1898951 and 1898940. EM-utility locating methods and GPR provided no further information as to a source.

Anomaly O was located along Eastings 6428590 to 6428610 and between Northings 1898938 and 1898907. EM-utility locating methods and GPR provided no further information as to a source.

Several linear trending anomalies (see lines labled LT on Figure 1) were observed on the EM-61 contour maps. EM utility-locating methods did not identify conduits as a source, however, that does not preclude their presence. Typically LT anomalies are indicative

of conduits or a linear metal bearing feature such as building footings, however, numerous sources could cause a similar anomaly and some of these anomaly trends are more complex as multiple sources are likely present.

The north-south trending anomalous area located on the easternmost portion of the site was caused by a conduit and the fence.

#### Recommendations

We recommend a safe excavation of all cited anomalous areas and linear trend anomalies (LT) to determine their respective source(s).

We also recommend removal of all soil piles and debris as well as the reinforced concrete slabs in order to resurvey using metal detection methods in an effort to identify detectable buried metallic features in these areas. No distinctive anomalies could be determined on the northwest section of the area (with exception of *Anomaly B*) due to the presence of the numerous reinforced concrete slabs and other metallic or metal bearing features on the surface.

#### Limitations

#### EM-61

The EM-61 is capable of detecting a 55-gallon drum up to a depth of 3 meters under favorable conditions. We recommend a minimum 10-foot buffer between the survey area and any metallic or metal bearing surface cultural features such as cars, metal signs, or aboveground piping which could severely compromise the quality of the data. Reliable EM-61 data cannot be collected over areas covered with reinforced concrete.

#### General

It should be understood that the location of subsurface objects and utilities is dependent upon the recognition of physical phenomena at the ground surface. These phenomena can be magnetic fields or electro-magnetic waves that give rise to a surface expression which in turn is interpreted as representative of subsurface objects. These waves, however, may be attenuated and/or distorted by a number of factors including soil moisture, corrosion, and proximity to other surface and subsurface facilities.

Spectrum cannot provide interpretation for the presence or absence of USTs or other buried metallic features in areas where vehicles/dumpsters/surface metallic features or soil piles are

present. We recommend the surface area be cleared of potential interferences and resurveyed.



EM-61 Anomaly

Area requiring further investigation

Painforced Concrete



California State Plane, NAD 83, U.S. Survey Feet East

Color Contour Interval in milivolts 

#### **DEPARTMENT OF WATER & POWER** OF THE CITY OF LOS ANGELES **Power System Integrated Support Services**

#### ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

**GEORGE FEAUSTLE** 

PROJECT:

7600 TYRONE AVE

REPORT NO.: C12054

#### **TABLE OF CONTENTS**

| <b>SECTION</b> |                                        | <b>PAGE</b>     |
|----------------|----------------------------------------|-----------------|
| COVER LETTER,  | COC,                                   | 100001 - 100005 |
| ATTACHMENT 1   | VOC<br>EPA METHOD 8260B                | 200000 - 200007 |
| ATTACHMENT 2   | METALS/HG<br>EPA METHOD 6010B/7471     | 300000 - 300009 |
| ATTACHMENT 3   | TEPH/MOTOR OIL/DRO<br>EPA METHOD 8015M | 400000 – 400004 |
| ATTACHMENT 4   | GRO<br>EPA METHOD 8015B                | 500000 - 500003 |
| ATTACHMENT 5   | PCBs<br>EPA METHOD 8082                | 600000 - 600003 |
| ATTACHMENT 6   | PESTICIDES<br>EPA METHOD 8081          | PENDING         |
| ATTACHMENT 7   | SVOC<br>EPA METHOD 8270C               | 800000 - 800032 |

#### DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12054 COC 13-1321 Page 1 of 1 w/ attachments

#### ENVIRONMENTAL LABORATORY DATA REPORT

7600 TYRONE AVE, VAN NUYS Soil Samples

Soil samples from 7600 Tyrone Ave, Van Nuys, were submitted to the Environmental Laboratory on May 28, 2013 for the determination of their Volatile Organic Compounds (VOC), Metals, Semi-Volatile Organic Compounds (SVOC), Total Extractable Petroleum Hydrocarbons (TEPH) including Motor Oil (MO) and Diesel Range Organic (DRO), Chlorinated Pesticides, Polychlorinated Biphenyls (PCBs), and Gasoline Range Organics (GRO) content.

Testing information including tests requested and test methods are listed below. All quality assurance data indicate that the results for these samples are of acceptable quality.

| Analysis<br>Requested | Method         | Results               | Analyzed by       |
|-----------------------|----------------|-----------------------|-------------------|
| VOC                   | EPA 8260 B     | Attachment #1         | Environmental Lab |
| Metals                | EPA 6010B/7471 | Attachment #2         | Environmental Lab |
| TEPH/Diesel/Motor Oil | EPA 8015M      | Attachment #3         | Environmental Lab |
| GRO                   | EPA 8015B      | Attachment #4         | Environmental Lab |
| PCB                   | EPA 8082       | Attachment #5         | Weck Laboratories |
| Pesticides            | EPA 8081       | Attachment #6 PENDING | Weck Laboratories |
| SVOC                  | EPA 8270 C     | Attachment #7         | Weck Laboratories |

An updated version of this report will be delivered upon completion of pesticide data.

If you have any questions, or if further information is required, please contact Mr. Jeremy Stoa at (213) 367-7266 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 6/6/2013

Work Order No.: AHJ17

Job Card No.: J95550

Copies to: G. Feaustle

N. Liu

K. Han

J. Stoa

FileNet

Test Performed by: Environmental Lab

Weck Laboratories

Report By: JS Date: 6/06/13

Checked by: The Date: 6/7

APPROVED BY:

Interim Laboratory Manager

Environmental Laboratory

Environme | Laboratory | 1630 N. Main Street, Bldg. 7, 3rd Flr.

Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX Department of Water and Po r City of Los Angeles

**Chain of Custody Record** 

COC#: 13-1321

Page Lot

| (213) 367-7285<br>Sample L                            |                    | Turone           | plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ety, 7600 TyponE Ave, Van Noys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | Refrig | #. R.                         | 54 S<br>ersonnel: |                |          | O#_#H-J [    | +                      |
|-------------------------------------------------------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|-------------------------------|-------------------|----------------|----------|--------------|------------------------|
| Chem Lab un<br>CHEMISTRY LOC<br>(For sample duplicate | se only<br>NUMBERS | 11 15 FA         | (24 Hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Location and Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preservatives          | No.    | ntainer<br>(\$6.)<br>Type Siz |                   | Required       | CONSO    | Result       | Analyst(s)<br>Assigned |
| 1 B21-1/L                                             | N 06205            | 5/20/13          | 0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 585/10                 | 5      | SIZV                          | Soli              | THE 22 METAL   | THE      | SVOCS        |                        |
| 2 B21-2                                               | 06206              | - 1              | 0862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | APCHIYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                      |        | -1                            |                   | (ARCHUE) !     |          |              |                        |
| 3 BZ1-3                                               | 06207              |                  | 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to the second se |                        | V      | レン                            | 1                 |                |          |              |                        |
| 1B19-1'                                               | 06203              |                  | <b>GETO</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                     | 3      | SIZ                           | 生                 | OCPS (8081A) + | As Cool  | OB)          |                        |
| 5 -2'                                                 | 106209             |                  | 0812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARCHIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |        | 1                             | 1                 | (ARCHIVE)      |          |              |                        |
| 6 1-3                                                 | 166210             |                  | 0814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 3      | 1                             | 11-1              | V              |          |              |                        |
| 7 BI - 1'                                             | 0621               |                  | 0825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | +      | H +                           | 11-1              | - Izad (color  | 3)       |              |                        |
| 8 2'<br>9 V-3'                                        | 06213              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ARCHIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-1-                   | 1.1    | XX                            |                   | (ARCHIVE)      |          |              |                        |
|                                                       | 06213              |                  | 0830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++                     | 1      | - ZVC                         | ez V              | Tonal I be to  | nu /     |              |                        |
| 10 B22-1'                                             | 0621               |                  | 0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 15     | SE                            | 91                | LT-22Matals/17 | rkc/:    | VOCZ         |                        |
| 1 1                                                   | 10621              |                  | and the second s | ARCHIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\pm \pm$              | 1      | 4                             | 711               | (APCHIVE)      |          | <del> </del> |                        |
| 13 B25-1                                              | 06216              |                  | 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The second secon | -                      | 7      | -                             |                   | T-22 Metals/TI | n11 /    | Svors/VC     | 2608                   |
| 14 -2                                                 | 0621               |                  | 0900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ARCHNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ++                     | 17     | SUZZ                          | YZ                | (ARCHIVE)      | office / | SAMO AL      | 18082                  |
| 1                                                     | 062                |                  | 090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1      | 1                             |                   | (AKLETIVZ)     |          |              |                        |
| 16 B4-1                                               | V 0622             | 1111             | 0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                      | 1      | SIZ                           | NE V              | Pb (60108      | )        |              |                        |
| Date                                                  | & Time<br>tamp     | _                | ter Gz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rege Frank (K. Dr.) ke drganization/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iv. <b>LOUP</b><br>Fa: |        |                               | 1                 |                |          | Date         |                        |
| 321                                                   | 35                 | Prior            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |        | 1                             | 10                | Signature      |          | Time         | Date                   |
| -                                                     | a Z                | 至 2-4 H<br>型 1Da | y T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y KRISTYN DRAKE (ALTA ZUVIRONM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ENTAL                  | ) 8    | 5                             | 1                 | Be-            |          | 1300         | 5/28/                  |
| 5                                                     | C Form C           | 2 Wk             | is 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K. Desk=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | R      | ellans)                       | 724               | lle            |          | 1330         | 5/28/                  |
| O Revis                                               | sion j08/01/02     |                  | eek 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Received by T WGWEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | F      | eckived                       | by                | <u></u>        |          | 1335         | 5/28/                  |

DW

Environme I Laboratory 1630 N. Main Street, Bldg. 7, 3rd Flr.

Los Angeles, CA. 90012 (213) 367-7248/7399

#### Department of Water and Pc er City of Los Angeles

### **Chain of Custody Record**

COC#:

| (213) 367<br>(213) 367<br>Samp  | -7285 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | Type   | eenz               |                           | main of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •        | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rig#. |       | Slersonnel:      | JC#W<br>nelfBin#<br>No. of Field Test: |                |                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|--------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------|----------------------------------------|----------------|------------------------|
| Chem<br>CHEMISTI<br>(For sample | Lab use on the Lab use of the Log North Log North Lab use of the L | only<br>UMBERS<br>se f or X) | Sample | Date               | (24 Hr)<br>Sample<br>Time | Sample Location and Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preserva | dives No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tyl   | e Siz | Sample<br>Matrix | Required                               | Test<br>Result | Analyst(s)<br>Assigned |
| 184-Z                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 221                          | 5/28   | 130                | 912                       | APQ+tiv=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 333      | G 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3     | 201   | SOL              | LEAL (GOLDB) 15                        |                |                        |
| 2 1-3                           | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                          | 1      |                    | 0914                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 11    | 11               | (ARCHIVE) [ L                          |                |                        |
| 3 B3-                           | 1/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36223                        |        |                    | 9920                      | ta and a service of the service of t |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11    |       |                  | 1                                      |                |                        |
| 1 1 -2                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26224                        | -      |                    |                           | ACHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 5   | 1     | 2                | Ph-Lad (KOIDB)                         |                |                        |
| 5 4                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06225                        |        |                    | 0924                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4     | 1     | 11               | (ARSHINE)                              |                |                        |
| 6 BZ-1                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06226                        |        |                    | 0930                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 1     | 4                | 1                                      |                |                        |
| 7 -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06227                        |        |                    |                           | APCHIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +     | +     | H +              | GRCHIVE)                               |                |                        |
| 0 V -                           | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06225                        | 1 1    |                    | 0934                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y     | *     | 1                | - 1 blo bond low                       | 1/0,00         | Vaca                   |
| B26-                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06229                        | 1      |                    | 0140                      | a Acata hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ++       | -1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |                  | TEZ No tols/TPHC/VCC                   | SVOCS          | Arcios                 |
| 11 /-                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06230                        |        |                    | 0944                      | ARCHIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ++       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 1     | +                | (ARCHIVE)                              |                | -                      |
| 4                               | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06231                        |        |                    | 0950                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3     | 512   |                  | OCPS (2081A)+AS (C                     | doe            |                        |
| 12/3/8                          | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06237                        |        | ····               |                           | APCHINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | ال    | 1                | (ARCHIVE) /                            | VIVO)          |                        |
|                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0623                         |        |                    | 0954                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     | V     | 1                | (News)                                 |                |                        |
| 15 Blo                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10623                        | 1      |                    | 1000                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | V.    |                  | Pb (6010B)                             |                |                        |
| 16 3                            | -7'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10623                        | -      | 1                  |                           | - ARCHVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4     | V     | 41               | (ARCHIVE)                              |                |                        |
| ·                               | Date &<br>Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time<br>mp                   | Re     | quester<br>Address | GEOR                      | Frank / K. Deak Organization/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Div.     | THE OWNER OF THE OWNER OWNER OF THE OWNER OWN | 1     | Ha    | ZWYIPI           |                                        | DateDate       |                        |
| 5002                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                           | F      | Priority           |                           | Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -     | 0                | 8ignature                              | Time           | Date                   |
| >> COC# Label Here              | ۵-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                            | 111    | 2-4 Hrs<br>1Day    |                           | Sampled by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sam   | led i | L. A             | Ser .                                  | 1300           | 5/28/                  |
| \$                              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                           |        | 2 Wks              |                           | Relinquished by Drak=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reft  |       | galar            | UDe-                                   | 1330           |                        |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OC Form III                  | 00 00  | Specify            | (F)                       | Received by T NGWEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RgC   | eived | by               | £                                      | 1335           | 2/28/                  |

#### Environme : Laboratory

1630 N. Main Street, Bldg. 7, 3rd Flr. Los Angeles, CA. 90012 (213) 367-7248/7399

#### Department of Water and Po er City of Los Angeles

## **Chain of Custody Record**

coc#: 13-132/

Page 3 of

| (213) 367-7285                                        | FAX               |                   |                                | The state of the s | C.I     |         |          |                    |                      | elfBin#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VO#                                        |                        |
|-------------------------------------------------------|-------------------|-------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|
| Sample Lo                                             | ocation:          | Typor             | E Peops                        | 2 teg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | lni     | itial of | Field Per          | rsonnel;             | No. of Field Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | ±                      |
| Chem Lab us<br>CHEMISTRY LOG<br>(For sample duplicate | e only<br>NUMBERS | Sample D          | (24 Hr)<br>late Sample<br>Time | Sample Location and Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preser  |         |          | tainer<br>ype Size | Sample<br>Matrix     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test<br>Result                             | Analyst(s)<br>Assigned |
| 186-3' LA                                             | 306137            | 5/28/1            | 3 locy                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4       |         |          | ENE                |                      | Plo (GOIDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                        |
| BB-1                                                  | 06238             | 1                 | 1010                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 差       | 3        | iza:               | 1                    | Ph (10198)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                        |
| -2                                                    | 06239             |                   | 1012                           | ARCHINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | ,       | 11       | 111                |                      | (DECHNE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                          |                        |
| V-3                                                   | 06240             | 1                 | 1014                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         | 1        | VV                 |                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                          |                        |
| B29-1                                                 | 06241             | -1                | 1020                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | -       | 3        | 111                | 11                   | TPH diesel +oil/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Syocs                                      |                        |
| 17                                                    | 06242             | 1                 | 1022                           | ARCHINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         | 1        | 414                | 4                    | (ARCHIVE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                        |
| V -3                                                  | 06243             | 1                 | 1024                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | -       | Y        | 4 3                | 4                    | Pb (boloB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                          | -                      |
| 85-1'<br>1-2'                                         | 06244             |                   | 1030                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       | -       | 3        | 1                  | +                    | CHELLING (KD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                        |
| 10 1 -3!                                              | 06245             |                   | 1                              | APCHINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | +       | +        | *                  | ++                   | CHACHINE Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | -                      |
| 1187-1                                                | 06246             |                   | 1034                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | +       | +        | 4                  | ##                   | Pb (6010B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | -                      |
| 12 1-2                                                | 06247             | 1                 |                                | A PCH WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |         | 1        |                    | $\parallel \uparrow$ | CARCHIVE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            | 1                      |
| 13 1-3                                                | 0624              |                   | 1044                           | The property of the control of the c | -       | $t^{-}$ | 1        |                    | HI                   | CARLON OF THE PARTY OF THE PART |                                            |                        |
| 14B20-1'                                              |                   | 11                | 105                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1       | 1        | 111                | 11                   | CCB(8081A)+As(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (BONDE)                                    |                        |
| 15 [ -7'                                              | 0625              |                   |                                | 2 ARCHVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Nu      | 11)      | 11/                |                      | (ARCHAVE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O P                                        |                        |
| 16 1-3                                                | V0625             | 1 1               | 105                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Y       | W        | A                  | V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                        |
| Date                                                  | & Time            |                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | A       | 1.       |                    |                      | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POST (CASTILLA MARINE POR CASTA MARINE PAR |                        |
|                                                       | tamp              |                   |                                | eq=F==xsf= (K.Deak=)Drganizatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on/Div. | DOP     | A        | ltaza              | MISSO                | Analyst:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date<br>Date -                             |                        |
| *                                                     | 35                | i l               | dress                          | U Tel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | Fax '   | -        |                    | _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                        |
| 500°                                                  |                   | Pri               | ority                          | Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          |                    | 0                    | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time                                       | Date                   |
| J.M.C                                                 |                   | The second second | 4 Hrs<br>Day                   | Sampled by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | - 111   | 1        | noted by           | tu                   | lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1300                                       | 5/25                   |
| ^ I                                                   |                   | 1/2               | Wks                            | Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         | Re       | hualiff            | SP2                  | ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1380                                       | ,                      |
|                                                       | ib COC Form #1    | Si                | pecify                         | Received by T NGWEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /       |         | Re       | cerved by          | J                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 133 5                                      | 5/25                   |

#### Environme | Laboratory

1630 N. Main Street, Bldg. 7, 3rd Flr. Los Angeles, CA. 90012 (213) 367-7248/7399

## Department of Water and Power City of Los Angeles

## **Chain of Custody Record**

coc#: [3-132]

Page Lof 1

| (213) 367-7285 FAX                                                           |             | -                         | Shall of Gustouy Record               |         |                | Report    | _         |       |                 | JC#<br>elf Bin#.     | WO#            | -             | <u></u>              |
|------------------------------------------------------------------------------|-------------|---------------------------|---------------------------------------|---------|----------------|-----------|-----------|-------|-----------------|----------------------|----------------|---------------|----------------------|
| Sample Location:                                                             | Typon       | = Re                      | operty                                | ,       |                | nitial of | Field     | Perso | onnel:          | No. of Field Tes     | t:             |               |                      |
| Chem Lab use only CHEMISTRY LOG NUMBERS (For sample duplicates use .1 or .X) | Sample Date | (24 Hr)<br>Sample<br>Time | Sample Location and Description       | Preserv |                | No.       | taine     |       | ample<br>Vatrix | Analysis<br>Required | Test<br>Result |               | nalyst(s)<br>ssigned |
| 189-1 LN06253                                                                | 5/28/13     | 1100                      |                                       | 100     | -              |           |           |       | Soit            | Pb (4010B)           |                |               |                      |
| 2 -2- 06254                                                                  |             | 1102                      | APCHINE                               |         |                | 1         | -1        |       | 1               | (ARCHIVE)            |                |               |                      |
| 3 V-3' 06255                                                                 | ;           | 1104                      |                                       |         |                |           |           | 1     |                 | CHECKINE (D)         |                |               |                      |
| 100-1 0675G                                                                  |             | 1110                      |                                       |         |                |           |           |       |                 |                      |                |               |                      |
| 5 1-2' 86257                                                                 | 1 1         | 1112                      | ARCHN=                                |         |                |           | 1         |       |                 | -APCHIVE             |                |               |                      |
| 6 V -3 06258                                                                 |             | 1114                      |                                       |         |                |           |           |       |                 | 4                    |                | -1            |                      |
| 1B80-1 06250                                                                 |             | 1130                      |                                       |         |                |           |           |       |                 | MHdisaloi 154        | 065            |               |                      |
| 0 1 -2' 06260                                                                |             |                           | ARCHINE                               |         |                |           | 4         |       | 1               | KARONV=Y             |                | _             |                      |
| 0626                                                                         |             | 1134                      |                                       |         | _              | 1         |           |       |                 | -V                   |                |               |                      |
| 10811-1 0626                                                                 | 2           | 1210                      |                                       |         | 1              | 11        |           |       |                 | Pb(GOTOB)            |                |               |                      |
| 511 -2 0626                                                                  | 3           | 1212                      |                                       |         |                | 1         |           |       |                 | CARCHIVE)            |                |               |                      |
| 124 -3 10626                                                                 | 44          | 144                       |                                       | 1       | 1              | V         | 1         | 1     | Y               | V                    |                |               |                      |
| 13-812-1 LW                                                                  |             |                           |                                       |         | 1              | -         | _         | _     |                 |                      |                |               | *                    |
| 111 -2 5                                                                     | 5/29/13     |                           |                                       |         | _              |           | -         | _     | -               |                      |                |               |                      |
| 15 B17-1                                                                     | 1//         |                           | <u> </u>                              | _       |                | 1         | -         | 1     | -               | -                    |                | -             | L                    |
| 16 _ 3                                                                       |             |                           |                                       |         | MERNE THE RESE | -         | - Andrews | 1     | -               |                      |                | Marian Barran | -                    |
| Date & Time                                                                  | Pequest     | or A-                     | ege Feaustle/K. Drak = Organization/D | is 1    | ina            | n/1       | 1.71      | -     | ri was          | Analyst:             | Dat            | e             |                      |
| Stamp                                                                        | Addres      | SS CIZU                   | Tel.                                  | ()      | Fax            | TA        | Un        | 41    | LICCO           | Approved:            | Da             |               |                      |
| v o                                                                          | 1 LOGICA    |                           |                                       | -       |                | -         |           |       | _               |                      |                |               |                      |
| 0C# La                                                                       | Priori      |                           | Printed Name                          |         |                |           | 1         | 1     | 01              | Signature            | Т              | me            | Date                 |
| >> COC# Label Here                                                           | 2-4 Hr      | -                         | Sampled by:                           |         |                | Sa        | mulled    | roy:  | Ed S            | She                  | 130            | 0             | \$/20/13             |
| ↑ Q                                                                          | · AVVNS     | 5                         | Kenndurshed by:                       | -       |                | RA        | 1         | 1     | l               | 0-                   | 13.            | 30            | \$/20/1              |
| Revision Dollo 1/02 L                                                        | ا ا         | fy                        | Received by T NGWEN                   |         |                | $R_{i}$   | ceive     | dy    |                 | to                   | 133            | 35            | 5/28                 |
|                                                                              | 2           |                           |                                       |         |                |           |           |       |                 |                      | ÷              |               | /                    |

## **ATTACHMENT #1**

## VOLATILE ORGANIC COMPOUNDS (VOC)

EPA METHOD 8260 B

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Page 1 of 2 Sample Matrix: Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |       |
|-------------------|--------------|------------------|------------------|--------------------|-------|
| LN06217           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-1 | 7,000 |
| LN06219           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-3 |       |
| LN06229           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-1 |       |
| LN06231           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-3 |       |
| LN06335           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-1 | ****  |
| LN06337           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-3 |       |
| LN06341           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-1 |       |

|                               | 1            | Date           | Date     |          |           |            |           |          |   |
|-------------------------------|--------------|----------------|----------|----------|-----------|------------|-----------|----------|---|
| Chemistry Log No.             | Date Sampled |                | Analyzed |          | 7000      | Sample De  | scription |          |   |
| LN06217                       | 5/28/2013    | 5/28/2013      | 6/3/2013 |          | 7600 TYRC |            | - Company |          |   |
| LN06219                       | 5/28/2013    | 5/28/2013      | 6/3/2013 |          |           | ONE, B25-3 |           |          |   |
| LN06229                       | 5/28/2013    | 5/28/2013      | 6/3/2013 |          | 7600 TYRC |            |           |          |   |
| LN06231                       | 5/28/2013    | 5/28/2013      | 6/3/2013 |          | 7600 TYRC |            |           |          |   |
| LN06335                       | 5/29/2013    | 5/29/2013      | 6/3/2013 |          | 7600 TYRC |            |           |          |   |
| LN06337                       | 5/29/2013    | 5/29/2013      | 6/3/2013 | NV.      | 7600 TYRC |            |           | 10000    |   |
| LN06341                       | 5/29/2013    | 5/29/2013      | 6/3/2013 |          | 7600 TYRC | NE, B28-1  | - Ip-text | 1,00 0   |   |
|                               |              |                | LN06217  | LN06219  | LN06229   | LN06231    | LN06335   | LN06337  | L |
| Compounds                     | MDL          | PQL            | Amount   | Amount   | Amount    | Amount     | Amount    | Amount   | 1 |
|                               | ug/kg        | ug/kg          | ug/kg    | ug/kg    | ug/kg     | ug/kg      | ug/kg     | ug/kg    |   |
|                               | og.ng        | ograg          | aging    | ogmg     | ugrig     | 9/119      | ug/ng     | agring   |   |
| Acetone                       | 32           | 160.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| tert-Amyl methyl ether (TAME) | 23           | 115.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Benzene                       | 26           | 130.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Bromobenzene                  | 26           | 130.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Bromochloromethane            | 24           | 120.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Bromodichloromethane          | 22           | 110.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Bromoform                     | 23           | 115.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Bromomethane                  | 20           | 100.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Methyl ethyl ketone (MEK)     | 26           | 130.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0         | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Butylbenzene                  | 29           | 145.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| sec-Butylbenzene              | 27           | 135.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| tert-Butylbenzene             | 29           | 145.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Carbon disulfide              | 116          | 580.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Carbon Tetrachloride          | 32           | 160.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Chlorobenzene                 | 28           | 140.0          | nď       | nd       | nd        | nd         | nd        | nd       |   |
| Chloroethane                  | 42           | 210.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| 2-Chloroethyl vinyl ether     | 23           | 115.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Chloroform                    | 30           | 150.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Chloromethane                 | 70           | 350.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| 2-Chiorotoluene               | 27           | 135.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| 4-Chlorotoluene               | 28           | 140.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| Dibromochloromethane          | 25           | 125.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| 1,2-Dibromo-3-chloropropane   | 31           | 155.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| 1,2-Dibromoethane             |              |                |          |          |           | 14689534   |           |          |   |
| Dibromomethane                | 23<br>33     | 115.0<br>165.0 | nd<br>nd | nd<br>nd | nd        | nd<br>nd   | nd<br>nd  | nd<br>nd |   |
|                               |              |                |          |          | nd        |            |           |          |   |
| ,2-Dichlorobenzene            | 27<br>27     | 135.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,3-Dichlorobenzene            |              | 135.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,4-Dichlorobenzene            | 33           | 165.0          | nd       | nd       | nd<br>~~  | nd         | nd        | nd       |   |
| Dichlorodifluoromethane       | 37           | 185.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,1-Dichloroethane             | 29           | 145.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,2-Dichloroethane             | - 22         | 110.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,1-Dichloroethene             | 28           | 140.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| is-1,2-Dichloroethene         | 26           | 130.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| rans-1,2-Dichloroethene       | 32           | 160.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,2-Dichloropropane            | 22           | 110.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,3-Dichloropropane            | 21           | 105.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,2-Dichloropropane            | 38           | 190.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ,1-Dichloropropene            | 27           | 135.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| is-1,3-Dichloropropene        | 26           | 130.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| ans-1,3-Dichloropropene       | 29           | 145.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| iisopropyl ether (DIPE)       | 26           | 130.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| thylbenzene                   | 30           | 150.0          | nd       | nd       | nd        | nd         | nd        | nd       |   |
| triyiberizerie                | 00           |                |          | 1        |           |            |           |          |   |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN06217           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-1 |
| LN06219           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-3 |
| LN06229           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-1 |
| LN06231           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-3 |
| LN06335           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-1 |
| LN06337           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-3 |
| LN06341           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-1 |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | LN06217<br>Amount<br>ug/kg | LN06219<br>Amount<br>ug/kg | LN06229<br>Amount<br>ug/kg | LN06231<br>Amount<br>ug/kg | LN06335<br>Amount<br>ug/kg | LN06337<br>Amount<br>ug/kg | LN06341<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 2-Hexanone                    | 21           | 105.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         |
| Isopropylbenzene              | 33           | 165.0        | nd                         |
| p-Isopropyitoluene            | 28           | 140.0        | nd                         |
| Methyl-t-butyl ether (MTBE)   | 23           | 115.0        | nd                         |
| Methylene chloride            | 31           | 155.0        | nd                         |
| Iodomethane                   | 20           | 100.0        | nd                         |
| Methyl isobutyl ketone (MIBK) | 19           | 95.0         | nd                         | nd                         | nď                         | nd                         | nd                         | nd                         | nd                         |
| Naphthalene                   | 30           | 150.0        | nd                         |
| Propylbenzene                 | 30           | 150.0        | nd                         | nd                         | nd                         | nd                         | nd                         | nd                         | nď                         |
| Styrene                       | 33           | 165.0        | nd                         |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                         |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                         |
| Tetrachloroethylene           | 27           | 135,0        | nd                         |
| Toluene                       | 25           | 125.0        | nd                         |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                         |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd                         |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd                         |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                         |
| Trichloroethylene             | 24           | 120,0        | nd                         |
| Trichlorofluoromethane        | 35           | 175.0        | nd                         |
| 1,2,3-Trichloropropane        | 22           | 110.0        | nd                         |
| 1,2,4-Trimethylbenzene        | 25           | 125.0        | nd                         |
| 1,3,5-Trimethylbenzene        | 28           | 140.0        | nd                         |
| Vinyl acetate                 | 52           | 260.0        | nd                         |
| Vinyi Chloride (Chloroethene) | 36           | 180.0        | nd                         |
| m & p-Xylene                  | 75           | 375.0        | nd                         |
| o-Xylene                      | 28           | 140.0        | nd                         | nd                         | nd                         | nď                         | nd                         | nd                         | nď                         |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |             | Quality Cont | rol Data |        |        |        |        |        |
|----------------------------|-------------|--------------|----------|--------|--------|--------|--------|--------|
|                            | QC Limits   |              |          |        |        |        |        |        |
| Surrogates                 | % Recovery  |              |          |        |        |        |        |        |
| 30 (ug/L each)             | Lower-Upper |              |          |        |        |        |        |        |
| SURR: Bromofluorobenzene   | 74 - 121    | 104.0%       | 103.7%   | 102.7% | 103.3% | 102.3% | 103.3% | 102.7% |
| SURR: Dibromofluoromethane | 80 - 120    | 97.0%        | 96.0%    | 95.0%  | 96.3%  | 95.3%  | 95.3%  | 95.3%  |
| SURR: Toluene-d8           | 81 - 117    | 93.7%        | 92.3%    | 90.0%  | 92.3%  | 92.3%  | 92.3%  | 92.3%  |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |   |
|-------------------|--------------|------------------|------------------|--------------------|---|
| LN06343           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-3 | - |
|                   |              |                  |                  |                    |   |
|                   |              |                  |                  |                    |   |
|                   |              |                  |                  |                    | _ |
|                   |              |                  |                  |                    |   |
|                   |              |                  |                  |                    |   |

|                               |         |         | LN06343 |
|-------------------------------|---------|---------|---------|
| Compounds                     | MDL     | PQL     | Amount  |
|                               | (ug/kg) | (ug/kg) | (ug/kg) |
| Acetone                       | 32      | 160.0   | nd      |
| tert-Amyl methyl ether (TAME) | 23      | 115.0   | nd      |
| Benzene                       | 26      | 130.0   | nd      |
| Bromobenzene                  | 26      | 130.0   | nd      |
| Bromochloromethane            | 24      | 120.0   | nd      |
| Bromodichloromethane          | 22      | 110.0   | nd      |
| Bromoform                     | 23      | 115.0   | nd      |
| Bromomethane                  | 20      | 100.0   | nd      |
| 2-Butanone (MEK)              | 26      | 130.0   | nd      |
| tert-Butyl alcohol (TBA)      | 373     | 1865.0  | nd      |
| n-Butylbenzene                | 29      | 145.0   | nd      |
| sec-Butylbenzene              | 27      | 135.0   | nd      |
| tert-Butylbenzene             | 29      | 145.0   | nd      |
| tert-Butyl ethyl ether (ETBE) | 20      | 100.0   | nd      |
| Carbon disulfide              | 116     | 580.0   | nd      |
| Carbon Tetrachloride          | 32      | 160.0   | nd      |
| Chlorobenzene                 | 28      | 140.0   | nd      |
| Chloroethane                  | 42      | 210.0   | nd      |
| 2-Chloroethyl vinyl ether     | 23      | 115.0   | nd      |
| Chloroform                    | 30      | 150.0   | nd      |
| Chloromethane                 | 70      | 350.0   | nd      |
| 2-Chlorotoluene               | 27      | 135.0   | nd      |
| 4-Chlorotoluene               | 28      | 140.0   | ńd      |
| Dibromochloromethane          | 25      | 125.0   | nd      |
| 1,2-Dibromo-3-chloropropane   | 31      | 155.0   | nd      |
| 1,2-Dibromoethane (EDB)       | 23      | 115.0   | nd      |
| Dibromomethane                | 33      | 165.0   | nd      |
| 1,2-Dichlorobenzene           | 27      | 135.0   | nd      |
| 1,3-Dichlorobenzene           | 27      | 135.0   | nd      |
| 1,4-Dichlorobenzene           | 33      | 165.0   | nd      |
| Dichlorodifluoromethane       | 37      | 185.0   | nd      |
| 1,1-Dichloroethane            | 29      | 145.0   | nd      |
| 1,2-Dichloroethane            | 22      | 110.0   | nd      |
| 1,1-Dichloroethene            | 28      | 140.0   | nd      |
| cis-1,2-Dichloroethene        | 26      | 130.0   | nd      |
| trans-1,2-Dichloroethene      | 32      | 160.0   | nd      |
| 1,2-Dichloropropane           | 22      | 110.0   | nd      |
| 1,3-Dichloropropane           | 21      | 105.0   | nd      |
| 2,2-Dichloropropane           | 38      | 190.0   | nd      |
| 1,1-Dichloropropene           | 27      | 135.0   | nd      |
| cis-1,3-Dichloropropene       | 26      | 130.0   | nd      |
| trans-1,3-Dichloropropene     | 29      | 145.0   | nd      |
| Diisopropyl ether (DIPE)      | 26      | 130.0   | nd      |
| Ethylbenzene                  | 30      | 150.0   | nd      |
| Hexachlorobutadiene           | 44      | 220.0   | nd      |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description               |
|-------------------|--------------|------------------|------------------|----------------------------------|
| LN06343           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-3               |
|                   |              |                  |                  |                                  |
|                   |              |                  |                  | m que                            |
|                   |              |                  |                  |                                  |
|                   |              |                  |                  | a questione distribution (trans- |
|                   |              |                  |                  | THE WORLD                        |
| - u - u - u       |              |                  |                  |                                  |

|                             |         |         | LN06343 |  |
|-----------------------------|---------|---------|---------|--|
| Compounds                   | MDL     | PQL     | Amount  |  |
|                             | (ug/kg) | (ug/kg) | (ug/kg) |  |
| 2-Hexanone                  | 21      | 105.0   | nd      |  |
| Isopropylbenzene            | 33      | 165.0   | nd      |  |
| p-Isopropyltoluene          | 28      | 140.0   | nd      |  |
| Methyl-t-butyl ether (MTBE) | 23      | 115.0   | nd      |  |
| Methylene chloride          | 31      | 155.0   | nd      |  |
| Methyl iodide (iodomethane) | 20      | 100.0   | nd      |  |
| 4-Methyl-2-pentanone (MIBK) | 19      | 95.0    | nd      |  |
| Naphthalene                 | 30      | 150.0   | nd      |  |
| Propylbenzene               | 30      | 150.0   | nd      |  |
| Styrene (Phenylethylene)    | 33      | 165.0   | nd      |  |
| 1,1,1,2-Tetrachloroethane   | 23      | 115.0   | nd      |  |
| 1,1,2,2-Tetrachloroethane   | 40      | 200.0   | nď      |  |
| Tetrachloroethylene (PCE)   | 27      | 135.0   | nd      |  |
| Toluene                     | 25      | 125.0   | nd      |  |
| 1,2,3-Trichlorobenzene      | 29      | 145.0   | nd      |  |
| 1,2,4-Trichlorobenzene      | 31      | 155.0   | nd      |  |
| 1,1,1-Trichloroethane       | 26      | 130.0   | nd      |  |
| 1,1,2-Trichloroethane       | 23      | 115.0   | nd      |  |
| Trichloroethylene (TCE)     | 24      | 120.0   | nd      |  |
| Trichlorofluoromethane      | 35      | 175.0   | nd      |  |
| 1,2,3-Trichloropropane      | 22      | 110.0   | nd      |  |
| 1,2,4-Trimethylbenzene      | 25      | 125.0   | nd      |  |
| 1,3,5-Trimethylbenzene      | 28      | 140.0   | nd      |  |
| Vinyl acetate               | 52      | 260.0   | nd      |  |
| Vinyl Chloride              | 36      | 180.0   | nd      |  |
| m & p-Xylene                | 75      | 375.0   | nd      |  |
| o-Xylene                    | 28      | 140.0   | nd      |  |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |             | Quality Control Data |  |
|----------------------------|-------------|----------------------|--|
|                            | QC Limits   |                      |  |
| Surrogates                 | % Recovery  |                      |  |
| 30 (ug/L each)             | Lower-Upper | 8                    |  |
| SURR: Bromofluorobenzene   | 74 - 121    | 103.7%               |  |
| SURR: Dibromofluoromethane | 80 - 120    | 95.0%                |  |
| SURR: Toluene-d8           | 81 - 117    | 92.7%                |  |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description                         |
|-------------------|--------------|------------------|------------------|--------------------------------------------|
| Blank             | 5/28/2013    | 5/28/2013        | 6/3/2013         | Method Blank                               |
|                   |              |                  |                  |                                            |
| 310               |              | 2,0,000          | 520              |                                            |
|                   |              |                  |                  |                                            |
|                   |              |                  |                  |                                            |
|                   |              |                  |                  | 100 CO |
| 420               |              |                  |                  |                                            |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | Blank<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|--------------------------|
| Acetone                       | 32           | 160.0        | nd                       |
| tert-Amyl methyl ether (TAME) | 23           | 115.0        | nd                       |
| Benzene                       | 26           | 130.0        | nd                       |
| Bromobenzene                  | 26           | 130.0        | nd                       |
| Bromochloromethane            | 24           | 120.0        | nd                       |
| Bromodichloromethane          | 22           | 110.0        | nd                       |
| Bromoform                     | 23           | 115.0        | nd                       |
| Bromomethane                  | 20           | 100.0        | nd                       |
| Methyl ethyl ketone (MEK)     | 26           | 130.0        | nd                       |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0       | nd                       |
| Butylbenzene                  | 29           | 145.0        | nd                       |
| sec-Butylbenzene              | 27           | 135.0        | nd                       |
| tert-Butylbenzene             | 29           | 145.0        | nd                       |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0        | nd                       |
| Carbon disulfide              | 116          | 580.0        | nd                       |
| Carbon Tetrachloride          | 32           | 160.0        | nd                       |
| Chlorobenzene                 | 28           | 140.0        | nd                       |
| Chloroethane                  | 42           | 210.0        | nd                       |
| 2-Chloroethyl vinyl ether     | 23           | 115.0        | nd                       |
| Chloroform                    | 30           | 150.0        | nd                       |
| Chloromethane                 | 70           | 350.0        | nd                       |
| 2-Chlorotoluene               | 27           | 135.0        | nd                       |
| 4-Chlorotoluene               | 28           | 140.0        | nd                       |
| Dibromochloromethane          | 25           | 125.0        | nd                       |
| 1,2-Dibromo-3-chioropropane   | 31           | 155.0        | nd                       |
| 1,2-Dibromoethane             | 23           | 115.0        | nd                       |
| Dibromomethane                | 33           | 165.0        | nd                       |
| 1,2-Dichlorobenzene           | 27           | 135.0        | nd                       |
| 1,3-Dichlorobenzene           | 27           | 135.0        | nd                       |
| 1,4-Dichlorobenzene           | 33           | 165.0        | nd                       |
| Dichlorodifluoromethane       | 37           | 185.0        | nd                       |
| 1,1-Dichloroethane            | 29           | 145.0        | nd                       |
| 1,2-Dichloroethane            | 22           | 110.0        | nd                       |
| 1,1-Dichloroethene            | 28           | 140.0        | nd                       |
| cis-1,2-Dichloroethene        | 26           | 130.0        | nd                       |
| trans-1,2-Dichloroethene      | 32           | 160.0        | nd                       |
| 1,2-Dichloropropane           | 22           | 110.0        | rid                      |
| 1,3-Dichloropropane           | 21           | 105.0        | nd                       |
| 2,2-Dichloropropane           | 38           | 190.0        | nd                       |
| 1,1-Dichloropropene           | 27           | 135.0        | nd                       |
| cis-1,3-Dichloropropene       | 26           | 130.0        | nd                       |
| trans-1,3-Dichloropropene     | 29           | 145.0        | nd                       |
| Diisopropyl ether (DIPE)      | 26           | 130.0        | nd                       |
| Ethylbenzene                  | 30           | 150.0        | nd                       |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|--------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank             | 5/28/2013    | 5/28/2013        | 6/3/2013         | Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |              | 100              |                  | #21(S-0)(S-0)(S-0)(S-0)(S-0)(S-0)(S-0)(S-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   |              |                  |                  | The second secon |
|                   |              |                  |                  | 17.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00  |
|                   | 1000         | 2002             |                  | The same of the sa |

| Compounds                     | MDL   | PQL   | Blank<br>Amount |
|-------------------------------|-------|-------|-----------------|
|                               | ug/kg | ug/kg | ug/kg           |
| Hexachlorobutadiene           | 44    | 220.0 | nd              |
| 2-Hexanone                    | 21    | 105.0 | nd              |
| Isopropylbenzene              | 33    | 165.0 | nd              |
| p-Isopropyltoluene            | 28    | 140.0 | nd              |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nd              |
| Methylene chloride            | 31    | 155.0 | nd              |
| Iodomethane                   | 20    | 100.0 | nd              |
| Methyl isobutyl ketone (MIBK) | 19    | 95.0  | nd              |
| Naphthalene                   | 30    | 150.0 | nd              |
| Propylbenzene                 | 30    | 150.0 | nd              |
| Styrene                       | 33    | 165.0 | nd              |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd              |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd              |
| Tetrachloroethylene           | 27    | 135.0 | nd              |
| Toluene                       | 25    | 125.0 | nd              |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd              |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd              |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd              |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd              |
| Trichloroethylene             | 24    | 120.0 | nd              |
| Trichlorofluoromethane        | 35    | 175.0 | nd              |
| 1,2,3-Tríchloropropane        | 22    | 110.0 | nd              |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd              |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd              |
| Vinyl acetate                 | 52    | 260.0 | nd              |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd              |
| m & p-Xylene                  | 75    | 375.0 | nd              |
| o-Xylene                      | 28    | 140.0 | nd              |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|                            |             | Quality Control Data |   |
|----------------------------|-------------|----------------------|---|
|                            | QC Limits   |                      |   |
| Surrogates                 | % Recovery  |                      |   |
| 30 (ug/L each)             | Lower-Upper |                      |   |
| SURR: Bromofluorobenzene   | 74 - 121    | 102.0%               |   |
| SURR: Dibromofluoromethane | 80 - 120    | 96.7%                |   |
| SURR: Toluene-d8           | 81 - 117    | 92.7%                | = |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

#### Quality Assurance Report

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED:

6/3/13

ANALYTICAL METHOD:

**USEPA 8260** 

BATCH #: LN06217 LN/LN06217 LN06219 LN06229 LN06231 LN06335 LN06337 LN06341 LN06343

LAB SAMPLE I.D.: LN06217

UNIT:

ug/kg

| ANALYTE            | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 25.3 | 84.3 | 30.0                   | 25.9 | 86.3 | 2.3 %  | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 29.9 | 99.7 | 30.0                   | 30.5 | 102  | 2.3 %  | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 30.8 | 103  | 30.0                   | 31.3 | 104  | 0.97 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 30.6 | 102  | 30.0                   | 31.5 | 105  | 2.9 %  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.7 | 119  | 30.0                   | 36.6 | 122  | 2.5 %  | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

6/3/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

DATE OF SOURCE:

LAB LCS I.D.:

Q8087

LOT NUMBER:

UNIT: ug/kg

| ANALYTE               | LCS RESULT<br>ug/kg | TRUE VALUE<br>ug/kg                     | % RECOVERY | Advisory Range |
|-----------------------|---------------------|-----------------------------------------|------------|----------------|
| 1,1,2-Trichloroethane | 29.9                | 30                                      | 99.7       | 70 - 130       |
| 1,2-Dichloroethane    | 32.1                | 30                                      | 107.0      | 70 - 130       |
| 1,4-Dichlorobenzene   | 31.3                | 30                                      | 104.3      | 70 - 130       |
| Benzene               | 28.9                | 30                                      | 96.3       | 70 - 130       |
| Bromoform             | 33                  | 30                                      | 110.0      | 70 - 130       |
| Carbon Tetrachloride  | 27                  | 30                                      | 90.0       | 70 - 130       |
| Tetrachloroethylene   | 28.2                | 30                                      | 94.0       | 70 - 130       |
| Trichloroethylene     | 27.2                | 30                                      | 90.7       | 70 - 130       |
| S-(A)                 |                     |                                         | A 13437    | *****          |
|                       |                     | 72-118-                                 |            |                |
| 4"Y*1                 |                     |                                         |            |                |
| 3.47                  | and an area         | 53300                                   |            |                |
|                       |                     |                                         |            | 7,000          |
|                       |                     |                                         |            |                |
|                       |                     | 11-11-11-11-11-11-11-11-11-11-11-11-11- |            |                |
| 142.1                 | 7/                  |                                         |            |                |
|                       | 400 100             |                                         |            |                |
|                       |                     | 2 2000                                  | 5 5000     |                |
|                       |                     |                                         |            |                |
| 172                   |                     | XXXXX                                   | 1          |                |

## **ATTACHMENT #2**

# METALS/MERCURY EPA METHOD 6010B/7471

COC 13-1321

#### ANALYTICAL RESULT FOR METALS

#### TTLC (Total Threshold Limit Concentration)

EPA Method 6010B Sample Matrix: SOIL

PROJECT: 7600 TYRONE

| LABORATORY<br>LOG NO. | DATE<br>SAMPLED          | DATE<br>RECEIVED        | DATE<br>ANALYZED |                    |       |       | SAMPLE T         | DESCRIPTIO       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |                                         |
|-----------------------|--------------------------|-------------------------|------------------|--------------------|-------|-------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------------------------------------|
| LN06205               | 5/28/13                  | 5/28/13                 | 5/31/13          | 7600 TYRONE, B21-1 |       |       |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                         |
| LN06207               | 5/28/13                  | 5/28/13                 | 6/3/13           |                    |       |       | TYRONE,          |                  | (6.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 11.0             |                                         |
| LN06214               | 5/28/13                  | 5/28/13                 | 6/3/13           | -                  |       | -me-  | TYRONE,          |                  | A CONTRACTOR OF THE PARTY OF TH | 10.4             | 75 1 (1000       | *************************************** |
| LN06216               | 5/28/13                  | 5/28/13                 | 6/3/13           |                    |       | 7600  | TYRONE, I        | B22-3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                         |
| LN06217               | 5/28/13                  | 5/28/13                 | 6/4/13           |                    |       | 7600  | TYRONE, I        | B25-1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | manner -         | 9t               |                                         |
| LN06219               | 5/28/13                  | 5/28/13                 | 6/4/13           |                    |       | 7600  | TYRONE, I        | B25-3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                                         |
| METAL                 | LIMIT<br>TTLC<br>(mg/kg) | LIMIT<br>STLC<br>(mg/l) | METHOD           | MDL                | RL    | D. F. | LN06205<br>mg/kg | LN06207<br>mg/kg | LN06214<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LN06216<br>mg/kg | LN06217<br>mg/kg | LN06219<br>mg/kg                        |
| Antimony              | 500                      | 15                      | 6010             | 1.0                | 5.0   | 100   | 4.6J             | 3.7Ј             | 2.9J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6J             | 3.3J             | 4.2J                                    |
| Arsenic               | 500                      | 5                       | 6010             | 2.6                | 13.0  | 100   | ND               | ND               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               | ND                                      |
| Barium                | 10000                    | 100                     | 6010             | 3.7                | 18.5  | 100   | 263              | 254              | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 201              | 194              | 281                                     |
| Beryllium             | 75                       | 0.75                    | 6010             | 0.7                | 3.5   | 100   | ND               | ND               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               | ND                                      |
| Cadmium               | 100                      | 1                       | 6010             | 0.6                | 3.0   | 100   | 3.4              | 3.0J             | 2.6J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4J             | 2.42J            | 3.0J                                    |
| Chromium (T)          | 500                      | 5                       | 6010             | 1.4                | 7.0   | 100   | 22               | 22.5             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18               | 16.4             | 23                                      |
| Cobalt                | 8000                     | 80                      | 6010             | 1.0                | 5.0   | 100   | 17               | 16               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14               | 13.5             | 16                                      |
| Copper                | 2500                     | 25                      | 6010             | 1.6                | 8.0   | 100   | 22               | 18               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15               | 13.5             | 19                                      |
| Lead                  | 1000                     | 5                       | 6010             | 0.9                | 4,5   | 100   | 18               | 14               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 11             | 10.5             | 13                                      |
| Molybdenum            | 3500                     | 350                     | 6010             | 0.3                | 1.5   | 100   | ND               | ND               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               | ND                                      |
| Nickel                | 2000                     | 20                      | 6010             | 0.6                | 3.0   | 100   | 22               | 24               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18               | 16.6             | 24                                      |
| Selenium              | 100                      | 1                       | 6010             | 1.6                | 8.0   | 100   | ND               | ND               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               | ND                                      |
| Silver                | 500                      | 5                       | 6010             | 1.5                | 7.5   | 100   | ND               | ND               | 7.5J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND               | ND               | ND                                      |
| Thallium              | 700                      | 7                       | 6010             | 1.5                | 7.5   | 100   | ND               | ND               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               | ND                                      |
| Vanadium              | 2400                     | 24                      | 6010             | 1.8                | 9.00  | 100   | 42               | 34               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28               | 28               | 37                                      |
| Zinc                  | 5000                     | 250                     | 6010             | 1.9                | 9.50  | 100   | 77               | 61               | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48               | 48               | 60                                      |
| Mercury               | 20                       | 0.2                     | 7471             | 0.0200             | 0.100 | 100   | 0.024            | 0.015            | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013            | 0.009            | 0.013                                   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

<sup>\*\* -</sup> exceed TTLC limit

<sup>\* -</sup> exceed 10x STLC limit

J - concentration above MDL and below RL

#### ANALYTICAL RESULT FOR METALS

#### TTLC (Total Threshold Limit Concentration)

#### EPA Method 6010B Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE               | DATE                                                | DATE     |        |       |                                         |                   |                    |        |   |                             |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------|----------|--------|-------|-----------------------------------------|-------------------|--------------------|--------|---|-----------------------------|-----|
| LOG NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLED            | - F 13. 7 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | ANALYZED |        |       |                                         | Asia and a survey | DESCRIPTION        |        |   |                             |     |
| LN06229<br>LN06231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/28/13<br>5/28/13 | 5/28/13<br>5/28/13                                  | 6/5/13   | 1      |       | *************************************** | TYRONE, TYRONE,   |                    |        |   |                             |     |
| LIN00231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/28/13            | 3/28/13                                             | 0/3/13   | -      |       | 7000                                    | I YKONE,          | B20-3              | 444.71 |   | -                           |     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | ***                                                 |          |        |       | - 1881-1 V                              | (in-              | (i)                |        |   | Communication of Section 19 |     |
| entre de l'anno  | 11400              |                                                     | 1        | 1      |       |                                         | 7                 |                    | in-    |   | 7                           |     |
| B 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                     |          |        |       |                                         |                   | 1.300              |        |   |                             |     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                     |          |        |       |                                         |                   |                    |        |   |                             |     |
| in the second se | LIMIT              | LIMIT                                               |          | 1-000  | 1     | 7                                       |                   | la distribution of |        |   |                             |     |
| METAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TTLC               | STLC                                                | METHOD   | MDI    |       | B. F.                                   | LN06229           | LN06231            |        | İ | ĺ                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mg/kg)            | (mg/l)                                              | METHOD   | MDL    | RL    | D. F.                                   | mg/kg             | mg/kg              |        | - | - Annual Control            | -   |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500                | 15                                                  | 6010     | 1.0    | 5.0   | 100                                     | 1.3J              | 3.11               |        | - |                             |     |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500                | 5                                                   | 6010     | 2.6    | 13.0  | 100                                     | ND                | ND                 |        | - |                             |     |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000              | 100                                                 | 6010     | 3.7    | 18.5  | 100                                     | 61                | 195                |        |   |                             | 000 |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75                 | 0.75                                                | 6010     | 0.7    | 3.5   | 100                                     | ND                | ND                 |        | 1 |                             |     |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                | 1                                                   | 6010     | 0.6    | 3.0   | 100                                     | 1.11              | 2.9Ј               |        |   |                             |     |
| Chromium (T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500                | 5                                                   | 6010     | 1.4    | 7.0   | 100                                     | 7.8               | 18                 |        |   |                             |     |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8000               | 80                                                  | 6010     | 1.0    | 5.0   | 100                                     | 5.5               | 15                 |        |   |                             |     |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2500               | 25                                                  | 6010     | 1.6    | 8.0   | 100                                     | 11.6              | 13                 | 11     |   |                             |     |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000               | 5                                                   | 6010     | 0.9    | 4.5   | 100                                     | 6.0               | 11                 |        |   |                             |     |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3500               | 350                                                 | 6010     | 0.3    | 1.5   | 100                                     | ND                | ND                 | 4      |   |                             |     |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000               | 20                                                  | 6010     | 0.6    | 3.0   | 100                                     | 9.3               | 20                 |        |   |                             |     |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                | 1                                                   | 6010     | 1.6    | 8.0   | 100                                     | ND                | ND                 |        |   |                             |     |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500                | 5                                                   | 6010     | 1.5    | 7.5   | 100                                     | ND                | ND                 | ****** |   |                             |     |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 700                | 7                                                   | 6010     | 1.5    | 7.5   | 100                                     | ND                | ND                 |        |   |                             |     |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2400               | 24                                                  | 6010     | 1.8    | 9.00  | 100                                     | 18                | 31                 | t-     |   |                             |     |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000               | 250                                                 | 6010     | 1.9    | 9.50  | 100                                     | 26                | 56                 |        |   |                             |     |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                 | 0.2                                                 | 7471     | 0.0200 | 0.100 | 100                                     | 0.021             | 0.012              |        |   |                             |     |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

<sup>\*\* -</sup> exceed TTLC limit

<sup>\* -</sup> exceed 10x STLC limit

J - concentration above MDL and below RL

13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B

Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY     | DATE    | DATE     | DATE     |     |      |       |          |            |         |         |         |         |
|----------------|---------|----------|----------|-----|------|-------|----------|------------|---------|---------|---------|---------|
| LOG NO.        | SAMPLED | RECEIVED | ANALYZED |     |      |       | SAMPLE I | DESCRIPTIO | N       |         |         |         |
| LN06208        | 5/28/13 | 5/28/13  | 5/30/13  |     |      | 7600  | TYRONE,  | B19-1      |         |         |         |         |
| LN06210        | 5/28/13 | 5/28/13  | 5/30/13  |     |      | 7600  | TYRONE,  | B19-3      |         |         |         |         |
| LN06232        | 5/28/13 | 5/28/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B18-1      |         |         |         |         |
| LN06234        | 5/28/13 | 5/28/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B18-3      |         |         |         |         |
| LN06250        | 5/28/13 | 5/28/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B20-1      |         |         |         |         |
| LN06252        | 5/28/13 | 5/28/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B20-3      |         |         |         |         |
| W <sub>0</sub> | LIMIT   | LIMIT    |          |     |      |       |          |            |         |         |         | -       |
|                | TTLC    | STLC     |          |     |      |       | LN06208  | LN06210    | LN06232 | LN06234 | LN06250 | LN06252 |
| METAL          | (mg/kg) | (mg/l)   | METHOD   | MDL | RL   | D. F. | mg/kg    | mg/kg      | mg/kg   | mg/kg   | mg/kg   | mg/kg   |
| Arsenic        | 500     | 5        | 6010     | 2.6 | 13.0 | 100   | ND       | ND         | ND      | ND      | ND      | ND      |
| 2.             |         |          |          |     |      |       |          |            |         |         |         |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: YC

13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

Method: 6010 Matrix: Soil

Project: 7600 TYRONE

| LABORATORY<br>LOG NO. | DATE    | DATE<br>RECEIVED | DATE<br>ANALYZED |                                            |      |        | SAMPLE                    | DESCRIPTIO | N                 |                                      |               |          |
|-----------------------|---------|------------------|------------------|--------------------------------------------|------|--------|---------------------------|------------|-------------------|--------------------------------------|---------------|----------|
| LN06211               | 5/28/13 | 5/28/13          | 5/30/13          | 1000 000                                   | W. 2 |        | 20.212 (0.212 ) 2 2 2 2 2 | TYRONE     | AN ALL THE STREET | <u>( 1882) (M. O. O. O. O. O. O.</u> | (2) (10 (10)) | <u> </u> |
| LN06213               | 5/28/13 | 5/28/13          | 5/30/13          |                                            |      |        |                           | TYRONE     |                   |                                      |               |          |
| LN06220               | 5/28/13 | 5/28/13          | 5/30/13          |                                            |      |        |                           | TYRONE     | 10 8 1            |                                      | 1010          |          |
| LN06222               | 5/28/13 | 5/28/13          | 5/30/13          |                                            |      |        | 7600                      | TYRONE     | B4-3              |                                      |               |          |
| LN06223               | 5/28/13 | 5/28/13          | 5/30/13          |                                            |      |        | 7600                      | TYRONE     | B3-1              |                                      |               | -        |
| LN06225               | 5/28/13 | 5/28/13          | 5/30/13          |                                            |      | 3-1111 | 7600                      | TYRONE     | B3-3              |                                      | mir.          | -1       |
|                       | LIMIT   | LIMIT            |                  |                                            |      |        |                           |            |                   |                                      |               |          |
|                       | TTLC    | STLC             |                  |                                            |      | 7.1    | LN06211                   | LN06213    | LN06220           | LN06222                              | LN06223       | LN06225  |
| METAL                 | (mg/kg) | (mg/l)           | METHOD           | MDL                                        | RL   | D. F.  | mg/Kg                     | mg/Kg      | mg/Kg             | mg/Kg                                | mg/Kg         | mg/Kg    |
| Lead                  | 1000    | 5                | 6010             | 0 0.9 4.5 100 9.8 12.0 11.0 12.0 12.0 12.0 |      |        |                           |            |                   |                                      |               |          |
| No.                   |         |                  |                  |                                            |      |        |                           |            |                   |                                      |               |          |

| LABORATORY<br>LOG NO. | DATE SAMPLED | DATE<br>RECEIVED | DATE<br>ANALYZED |     |     |       | SAMPLE I | DESCRIPTIO | N       |         |         |         |
|-----------------------|--------------|------------------|------------------|-----|-----|-------|----------|------------|---------|---------|---------|---------|
| LN06226               | 5/28/13      | 5/28/13          | 5/30/13          |     |     |       | 7600     | 0 TYRONE   | B2-1    |         |         |         |
| LN06228               | 5/28/13      | 5/28/13          | 5/30/13          |     |     |       | 7600     | TYRONE     | B2-3    |         |         |         |
| LN06235               | 5/28/13      | 5/28/13          | 5/30/13          |     |     |       | 7600     | TYRONE     | B6-1    |         |         |         |
| LN06237               | 5/28/13      | 5/28/13          | 6/3/13           |     |     |       | 7600     | TYRONE     | B6-3    | -       |         |         |
| LN06238               | 5/28/13      | 5/28/13          | 6/3/13           |     |     |       | 7600     | TYRONE     | B8-1    |         |         |         |
| LN06240               | 5/28/13      | 5/28/13          | 6/3/13           |     |     |       | 7600     | TYRONE     | B8-3    |         |         |         |
| N-                    | LIMIT        | LIMIT            |                  |     |     |       |          |            |         |         |         |         |
| 3                     | TTLC         | STLC             | 1.70             |     |     |       | LN06226  | LN06228    | LN06235 | LN06237 | LN06238 | LN06240 |
| METAL                 | (mg/kg)      | (mg/l)           | METHOD           | MDL | RL  | D. F. | mg/Kg    | mg/Kg      | mg/Kg   | mg/Kg   | mg/Kg   | mg/Kg   |
| Lead                  | 1000         | 5                | 6010             | 0.9 | 4.5 | 100   | 11.0     | 15.0       | 5.7     | 10.0    | 24.0    | 72.0    |
|                       |              |                  |                  |     |     |       |          |            |         |         |         |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

Method: 6010 Matrix: Soil

Project: 7600 TYRONE

| LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE                          | DATE                          | DATE               |                                              |         |       |                              |            |                         |                  |           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------|----------------------------------------------|---------|-------|------------------------------|------------|-------------------------|------------------|-----------|---------|
| LOG NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLED                       | RECEIVED                      | ANALYZED           |                                              |         |       | SAMPLE I                     | DESCRIPTIO | N                       |                  |           |         |
| LN06244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       | 5/28/13                       | 6/4/13             |                                              |         |       | 760                          | 0 TYRONE   | B5-1                    |                  |           |         |
| LN06246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       | 5/28/13                       | 6/4/13             |                                              |         |       | 760                          | 0 TYRONE   | B5-3                    |                  |           |         |
| LN06247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       | 5/28/13                       | 6/4/13             |                                              |         |       | 760                          | 0 TYRONE   | B7-1                    |                  |           |         |
| LN06249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       | 5/28/13                       | 6/4/13             |                                              |         |       | 760                          | 0 TYRONE   | B7-3                    |                  |           |         |
| LN06253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       | 5/28/13                       | 6/4/13             |                                              |         |       | 760                          | 0 TYRONE   | B9-1                    | Annua y Annua    |           |         |
| LN06255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       | 5/28/13                       | 6/4/13             |                                              | <u></u> |       | 760                          | 0 TYRONE   | B9-3                    |                  |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIMIT                         | LIMIT                         | 1                  |                                              |         |       |                              |            |                         |                  |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TTLC                          | STLC                          | (11/2000           | -                                            |         |       | LN06244                      | LN06246    | LN06247                 | LN06249          | LN06253   | LN06255 |
| METAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mg/kg)                       | (mg/l)                        | METHOD             | MDL                                          | RL      | D. F. | mg/Kg                        | mg/Kg      | mg/Kg                   | mg/Kg            | mg/Kg     | mg/Kg   |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                          | 5                             | 6010               | 0.9                                          | 4.5     | 100   | 52.0                         | 11.0       | 50.0                    | 15.0             | 22.0      | 14.0    |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                               |                               |                    |                                              |         |       |                              |            |                         |                  |           |         |
| LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE                          | DATE                          | DATE               |                                              |         |       |                              |            |                         |                  |           |         |
| LOG NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLED                       | RECEIVED                      | ANALYZED           | 1578                                         |         |       | SAMPLE D                     | ESCRIPTION | N                       |                  |           |         |
| LN06256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       |                               |                    |                                              |         |       |                              |            |                         |                  |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3120/13                       | 5/28/13                       | 5/30/13            |                                              |         |       | 7600                         | TYRONE     | B10-1                   |                  |           |         |
| LN06258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13                       | 5/28/13                       | 5/30/13            |                                              |         |       |                              | TYRONE I   | - Carrie                |                  |           |         |
| LN06258<br>LN06262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 200                           |                    | en en el el el el el el el el el el el el el |         |       | 7600                         |            | B10-3                   |                  |           |         |
| 75.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/28/13                       | 5/28/13                       | 5/30/13            | 1                                            |         |       | 7600<br>7600                 | TYRONE     | B10-3<br>B11-1          |                  |           |         |
| LN06262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13<br>5/28/13            | 5/28/13<br>5/28/13            | 5/30/13<br>5/30/13 | 1000                                         |         |       | 7600<br>7600                 | TYRONE I   | B10-3<br>B11-1          |                  |           |         |
| LN06262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13<br>5/28/13            | 5/28/13<br>5/28/13            | 5/30/13<br>5/30/13 |                                              |         |       | 7600<br>7600                 | TYRONE I   | B10-3<br>B11-1          |                  | 1000      |         |
| LN06262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/28/13<br>5/28/13            | 5/28/13<br>5/28/13            | 5/30/13<br>5/30/13 |                                              |         |       | 7600<br>7600                 | TYRONE I   | B10-3<br>B11-1          |                  | - Section |         |
| LN06262<br>LN06264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/28/13<br>5/28/13            | 5/28/13<br>5/28/13            | 5/30/13<br>5/30/13 |                                              |         |       | 7600<br>7600                 | TYRONE I   | B10-3<br>B11-1          |                  | 705,010   |         |
| LN06262<br>LN06264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/28/13<br>5/28/13<br>5/28/13 | 5/28/13<br>5/28/13<br>5/28/13 | 5/30/13<br>5/30/13 |                                              |         |       | 7600<br>7600                 | TYRONE I   | B10-3<br>B11-1          | LN06264          |           |         |
| LN06262<br>LN06264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/28/13<br>5/28/13<br>5/28/13 | 5/28/13<br>5/28/13<br>5/28/13 | 5/30/13<br>5/30/13 | MDL                                          | RL      | D. F. | 7600<br>7600<br><b>7</b> 600 | TYRONE I   | B10-3<br>B11-1<br>B11-3 | LN06264<br>mg/Kg |           |         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

<sup>\*\* -</sup> exceed TTLC limit

<sup>\* -</sup> exceed 10x STLC limit

J - concentration above MDL and below RL

COC 13-1321

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 6010B

Sample Matrix: SOIL

| LABORATORY   | DATE     | DATE     | DATE     |                             |       |        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
|--------------|----------|----------|----------|-----------------------------|-------|--------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------------|
| 1.0G NO.     | SAMPLED  | RECEIVED | ANALYZED | )                           |       |        | SAMPLE I  | ESCRIPTION | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |                |
| LN06205 Dup  | 05/28/13 | 5/28/13  | 5/31/13  |                             |       |        | TYRONE, E | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| LN06217 Dup  | 5/28/13  | 5/28/13  | 6/4/13   |                             |       | 7600   | YRONE, E  | 325-1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
|              |          |          |          | - Transaction of the second |       | 7.0000 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
|              |          |          |          |                             |       |        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
|              |          |          | i .      |                             |       |        | -         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
|              | LIMIT    | LIMIT    |          |                             | 75000 |        | LN06205   | LN06217    | - The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |          |         |                |
| METAL        | (mg/kg)  | (mg/l)   | METHOD   | MDL                         | RL    | D. F.  | (mg/kg)   | (mg/kg)    | (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mg/kg)  | (mg/kg) | (mg/kg)        |
| Antimony     | 500      | 15       | 6010     | 1.0                         | 5.0   | 1      | 4.5J      | 3.6J       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ant.    |                |
| Arsenic      | 500      | 5        | 6010     | 2.6                         | 13.0  | 1      | ND        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ~~      |                |
| Barium       | 10000    | 100      | 6010     | 3.7                         | 18.5  | 1      | 228       | 213        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Beryllium    | 75       | 0.75     | 6010     | 0.7                         | 3.5   | 1      | ND        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Cadmium      | 100      | 1        | 6010     | 0.6                         | 3.0   | 1      | 3.0J      | 2,4J       | miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |                |
| Chromium (T) | 2500     | 5        | 6010     | 1.4                         | 7.0   | 1      | 20        | 17         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Cobalt       | 8000     | 80       | 6010     | 1.0                         | 5.0   | 1      | 16        | 14         | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |                |
| Copper       | 2500     | 25       | 6010     | 1.6                         | 8.0   | 1      | 20        | 15         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TY fred; | 1161    |                |
| Lead         | 1000     | 5        | 6010     | 0.9                         | 4.5   | 1      | 20        | 11.1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | and the second |
| Molybdenum   | 3500     | 350      | 6010     | 0.3                         | 1.5   | 1      | ND        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Nickel       | 2000     | 20       | 6010     | 0.6                         | 3.0   | 1      | 21        | 17.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Selenium     | 100      | 1        | 6010     | 1.6                         | 8.0   | 1      | ND        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | (Pedies        |
| Silver       | 500      | 5        | 6010     | 1.5                         | 7.5   | 1      | ND        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Thallium     | 700      | 7        | 6010     | 1,5                         | 7.5   | 1      | ND        | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Vanadium     | 2400     | 24       | 6010     | 1.8                         | 9.0   | 1      | 38        | 26         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |
| Zinc         | 5000     | 250      | 6010     | 1.9                         | 9.5   | 1      | 79        | 49         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |                |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

#### QA/QC Report

#### I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 05/31/13

ANALYTICAL METHOD

USEPA 6010/7000

BATCH#:

\$TTLCS-7732 LN06205 LN06207 LN06214 LN06216

LAB SAMPLE I.D.: BLANK SOIL

UNIT: (Circle One) mg/kg

mg/L

|              | SAMPLE | SPIKE |     |      | (DUP)<br>SPIKE |          |      |      | BS/BSD<br>% REC | RPD         |
|--------------|--------|-------|-----|------|----------------|----------|------|------|-----------------|-------------|
| METAL        | RESULT | CONC  | BS  | %BS  | CONC           | BSD      | %BSD | RPD  | LIMIT           | LIMIT       |
| Antimony     | 1.0    | 200   | 149 | 74.0 | 200            | 148      | 73.5 | 0.7% | 14 - 89         | < 30        |
| Arsenic      | ND     | 200   | 194 | 97.0 | 200            | 196      | 98.0 | 1.0% | 70 - 130        | < 30        |
| Barium       |        |       |     |      |                |          |      |      |                 |             |
| Beryllium    | ND     | 200   | 187 | 93.5 | 200            | 188      | 94.0 | 0.5% | 70 - 130        | < 30        |
| Cadmium      | ND     | 200   | 180 | 90.0 | 200            | 183      | 91.5 | 1.7% | 70 - 130        | < 30        |
| Chromium (T) | ND     | 200   | 190 | 95.0 | 200            | 191      | 95.5 | 0.5% | 70 - 130        | < 30        |
| Cobalt       | ND     | 200   | 194 | 97.0 | 200            | 197      | 98.5 | 1.5% | 70 - 130        | < 30        |
| Copper       | ND     | 200   | 193 | 96.5 | 200            | 193      | 96.5 | 0.0% | 70 - 130        | < 30        |
| Lead         | 5.0    | 200   | 189 | 92.0 | 200            | 189      | 92.0 | 0.0% | 70 - 130        | < 30        |
| Molybdenum   | 0.5    | 200   | 194 | 96.8 | 200            | 195      | 97.3 | 0.5% | 70 - 130        | < 30        |
| Nickel       | 1.6    | 200   | 193 | 95.7 | 200            | 195      | 96.7 | 1.0% | 70 - 130        | < 30        |
| Selenium     | ND     | 200   | 180 | 90.0 | 200            | 181      | 90.5 | 0.6% | 70 - 130        | < 30        |
| Silver       |        |       |     |      |                | - Samuel |      |      |                 |             |
| Thallium     | ND     | 200   | 105 | 52.5 | 200            | 104      | 52.0 | 1.0% |                 | 707 700 500 |
| Vanadium     | 8.5    | 200   | 202 | 96.8 | 200            | 204      | 97.8 | 1.0% | 70 - 130        | < 30        |
| Zinc         | 4.0    | 200   | 175 | 85.5 | 200            | 177      | 86.5 | 1.2% | 70 - 130        | < 30        |

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

#### QA/QC Report

#### I. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE ANALYZED:

05/30/13

ANALYTICAL

METHOD:

USEPA 6010/7000

BATCH #:

\$TTLCS-77 (LN06205 LN06207 LN06214 LN06216)

LAB SAMPLE I.D.:

LN06205

UNIT: (Circle One)



|              |                  |       |       |      | (DUP)         |       |      |      | MS/MSD<br>% REC. |              |
|--------------|------------------|-------|-------|------|---------------|-------|------|------|------------------|--------------|
| METAL        | SAMPLE<br>RESULT | SPIKE | MS    | %MS  | SPIKE<br>CONC | MSD   | %MSD | RPD  | W KEU.           | RPD<br>LIMIT |
| Antimony     | 4.6              | 200   | 44    | 19.7 | 200           | 44    | 19.7 | 0.0% | 14 - 89          | < 30         |
| Arsenic      | ND               | 200   | 180   | 90.0 | 200           | 184   | 92.0 | 2.2% | 70 - 130         | < 30         |
| Barium       |                  | 200   |       |      | 200           |       | ,222 |      | 70 - 130         | < 30         |
| Beryllium    | ND               | 200   | 184   | 92.0 | 200           | 185   | 92.5 | 0.5% | 70 - 130         | < 30         |
| Cadmium      | 3.4              | 200   | 165   | 80.8 | 200           | 167   | 81.8 | 1.2% | 70 - 130         | < 30         |
| Chromium (T) | 22               | 200   | 203   | 90.5 | 200           | 206   | 92.0 | 1.6% | 70 - 130         | < 30         |
| Cobalt       | 17               | 200   | 186   | 84.5 | 200           | 189   | 86.0 | 1.8% | 70 - 130         | <30          |
| Copper       | 22               | 200   | 205   | 91.5 | 200           | 207   | 92.5 | 1.1% | 70 - 130         | < 30         |
| Lead         | 18               | 200   | 178   | 80.0 | 200           | 180   | 81.0 | 1.2% | 70 - 130         | < 30         |
| Molybdenum   | ND               | 200   | 169   | 84.5 | 200           | 171   | 85.5 | 1.2% | 70 - 130         | < 30         |
| Nickel       | 22               | 200   | 201   | 89.5 | 200           | 205   | 91.5 | 2.2% | 70 - 130         | < 30         |
| Selenium     | ND               | 200   | 171   | 85.5 | 200           | 175   | 87.5 | 2.3% | 70 - 130         | < 30         |
| Silver       | 1                | 200   |       |      | 200           |       |      |      | 70 - 130         | < 30         |
| Thallium     |                  | 200   |       | - 24 | 200           |       | -    |      | 70 - 130         | < 30         |
| Vanadium     | 42               | 200   | 231   | 94.5 | 200           | 233   | 95.5 | 1.1% | 70 - 130         | <30          |
| Zinc         | 77               | 200   | 248   | 85.5 | 200           | 243   | 83.0 | 3.0% | 70 - 130         | < 30         |
| Mercury      | 0.024            | 0.250 | 0.298 | 110  | 0.250         | 0.293 | 108  | 1.5% | 70 - 130         | < 30         |

MS = Matrix Spike MSD = Matrix Spike Duplicate %MS = Percent Recovery of Matrix Spike RPD = Relative Percent Difference %MSD = Percent Recovery of Matrix Spike Duplicate

#### II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 05/31/13

ANALYTICAL

USEPA 6010/7000

SUPPLY SOURCE: VHG

LAB LCS LD.;

Q8732

LOT NUMBER:

201-0040

UNIT: (Circle One) (mg/kg)

mg/L

| METAL        | LCS RESULTS | TRUE VALUE | %<br>Recovery | Acceptable Range |
|--------------|-------------|------------|---------------|------------------|
| Antimony     | 64          | 80.0       | 80.0          | 48 - 84          |
| Arsenic      | 405         | 400        | 101           | 70 - 130         |
| Barium       | 394         | 400        | 99            | 70 - 130         |
| Beryllium    | 10          | 10.0       | 100           | 70 - 130         |
| Cadmium      | 10.1        | 10.0       | 101           | 70 - 130         |
| Chromium (T) | 79          | 80.0       | 99            | 70 - 130         |
| Cobalt       | 41          | 40.0       | 103           | 70 - 130         |
| Copper       | 81          | 80.0       | 101           | 70 - 130         |
| Lead         | 82          | 80,0       | 103           | 70 - 130         |
| Molybdenum   |             | No.        | -             |                  |
| Nickel       | 81          | 80.0       | 101           | 70 - 130         |
| Selenium     | 186         | 200        | 93            | 70 - 130         |
| Silver       | 10          | 10.0       | 100           | 70 - 130         |
| Thallium     | 39          | 80.0       | 49            | 70 - 130         |
| Vanadium     | 89          | 80.0       | 111           | 70 - 130         |
| Zinc         | 180         | 200        | 90            | 70 - 130         |
| 11 1141      | 1.75        |            |               |                  |

M (12/17) Analyst: YC

300009

### **ATTACHMENT #3**

TOTAL EXTRACTABLE PETROLEUM
HYDROCARBONS (TEPH)
MOTOR OIL (MO)
DIESEL RANGE ORGANIC (DRO)

**EPA METHOD 8015M** 

## ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL
Project: 7600 TYRONE

| SAMPLE LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE<br>EXTRACTED | DATE<br>ANALYZED | SAMPI            | LE DESCR         | IPTION           | INST.<br>ID      | RUN              | BATCH           |
|----------------|-----------------|--------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|
| LN06205        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B21-1            | GC Agilent       | 05               | 3113            |
| LN06207        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B21-3            | GC Agilent       | 05               | 3113            |
| LN06214        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B22-1            | GC Agilent       | 05               | 3113            |
| LN06216        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B22-3            | GC Agilent       | 05               | 3113            |
| LN06217        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B25-1            | GC Agilent       | 05               | 3113            |
| LN06219        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B25-3            | GC Agilent       | 05               | 3113            |
| LN06229        | 05/28/13        | 05/28/13           | 05/31/13          | 05/31/13         | 7600             | TYRONE,          | B26-1            | GC Agilent       | 05               | 3113            |
| Dec State      |                 | MDL / PQL<br>mg/kg | MB<br>mg/kg       | LN06205<br>mg/kg | LN06207<br>mg/kg | LN06214<br>mg/kg | LN06216<br>mg/kg | LN06217<br>mg/kg | LN06219<br>mg/kg | LN0622<br>mg/kg |
| Dilution       | Factor          |                    | 1                 | 1                | 1                | 1                | 1                | 1                | 1                | 1               |
| TEPH (C9       | - C36)          | 4/20               | ND                | 12.6 J           | ND               | 12.6 J           | ND               | 12.5 J           | ND               | 4.4 J           |
| DRO (C10       | ) - C28)        | 29 / 145           | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND              |
| MOTOR          | ROIL            | 35 / 175           | ND                | ND               | ND               | ND               | ND               | ND               | ND               | ND              |
| Quality        | Control D       | ata                | МВ                |                  |                  | 1                |                  |                  |                  |                 |
| Surrogate/In   | ternal Std.     | % ACP              | % RC              | % RC             | % RC             | % RC             | % RC             | % RC             | % RC             | % RC            |
| 1-Chlorooct    | adecane         | (60 - 140)         | 90.5%             | 87.5%            | 79.5%            | 77.5%            | 97.5%            | 99.5%            | 79.5%            | 104%            |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

| SAMPLE       | DATE         | DATE               | DATE      | DATE             |                  |                  | roller htt Telks                                 | INST.            |           |
|--------------|--------------|--------------------|-----------|------------------|------------------|------------------|--------------------------------------------------|------------------|-----------|
| LOG NO.      | SAMPLED      | RECEIVED           | EXTRACTED | ANALYZED         | SAMPI            | LE DESCR         | IPTION                                           | Ш                | RUN BATCH |
| LN06231      | 05/28/13     | 05/28/13           | 05/31/13  | 05/31/13         | 7600             | TYRONE,          | B26-3                                            | GC Agilent       | 060209    |
| LN06241      | 05/28/13     | 05/28/13           | 05/31/13  | 05/31/13         | 7600             | TYRONE,          | B29-1                                            | GC Agilent       | 060209    |
| LN06243      | 05/28/13     | 05/28/13           | 05/31/13  | 05/31/13         | 7600             | TYRONE,          | B29-3                                            | GC Agilent       | 060209    |
| LN06259      | 05/28/13     | 05/28/13           | 05/31/13  | 05/31/13         | 7600             | TYRONE,          | B30-1                                            | GC Agilent       | 060209    |
| LN06261      | 05/28/13     | 05/28/13           | 05/31/13  | 05/31/13         | 7600             | TYRONE,          | B30-3                                            | GC Agilent       | 060209    |
|              |              |                    |           |                  |                  |                  | y tree man (), time tally and () from the manner |                  |           |
|              |              | MDL / PQL<br>mg/kg |           | LN06231<br>mg/kg | LN06241<br>mg/kg | LN06243<br>mg/kg | LN06259<br>mg/kg                                 | LN06261<br>mg/kg |           |
| Dilution     | Factor       |                    |           | 1                | 1                | 1                | 1                                                | 1                |           |
| ТЕРН (С9     | 9 - C36)     | 4 / 20             |           | ND               | 12.6 Ј           | 4.1 J            | 12.7 J                                           | 12.4 J           |           |
| DRO (C10     | ) - C28)     | 29 / 145           |           | ND               | ND               | ND               | ND                                               | ND               |           |
| МОТОР        | ROIL         | 35 / 175           |           | ND               | ND               | ND               | ND                                               | ND               |           |
| Quality      | Control D    | ata                | 2         |                  | *                |                  |                                                  |                  |           |
| Surrogate/In | nternal Std. | % ACP              |           | % RC             | % RC             | % RC             | % RC                                             | % RC             |           |
| 1-Chlorooct  | adecane      | (60 - 140)         |           | 102%             | 71.5%            | 110%             | 105%                                             | 115%             |           |

ND - Not Detected; below method detection limit

ACP % = Acceptable Range of Percent

MDL - Method Detection Limit

% RC = % Recovery

PQL - Practical Quantitation Limit (5 x MDL)

MB - Method Blank

J - above MDL but below PQL

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

#### I. Sample Duplicate

| - SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE<br>EXTRACTED                          | DATE<br>ANALYZED        | SAMPLE DESCRIPTION | INST.<br>ID | RUN BATCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|-----------------|--------------------|--------------------------------------------|-------------------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LN06216 DUP         | 05/28/13        | 05/28/13           | 05/31/13                                   | 05/31/13                | 7600 TYRONE, B22-3 | GC Agilent  | 053113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                 |                    |                                            |                         | N. 49              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 |                    | 10-2-1-11-11-11-11-11-11-11-11-11-11-11-11 |                         | w.m. 10 m.m.)      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                 | Liber              | and and a share                            |                         |                    |             | +10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     |                 | MDL / PQL<br>mg/kg |                                            | LN06216<br>DUP<br>mg/kg |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dilution I          | Factor          |                    |                                            | 1                       |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ТЕРН (С9            | - C36)          | 4/20               |                                            | ND                      |                    |             | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| DRO (C10            | - C28)          | 29 / 145           |                                            | ND                      |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MOTOR               | OIL             | 35 / 175           |                                            | ND                      |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quality             | Control D       | ata                |                                            |                         |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate/Int       | ternal Std.     | % ACP              |                                            | % RC                    |                    |             | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chloroocta        | ndecane         | (60 - 140)         |                                            | 88.5%                   |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

#### QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE | RUN BATCH | DATE ANALYZED | SPIKE CONC.     | RESULT                     | %REC. | Acceptable Range |
|---------|-----------|---------------|-----------------|----------------------------|-------|------------------|
| ТЕРН    | 053113    | 5/31/2013     | 280             | 209                        | 74.6  | 70 - 130         |
| DRO     | 053113    | 5/31/2013     | 500             | 379                        | 75.8  | 70 - 130         |
| МО      | 053113    | 5/31/2013     | 500             | 436                        | 87.2  | 70 - 130         |
|         |           |               |                 |                            |       |                  |
| 1000    | -         |               |                 |                            |       |                  |
|         |           |               | -01             |                            |       | 0.000            |
| 443,000 | (1)       |               | wild musiomobio | to the total and the total |       | mentaju (        |
|         | -         |               |                 |                            |       |                  |
|         |           |               |                 |                            |       |                  |
| -       |           | 1             |                 |                            |       |                  |
|         |           |               |                 | Control of the control     |       |                  |

Analysts

J. Yi

Reviewed by

R. Gentallan

## **ATTACHMENT #4**

## GASOLINE RANGE ORGANICS (GRO) EPA METHOD 8015B

## **ENVIRONMENTAL LABORATORY**

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

|                 |             |                    |             |                  |                    | THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CASE OF THE CA |                  |                  |                  |                 |
|-----------------|-------------|--------------------|-------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-----------------|
| SAMPLE          | DATE        | DATE               | DATE        | DATE             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | INSTR.           |                  |                 |
| LOG NO.         | SAMPLED     | RECEIVED           | EXTRACTED   | ANALYZED         | SAM                | PLE DESCRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PTION            | ID.              | RUN LOG          | BATCH           |
| LN06205         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600.TYR           | ONE, B21-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | AG gas           | 2013             | 30530           |
| LN06207         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRO          | ONE, B21-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | AG gas           | 2013             | 30530           |
| LN06214         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRO          | ONE, B22-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | AG gas           | 2013             | 30530           |
| LN06216         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRO          | ONE, B22-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | AG gas           | 2013             | 30530           |
| LN06217         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRONE, B25-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | AG gas           | 2013             | 30530           |
| LN06219         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRO          | ONE, B25-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | AG gas           | 20130530         |                 |
| LN06229         | 05/28/13    | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYRO          | ONE, B26-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | AG gas           | 2013             | 30530           |
|                 |             |                    |             |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                 |
|                 |             | MDL / PQL<br>mg/kg | MB<br>mg/kg | LN06205<br>mg/kg | LN06207<br>mg/kg   | LN06214<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LN06216<br>mg/kg | LN06217<br>mg/kg | LN06219<br>mg/kg | LN0622<br>mg/kg |
| Dilution Factor |             | 1                  | 1           | 1                | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | -1               | 1                | 1               |
| Gasoline (GRC   | ))          | 1.1 / 5.5          | ND          | ND               | ND                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND               | ND               | ND               | ND              |
| Quality Co      | ontrol Data |                    |             |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | oper est. A      |                 |
| Surrogate/Inter | nal Std.    | % ACP              | % RC        | %RC              | %RC                | %RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %RC              | %RC              | %RC              | %RC             |
| 1, 2 Dichlorobe | enzene-d4   | (70 - 130)         | 109%        | 107%             | 104%               | 108%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108%             | 108%             | 107%             | 108%            |
|                 |             |                    |             | continue.        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |                  |                 |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

## **ENVIRONMENTAL LABORATORY**

# ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

| SAMPLE       | DATE                    | DATE               | DATE        | DATE             |                  |                           |                       | INSTR.           |                   |      |
|--------------|-------------------------|--------------------|-------------|------------------|------------------|---------------------------|-----------------------|------------------|-------------------|------|
| LOG NO.      | SAMPLED                 | RECEIVED           | EXTRACTED   | ANALYZED         | SAM              | PLE DESCRI                | PTION                 | ID.              | RUN LOG/B         | ATCH |
| LN06231      | 05/28/13                | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B26-3                |                       | AG gas           | 20130             | 0530 |
| LN06241      | 05/28/13                | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B29-1                | or a sever account of | AG gas           | 20130             | 0530 |
| LN06243      | 05/28/13                | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B29-3                |                       | AG gas           | 20130             | 0530 |
| LN06259      | 05/28/13                | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR         | ONE, B30-1                |                       | AG gas           | 2013053           |      |
| LN06261      | 05/28/13                | 05/28/13           | 05/29/13    | 05/30/13         | 7600 TYR         | 7600 TYRONE, B30-3 AG gas |                       | 20130530         |                   |      |
|              |                         | MDL / PQL<br>mg/kg | MB<br>mg/kg | LN06231<br>mg/kg | LN06241<br>mg/kg | LN06243<br>mg/kg          | LN06259<br>mg/kg      | LN06261<br>mg/kg |                   |      |
| Dilution Fa  | ctor                    | 1                  | 1           | 1                | 1                | 1                         | 1                     | 1                |                   |      |
| Gasoline (C  | RO)                     | 1.1 / 5.5          | ND          | ND               | ND               | ND                        | ND                    | ND               |                   |      |
| Quality      | Control D               | ata                |             |                  |                  |                           |                       |                  |                   |      |
|              | Surrogate/Internal Std. |                    | % RC        | %RC              | %RC              | %RC                       | %RC                   | %RC              |                   |      |
| Surrogate/Ir | iternal Std.            | % ACP              | 70 KC       | /UICC            | , orte           |                           | -                     | (-)7-2-1         | The second second |      |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

MB - Method Blank

## **ENVIRONMENTAL LABORATORY**

# QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: SOIL
Project: 7600 TYRONE

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| SAMPLE  | BATCH    | SAMPLE | SPIKE |      |      |      | 6     |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|------|------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS | MSD  | % MSD | RPD  | % ACP  | ACE |
| LN06205 | 20130530 | ND     | 22.0  | 22.4 | 102% | 22.9 | 104%  | 2.2% | 70-130 | 30  |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

# II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130530 | 5/29/2013     | 22.0        | 20.9   | 95.0   | 70 - 130         |

Analyzed by

B. Estrada

Reviewed by

R. Gentallan

PS 6/4/13

# **ATTACHMENT #5**

# POLYCHLORINATED BIPHENYLS (PCBs)

EPA Method 8082

#### ENVIRONMENTAL LABORATORY DATA REPORT

# ANALYTICAL RESULT FOR PCBs by EPA600/SR-94/112/8082 (Polychlorinated Biphenyls) Sample Matrix: Soil (Low Level)

| LABORATORY         | DATE                                 | DATE               | DATE                                    | DATE               |                    |                    |         |          |     |
|--------------------|--------------------------------------|--------------------|-----------------------------------------|--------------------|--------------------|--------------------|---------|----------|-----|
| LOG NO             | SAMPLED                              | RECEIVED           | EXTRACTECD                              | ANALY2ED           |                    | SAMPLE DESCI       | RIPTION |          |     |
| LN06217            | 5/28/2013                            | 5/28/2013          | 5/30/2013                               | 5/31/2013          | 7600 TYRO          | NE, B25-1          |         |          |     |
| LN06219            | 5/28/2013                            | 5/28/2013          | 5/30/2013                               | 5/31/2013          | 7600 TYRO          | NE, B25-3          |         |          |     |
| LN06229            | 5/28/2013                            | 5/28/2013          | 5/30/2013                               | 5/31/2013          | 7600 TYRO          | NE, B26-1          |         |          |     |
| LN06231            | 5/28/2013                            | 5/28/2013          | 5/30/2013                               | 5/31/2013          | 7600 TYRONE, B26-3 |                    |         |          |     |
|                    | 1 4                                  | p. 1               | 111111111111111111111111111111111111111 |                    |                    | 0.0000             |         |          |     |
|                    |                                      |                    |                                         |                    |                    |                    |         | 20 10000 |     |
| PARAMETERS         |                                      | MDL/PQL<br>(mg/kg) | LN06217<br>(mg/kg)                      | LN06219<br>(mg/kg) | LN06229<br>(mg/kg) | LN06231<br>(mg/kg) |         |          |     |
| PCB - 1221         | 1114 o Contact o Colonia - 11/21/00/ | 0.07/0.2           | ND                                      | ND                 | ND ND              |                    |         |          |     |
| PCB - 1232         | : E                                  | 0.07/0.2           | ND                                      | ND                 | ND                 | ND                 |         |          |     |
| PCB - 1242         |                                      | 0.07/0.2           | ND                                      | ND                 | ND                 | ND                 | 1       |          |     |
| PCB - 1248         |                                      | 0.07/0.2           | ND                                      | ND                 | ND                 | ND                 |         |          |     |
| PCB - 1254         |                                      | 0.07/0.2           | ND                                      | ND                 | ND                 | ND                 |         |          |     |
| PCB - 1260         |                                      | 0.07/0.2           | ND                                      | ND                 | ND                 | ND                 |         |          |     |
| SURROGATE PARA     | AMETERS                              | QC LIMIT<br>%      | % Recovery                              | % Recovery         | % Recovery         | % Recovery         | 440.000 | 18       |     |
| DECACHLOROBIPHENYL |                                      | 70 - 130           | 94                                      | 95                 | 98                 | 106                |         |          | 1 . |

MDL - Method Detection Limit

ND - Not Detected; below method detection limit

Analyst: D. Wong

Reviewed by: 12 6/4/13

COC: 13-1321 Page 2 of 3

Project Name:

Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

### QA/QC Report

I. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

ANALYTICAL METHOD:

USEPA 600/SR-94/112

**USEPA 8082** 

DATE ANALYZED: 06/04/13

BATCH #:

53013

LAB SAMPLE I.D.: LN06364

UNIT:

mg/kg

| PARAMETERS | SAMPLE<br>RESULT |      | MS   | %MS | (DUP)<br>SPIKE<br>CONC | MSD  | %MSD | RPD | MS/MSD<br>% REC.<br>LIMIT | %<br>RPD<br>LIMIT |
|------------|------------------|------|------|-----|------------------------|------|------|-----|---------------------------|-------------------|
| PCB-1242   | 0.0              | 25.0 | 20.8 | 83  | 25.0                   | 20.3 | 81   | 2%  | 70 - 130                  | 30                |
| PCB-1260   | 0.0              | 25,0 | NR   | NR  | 25.0                   | NR   | NR   | NR  | 70 - 130                  | 30                |

NR = Not reported dut to matrix interference.

MS - Matrix Spike MSD - Matrix Spike Dupllicate %MS - Percent Recovery of Matrix Spike

RPD - Relative Percent Difference %MSD - Percent Recovery of Matrix Spike Duplicate

Reviewed by: 14/13

COC: 13-1321 Page 3 of 3

Project Name: Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

## II. Laboratory Control Check Sample (LCS)

DATE ANALYZED: 06/04/13

ANALYTICAL METHOD: USEPA 600/SR-94/112

BATCH No. 053013 UNIT: mg/kg USEPA 8082

|            | 200.00 | LCS1   | 0.  | LCS2   |     | ACCEPTANCE |
|------------|--------|--------|-----|--------|-----|------------|
| PARAMETERS | CONC   | RESULT | RC. | RESULT | RC. | LIMITS (%) |
| PCB - 1242 | 25.0   | 19.6   | 78  | NA     | NA  | 80 - 120   |
| PCB - 1260 | 25.0   | 21.9   | 88  | NA     | NA  | 80 - 120   |

Note: Low LCS recovery for 1242 (78%). Although LCS is 2% below acceptance limit, it should have no significant effect on the quality of this batch of analyses.

%RC - Percent Recovery NA - Not Analyzed Batch - ten samples per batch

Reviewed by: As 6/4/13

# **ATTACHMENT #6**

**PESTICIDES** 

**EPA METHOD 8081** 

# **ATTACHMENT #7**

Semi Volatile Organic Compounds (SVOCs)

**EPA METHOD 8270C** 





#### CERTIFICATE OF ANALYSIS

Client:

LADWP - Environmental Laboratory

1630 North Main Street, Bldg. 7, Rm 311

Los Angeles, CA 90012

Report Date:

06/05/13 16:04

Received Date:

05/30/13 09:50

Turn Around:

5 workdays

Attention: Kevin Han

Phone: Fax:

213-367-7267 (213) 367-7285 Work Order #:

3E30014

49067-3, COC #13-1321,26

Client Project:

7600 Tyrone Ave, COC #13-1321,26,

WO#

#### NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

#### Dear Kevin Han:

Enclosed are the results of analyses for samples received 05/30/13 09:50 with the Chain of Custody document. The samples were received in good condition, at 2.8 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

#### Case Narrative:

Reviewed by:

Kim G Tu Project Manager











LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 0

05/30/13 09:50

Date Reported: 06/05/13 16:04

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampled by: Sample Comments | Lab ID                                 | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LN06205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-01                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 08:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-02                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 08:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-03                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 08:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-04                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 08:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-05                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 09:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-06                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 09:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-07                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 09:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-08                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 09:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-09                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 10:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-10                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 10:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-11                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-12                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/28/13 11:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-13                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 08:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-14                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 08:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-15                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 09:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-16                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 09:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-17                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 09:06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-18                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 09:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-19                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 09:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LN06343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client                      | 3E30014-20                             | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05/29/13 09:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P |                             | ************************************** | A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |

ANALYSES

Semivolatile Organic Compounds by GC/MS



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA 90012 Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/28/13 08:08

Project ID: 7600 Tyrone Ave, COC #13-1321, 26, WO#

Date Reported:

06/05/13 16:04

3E30014-01

LN06205

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared | : 06/01/13 | 3 09:40 | Analyzed: 0 | 6/04/13 16:04 | Analyst: abj |
|---------------------------------|----------------|----------|------------|---------|-------------|---------------|--------------|
| Analyte                         | Result         | MDL      | MRL        | ML      | Units       | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene          | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 1,2-Dichlorobenzene             | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 1,3-Dichlorobenzene             | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 1,4-Dichlorobenzene             | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 4             |              |
| 2,4,5-Trichlorophenol           | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2,4,6-Trichlorophenol           | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2,4-Dichlorophenol              | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2,4-Dimethylphenol              | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2,4-Dinitrophenol               | ND             | 3.6      | 23         | 23      | mg/kg       | 1             |              |
| 2,4-Dinitrotoluene              | ND             | 0.094    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2,6-Dinitrotoluene              | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2-Chloronaphthalene             | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2-Chlorophenol                  | ND             | 0.094    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2-Methylnaphthalene             | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2-Methylphenol                  | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2-Nitroaniline                  | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 2-Nitrophenol                   | ND             | 0.21     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 3 & 4-Methylphenol              | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 3,3'-Dichlorobenzidine          | ND             | 1.4      | 2.3        | 2.3     | mg/kg       | 4             |              |
| 3-Nitroaniline                  | ND             | 0.14     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 4,6-Dinitro-2-methylphenol      | ND             | 1.4      | 4.7        | 4.7     | mg/kg       | 1             |              |
| 4-Bromophenyl phenyl ether      | ND             | 0.066    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 4-Chloro-3-methylphenol         | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 4-Chloroaniline                 | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |              |
| 1-Chlorophenyl phenyl ether     | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |              |
| 1-Nitroaniline                  | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |              |
| l-Nitrophenol                   | ND             | 0.14     | 0.47       | 0.47    | mg/kg       | 1             |              |
| Acenaphthene                    | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |              |
| Acenaphthylene                  | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |              |
| Aniline                         | ND             | 0.22     | 0.47       | 0.47    | mg/kg       | 1             |              |
| Anthracene                      | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |              |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.094    | 0.47       | 0.47    | mg/kg       | 1             |              |
| Benzidine                       | ND             | 1.2      | 4.7        | 4.7     | mg/kg       | 1             |              |
| lenzo (a) anthracene            | ND             | 0.066    | 0.47       | 0.47    | mg/kg       | 3             |              |
| lenzo (a) pyrene                | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |              |
| enzo (b) fluoranthene           | ND             | 0.066    | 0.47       | 0.47    | mg/kg       | 1             |              |
| enzo (g,h,i) perylene           | 0.10           | 0.056    | 0.94       | 0.94    | mg/kg       | 1             | J            |
| enzo (k) fluoranthene           | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |              |
| enzoic acid                     | ND             | 1.8      | 23         | 23      | mg/kg       | 1             |              |
| enzyl alcohol                   | ND             | 0.13     | 0.47       | 0.47    | mg/kg       | 1             |              |

Page 3 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E

3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Project ID:

7600 Tyrone Ave, COC #13-1321,26, WO# Date Reported:

06/05/13 16:04

Sampled: 05/28/13 08:08

3E30014-01 LN06205 Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Analyte   Result   MDL   MRL   ML   Units   Dilution   Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 16:04 | Analyst: abj |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|------------|-----------|---------|-------------|---------------|--------------|
| Bis(2-chlorostryt)either   ND   0.10   0.47   0.47   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyte                     | Result         | MDL        | MRL       | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroisopropyl)ether   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bis(2-chloroethoxy)methane  | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Bisic   C-ethylinexyliphthalate   ND   0.11   0.47   0.47   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Butyl benzyl phthalate   ND   0.14   0.47   0.47   mg/kg   1   Cartazole   ND   0.085   0.47   0.47   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Butyl benzyl phthalate      | ND             | 0.14       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene   0.099   0.047   0.94   0.94   mg/kg   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carbazole                   | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Dibenzofuran   ND   0.085   0.47   0.47   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chrysene                    | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dibenzo (a,h) anthracene    | 0.099          | 0.047      | 0.94      | 0.94    | mg/kg       | 1             | J            |
| Dimethyl phthalate   ND   0.83   2.3   2.3   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dibenzofuran                | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Din-butyl phthalate   ND   0.075   0.47   0.47   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diethyl phthalate           | ND             | 0.056      | 0.47      | 0.47    | mg/kg       | 4)            |              |
| Din-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dimethyl phthalate          | ND             | 0.83       | 2.3       | 2.3     | mg/kg       | 1             |              |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Di-n-butyl phthalate        | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Fluorene   ND   0.066   0.47   0.47   mg/kg   1     Hexachlorobutadiene   ND   0.075   0.47   0.47   mg/kg   1     Hexachlorobutadiene   ND   0.085   0.47   0.47   mg/kg   1     Hexachlorocyclopentadiene   ND   0.11   0.47   0.47   mg/kg   1     Hexachlorocyclopentadiene   ND   0.11   0.47   0.47   mg/kg   1     Hexachlorocyclopentadiene   ND   0.066   0.47   0.47   mg/kg   1     Hexachlorocyclopentadiene   ND   0.085   0.94   0.94   mg/kg   1     Indeno (1,2,3-cd) pyrene   0.15   0.085   0.94   0.94   mg/kg   1     Isophorone   ND   0.094   0.47   0.47   mg/kg   1     Naphthalene   ND   0.10   0.47   0.47   mg/kg   1     Nitrobenzene   ND   0.10   0.47   0.47   mg/kg   1     Nitrobenzene   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodimethylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.086   0.47   0.47   mg/kg   1     Pentachlorophenol   0.39   0.15   0.47   0.47   mg/kg   1     Phenanthrene   ND   0.075   0.47   0.47   mg/kg   1     Phenol   ND   0.075   0.47   0.47   mg/kg   1     Pyrene   ND   0.075   0.47   0.47   mg/kg   1     Pyrene   ND   0.075   0.47   0.47   mg/kg   1     Pyridine   ND   0.047   0.47   mg/kg   1     Pyridine   ND   0.075   0.47   0.47   mg/kg   1     Pyridine   ND   0.047   0.47   mg/kg   1     Pyridine   ND   0.04 | Di-n-octyl phthalate        | ND             | 0.13       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorobenzene   ND   0.075   0.47   0.47   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluoranthene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorobutadiene   ND   0.085   0.47   0.47   mg/kg   1     Hexachlorocyclopentadiene   ND   0.11   0.47   0.47   mg/kg   1     Hexachlorocyclopentadiene   ND   0.066   0.47   0.47   mg/kg   1     Indeno (1,2,3-cd) pyrene   0.15   0.085   0.94   0.94   mg/kg   1     Isophorone   ND   0.094   0.47   0.47   mg/kg   1     Naphthalene   ND   0.10   0.47   0.47   mg/kg   1     Naphthalene   ND   0.10   0.47   0.47   mg/kg   1     Nitrobenzene   ND   0.10   0.47   0.47   mg/kg   1     N-Nitrosodimethylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.066   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.066   0.47   0.47   mg/kg   1     Pentachlorophenol   0.39   0.15   0.47   0.47   mg/kg   1     Phenol   ND   0.075   0.47   0.47   mg/kg   1     Phenol   ND   0.14   0.47   0.47   mg/kg   1     Pyrene   ND   0.075   0.47   0.47   mg/kg   1     Pyrene   ND   0.075   0.47   0.47   mg/kg   1     Pyrene   ND   0.075   0.47   0.47   mg/kg   1     Surr. 2,4,6-Tribromophenol   70 %   Conc.:33.0   40-97   %     Surr. 2-Fluorobiphenyl   75 %   Conc.:43.9   26-115   %     Surr. Nitrobenzene-d5   79 %   Conc.:43.9   26-115   %     Surr. Nitrobenzene-d5   79 %   Conc.:40.7   36-105   %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluorene                    | ND             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   ND   0.11   0.47   0.47   mg/kg   1     Hexachloroethane   ND   0.066   0.47   0.47   mg/kg   1     Indeno (1,2,3-cd) pyrene   0.15   0.085   0.94   0.94   mg/kg   1     Isophorone   ND   0.094   0.47   0.47   mg/kg   1     Naphthalene   ND   0.10   0.47   0.47   mg/kg   1     Naphthalene   ND   0.10   0.47   0.47   mg/kg   1     Nitrobenzene   ND   0.10   0.47   0.47   mg/kg   1     N-Nitrosodimethylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenylamine   ND   0.085   0.47   0.47   mg/kg   1     N-Nitrosodiphenol   0.39   0.15   0.47   0.47   mg/kg   1     Pentachlorophenol   0.39   0.15   0.47   0.47   mg/kg   1     Phenanthrene   ND   0.075   0.47   0.47   mg/kg   1     Phenol   ND   0.14   0.47   0.47   mg/kg   1     Pyrene   ND   0.075   0.47   0.47   mg/kg   1     Py | Hexachlorobenzene           | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachloroethane   ND   0.066   0.47   0.47   mg/kg   1   Indeno (1,2,3-cd) pyrene   0.15   0.085   0.94   0.94   mg/kg   1   J   Isophorone   ND   0.094   0.47   0.47   mg/kg   1   Naphthalene   ND   0.10   0.47   0.47   mg/kg   1   Nitrobenzene   ND   0.10   0.47   0.47   mg/kg   1   Nitrobenzene   ND   0.10   0.47   0.47   mg/kg   1   N-Nitrosodimethylamine   ND   0.085   0.47   0.47   mg/kg   1   N-Nitrosodimethylamine   ND   0.085   0.47   0.47   mg/kg   1   N-Nitrosodiphenylamine   ND   0.085   0.47   0.47   mg/kg   1   N-Nitrosodiphenylamine   ND   0.066   0.47   0.47   mg/kg   1   J   Pentachlorophenol   0.39   0.15   0.47   0.47   mg/kg   1   J   Phenanthrene   ND   0.075   0.47   0.47   mg/kg   1   J   Phenanthrene   ND   0.075   0.47   0.47   mg/kg   1   J   Pyrene   ND   0.075   0.47   0.47   mg/kg   1   Pyrene   ND   0.047   0.94   0.94   mg/kg   1   Pyrene   ND   0.947   0.94   0.94   mg/kg   1   Pyrene   ND   0.947   0.94   0.94   mg/kg   1   Pyrene   ND   0.947   0.94   0.94   0.94   mg/kg   1   Pyrene   ND   0.947   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0. | Hexachlorobutadiene         | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Indeno (1,2,3-cd) pyrene         0.15         0.085         0.94         0.94         mg/kg         1         J           Isophorone         ND         0.094         0.47         0.47         mg/kg         1           Naphthalene         ND         0.10         0.47         0.47         mg/kg         1           Nitrobenzene         ND         0.10         0.47         0.47         mg/kg         1           N-Nitrosodimethylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodiphenylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodiphenylamine         ND         0.086         0.47         0.47         mg/kg         1           N-Nitrosodiphenylamine         ND         0.066         0.47         0.47         mg/kg         1           Pentachlorophenol         0.39         0.15         0.47         0.47         mg/kg         1           Phenol         ND         0.075         0.47         0.47         mg/kg         1           Pyrene         ND         0.047         0.94         0.94         mg/kg         1           Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorocyclopentadiene   | ND             | 0.11       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexachloroethane            | ND             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Naphthalene         ND         0.10         0.47         0.47         mg/kg         1           Nitrobenzene         ND         0.10         0.47         0.47         mg/kg         1           N-Nitrosodimethylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodiphenylamine         ND         0.086         0.47         0.47         mg/kg         1           Pentachlorophenol         0.39         0.15         0.47         0.47         mg/kg         1         J           Phenol         ND         0.075         0.47         0.47         mg/kg         1         J           Pyrene         ND         0.047         0.47         mg/kg         1         J         J         Sur. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %         Sur. 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Indeno (1,2,3-cd) pyrene    | 0.15           | 0.085      | 0.94      | 0.94    | mg/kg       | 1             | J            |
| Nitrobenzene         ND         0.10         0.47         0.47         mg/kg         1           N-Nitrosodimethylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodi-n-propylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodiphenylamine         ND         0.066         0.47         0.47         mg/kg         1           Pentachlorophenol         0.39         0.15         0.47         0.47         mg/kg         1           Phenanthrene         ND         0.075         0.47         0.47         mg/kg         1           Phenol         ND         0.14         0.47         0.47         mg/kg         1           Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         79 %         Conc:40.7         36-105 <td>Isophorone</td> <td>ND</td> <td>0.094</td> <td>0.47</td> <td>0.47</td> <td>mg/kg</td> <td>1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Isophorone                  | ND             | 0.094      | 0.47      | 0.47    | mg/kg       | 1             |              |
| N-Nitrosodimethylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodi-n-propylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodiphenylamine         ND         0.066         0.47         0.47         mg/kg         1           Pentachlorophenol         0.39         0.15         0.47         0.47         mg/kg         1           Phenanthrene         ND         0.075         0.47         0.47         mg/kg         1           Phenol         ND         0.14         0.47         0.47         mg/kg         1           Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. 2-Fluorophenol         87 %         Conc:40.7         36-105         % <td>Naphthalene</td> <td>ND</td> <td>0.10</td> <td>0.47</td> <td>0.47</td> <td>mg/kg</td> <td>1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Naphthalene                 | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine         ND         0.085         0.47         0.47         mg/kg         1           N-Nitrosodiphenylamine         ND         0.066         0.47         0.47         mg/kg         1           Pentachlorophenol         0.39         0.15         0.47         0.47         mg/kg         1           Phenanthrene         ND         0.075         0.47         0.47         mg/kg         1           Phenol         ND         0.14         0.47         0.47         mg/kg         1           Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         87 %         Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nitrobenzene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| N-Nitrosodiphenylamine         ND         0.066         0.47         0.47         mg/kg         1           Pentachlorophenol         0.39         0.15         0.47         0.47         mg/kg         1           Phenanthrene         ND         0.075         0.47         0.47         mg/kg         1           Phenol         ND         0.14         0.47         0.47         mg/kg         1           Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         79 %         Conc:18.5         49-105         %           Surr. Phenol-d5         87 %         Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Nitrosodimethylamine      | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Pentachlorophenol         0.39         0.15         0.47         0.47         mg/kg         1         J           Phenanthrene         ND         0.075         0.47         0.47         mg/kg         1           Phenol         ND         0.14         0.47         0.47         mg/kg         1           Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorophenol         93 %         Conc:17.7         39-100         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         79 %         Conc:18.5         49-105         %           Surr. Phenol-d5         87 %         Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N-Nitrosodi-n-propylamine   | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Phenanthrene         ND         0.075         0.47         0.47         mg/kg         1           Phenol         ND         0.14         0.47         0.47         mg/kg         1           Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorophenol         75 %         Conc:17.7         39-100         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         79 %         Conc:18.5         49-105         %           Surr. Phenol-d5         87 %         Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N-Nitrosodiphenylamine      | ND             | 0.066      | 0:47      | 0.47    | mg/kg       | 1             |              |
| Phenol         ND         0.14         0.47         0.47         mg/kg         1           Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorobiphenyl         75 %         Conc:17.7         39-100         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         79 %         Conc:18.5         49-105         %           Surr. Phenol-d5         87 %         Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pentachlorophenol           | 0.39           | 0.15       | 0.47      | 0.47    | mg/kg       | 1             | J            |
| Pyrene         ND         0.075         0.47         0.47         mg/kg         1           Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorophenol         75 %         Conc:17.7         39-100         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         79 %         Conc:18.5         49-105         %           Surr. Phenol-d5         87 %         Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenanthrene                | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Pyridine         ND         0.047         0.94         0.94         mg/kg         1           Surr. 2,4,6-Tribromophenol         70 %         Conc:33.0         40-97         %           Surr. 2-Fluorobiphenyl         75 %         Conc:17.7         39-100         %           Surr. 2-Fluorophenol         93 %         Conc:43.9         26-115         %           Surr. Nitrobenzene-d5         79 %         Conc:18.5         49-105         %           Surr. Phenol-d5         87 %         Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Phenol                      | ND             | 0.14       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Surr. 2,4,6-Tribromophenol       70 %       Conc:33.0       40-97       %         Surr. 2-Fluorobiphenyl       75 %       Conc:17.7       39-100       %         Surr. 2-Fluorophenol       93 %       Conc:43.9       26-115       %         Surr. Nitrobenzene-d5       79 %       Conc:18.5       49-105       %         Surr. Phenol-d5       87 %       Conc:40.7       36-105       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pyrene                      | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Surr. 2-Fluorobiphenyl       75 %       Conc: 17.7       39-100       %         Surr. 2-Fluorophenol       93 %       Conc: 43.9       26-115       %         Surr. Nitrobenzene-d5       79 %       Conc: 18.5       49-105       %         Surr. Phenol-d5       87 %       Conc: 40.7       36-105       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyridine                    | ND             | 0.047      | 0.94      | 0.94    | mg/kg       | 1             |              |
| Surr. 2-Fluorophenol       93 %       Conc:43.9       26-115       %         Surr. Nitrobenzene-d5       79 %       Conc:18.5       49-105       %         Surr. Phenol-d5       87 %       Conc:40.7       36-105       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sur: 2,4,6-Tribromophenol   | 70 %           | Conc:33.0  |           | 40-97   | %           |               |              |
| Surr. Nitrobenzene-d5         79 % Conc:18.5         49-105         %           Surr. Phenol-d5         87 % Conc:40.7         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surr. 2-Fluorobiphenyl      | 75 %           | Conc: 17.7 | 3         | 39-100  | %           |               |              |
| Surr. Phenol-d5 87 % Conc:40.7 36-105 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surr. 2-Fluorophenol        | 93 %           | Conc:43.9  | 2         | 26-115  | %           |               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surr. Nitrobenzene-d5       | 79 %           | Conc: 18.5 | 4         | 19-105  | %           |               |              |
| Surr. Terphenyl-d14 96 % Conc:22.5 36-106 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Surr. Phenol-d5             | 87 %           | Conc:40.7  | 3         | 86-105  | %           |               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sun: Terphenyl-d14          | 96 %           | Conc:22.5  | 3         | 6-106   | %           |               |              |





Sampled: 05/28/13 08:04

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-02 LN06207

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared | : 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 16:34 | Analyst: abj |
|---------------------------------|----------------|----------|-----------|---------|-------------|---------------|--------------|
| Analyte                         | Result         | MDL      | MRL       | ML      | Units       | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene          | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             | -            |
| 1,2-Dichlorobenzene             | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 1,3-Dichlorobenzene             | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 1,4-Dichlorobenzene             | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4,5-Trichlorophenol           | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4,6-Trichlorophenol           | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4-Dichloraphenol              | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4-Dirnethylphenol             | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2,4-Dinitrophenol               | ND             | 3.6      | 24        | 24      | mg/kg       | 1             |              |
| 2,4-Dinitrotoluene              | ND             | 0.094    | 0.47      | 0.47    | mg/kg       | 1             | 8            |
| 2,6-Dinitrotoluene              | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Chloronaphthalene             | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Chlorophenol                  | ND             | 0.094    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Methylnaphthalene             | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Methylphenol                  | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Nitroaniline                  | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 2-Nitrophenol                   | ND             | 0.21     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 3 & 4-Methylphenol              | ND             | 0.11     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 3,3'-Dichlorobenzidine          | ND             | 1.4      | 2.4       | 2.4     | mg/kg       | 1             | 100          |
| 3-Nitroaniline                  | ND             | 0.14     | 0.47      | 0.47    | mg/kg       | 1             |              |
| 1,6-Dinitro-2-methylphenol      | ND             | 1.4      | 4.7       | 4.7     | mg/kg       | 1             |              |
| Bromophenyl phenyl ether        | ND             | 0.066    | 0.47      | 0.47    | mg/kg       | 4             |              |
| -Chloro-3-methylphenal          | ND             | 0.10     | 0.47      | 0.47    | mg/kg       | it            |              |
| -Chloroaniline                  | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| -Chlorophenyl phenyl ether      | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| -Nitroaniline                   | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| -Nitrophenol                    | ND             | 0.14     | 0,47      | 0.47    | mg/kg       | 1             |              |
| cenaphthene                     | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| cenaphthylene                   | ND             | 0.085    | 0.47      | 0.47    | mg/kg       | 1             |              |
| niline                          | ND             | 0.22     | 0.47      | 0.47    | mg/kg       | 1             |              |
| nthracene                       | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | - 1           |              |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.094    | 0.47      | 0.47    | mg/kg       | 1             |              |
| enzidine                        | ND             | 1.2      | 4.7       | 4.7     | mg/kg       | 1             |              |
| enzo (a) anthracene             | ND             | 0.066    | 0.47      | 0.47    | mg/kg       | 1             |              |
| enzo (a) pyrene                 | ND             | 0.075    | 0.47      | 0.47    | mg/kg       | 1             |              |
| enzo (b) fluoranthene           | ND             | 0.066    | 0.47      | 0.47    | mg/kg       | 4             |              |
| enzo (g,h,i) perylene           | ND             | 0.057    | 0.94      | 0.94    | mg/kg       | 1             |              |
| enzo (k) fluoranthene           | ND             | 0.12     | 0.47      | 0.47    | mg/kg       | 1             |              |
| enzoic acid                     | ND             | 1.8      | 24        | 24      | mg/kg       | 1             |              |
| enzyl alcohol                   | ND             | 0.13     | 0.47      | 0.47    | mg/kg       | 1             |              |

Page 5 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/28/13 08:04

Report ID: 3E30014

7600 Tyrone Ave, COC

Project ID: 7600 Tyrone Ave,C0 #13-1321,26, WO#

LN06207

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-02

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 16:34 | Analyst: abj |
|-----------------------------|----------------|------------|-----------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL       | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.47      | 0.47    | mg/kg       | . 1           |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | -1            |              |
| Chrysene                    | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.047      | 0.94      | 0.94    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.057      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Dimethyl phthalate          | - ND           | 0.83       | 2.4       | 2.4     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorobenzene           | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.11       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Hexachloroethane            | ND             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.085      | 0.94      | 0.94    | mg/kg       | .1            |              |
| Isophorone                  | ND             | 0.094      | 0.47      | 0.47    | mg/kg       | t             |              |
| Naphthalene                 | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Nitrobenzene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg       | 1             |              |
| N-Nitrosodimethylamine      | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.085      | 0.47      | 0.47    | mg/kg       | 1             |              |
| N-Nitrosodiphenylamine      | ND             | 0.066      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Pentachlorophenol           | ND             | 0.15       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Phenanthrene                | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Phenol                      | ND             | 0.14       | 0.47      | 0.47    | mg/kg       | 1             |              |
| Pyrene                      | ND             | 0.075      | 0.47      | 0.47    | mg/kg       | 1             |              |
| Pyridine                    | ND             | 0.047      | 0.94      | 0.94    | mg/kg       | 1             |              |
| Surr. 2,4,6-Tribromophenol  | 58 %           | Conc:27.2  |           | 40-97   | %           |               |              |
| Surr: 2-Fluorobiphenyl      | 64 %           | Conc: 15.2 | 3         | 9-100   | %           |               |              |
| Sur: 2-Fluorophenol         | 73 %           | Conc:34.2  |           | 6-115   | %           |               |              |
| Surr: Nitrobenzene-d5       | 67 %           | Conc: 15.8 |           | 9-105   | %           |               |              |
| Surr. Phenol-d5             | 72 %           | Conc:33.8  |           | 6-105   | %           |               |              |
| Surr: Terphenyl-d14         | 73 %           | Conc:17.3  |           | 6-106   | %           |               |              |





Sampled: 05/28/13 08:50

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Date Received: 05/30/13 09:50

Project ID: 7600 Tyrone Ave, COC #13-1321, 26, WO# Date Reported:

06/05/13 16:04

3E30014-03

LN06214

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | Analyst: abj |           |
|----------------------------------|----------------|----------|------------|---------|-------------|--------------|-----------|
| Analyte                          | Result         | MDL      | MRL        | ML      | Units       | Dilution     | Qualifier |
| 1,2,4-Trichlorobenzene           | ND             | 0.089    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 1,2-Dichlorobenzene              | ND             | 0.11     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 1,3-Dichlorobenzene              | ND             | 0.079    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 1,4-Dichlorobenzene              | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2,4,5-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2,4,6-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2,4-Dichlorophenol               | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2,4-Dimethylphenol               | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2,4-Dinitrophenol                | ND             | 3.7      | 25         | 25      | mg/kg       | 1            |           |
| 2,4-Dinitrotoluene               | ND             | 0.099    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2,6-Dinitrotoluene               | ND .           | 0.079    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2-Chloronaphthalene              | ND             | 0.079    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2-Chlorophenol                   | ND             | 0.099    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2-Methylnaphthalene              | ND             | 0.089    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2-Methylphenol                   | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2-Nitroaniline                   | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 2-Nitrophenol                    | ND             | 0.22     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 3 & 4-Methylphenol               | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 3,3'-Dichlorobenzidine           | ND             | 1.5      | 2.5        | 2.5     | mg/kg       | 1            |           |
| 3-Nitroaniline                   | ND             | 0.15     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5      | 4.9        | 4.9     | mg/kg       | 1            |           |
| 4-Bromophenyl phenyl ether       | ND             | 0.069    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 4-Chloro-3-methylphenol          | ND             | 0.11     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 4-Chloroaniline                  | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 4-Chlorophenyl phenyl ether      | ND             | 0.089    | 0.49       | 0.49    | mg/kg       | 1            |           |
| 4-Nitroaniline                   | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1            |           |
| 4-Nitrophenol                    | ND             | 0.15     | 0.49       | 0.49    | mg/kg       | 1            |           |
| Acenaphthene                     | ND             | 0.089    | 0.49       | 0.49    | mg/kg       | 1            |           |
| Acenaphthylene                   | ND             | 0.089    | 0.49       | 0.49    | mg/kg       | 1            |           |
| Aniline                          | ND             | 0.23     | 0.49       | 0.49    | mg/kg       | 1            |           |
| Anthracene                       | ND             | 0.079    | 0.49       | 0.49    | mg/kg       | 1            |           |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.099    | 0.49       | 0.49    | mg/kg       | 1            |           |
| Benzidine                        | ND             | 1.2      | 4.9        | 4.9     | mg/kg       | 1            |           |
| Benzo (a) anthracene             | ND             | 0.069    | 0.49       | 0.49    | mg/kg       | (3)          |           |
| Benzo (a) pyrene                 | ND             | 0.079    | 0.49       | 0.49    | mg/kg       | 1.1          |           |
| Benzo (b) fluoranthene           | ND             | 0.069    | 0.49       | 0.49    | mg/kg       | 1            |           |
| Benzo (g,h,i) perylene           | ND             | 0.059    | 0.99       | 0.99    | mg/kg       | 1            |           |
| Benzo (k) fluoranthene           | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1            |           |
| Benzoic acid                     | ND             | 1.9      | 25         | 25      | mg/kg       | 1            |           |
| Benzyl alcohol                   | ND             | 0.14     | 0.49       | 0.49    | mg/kg       | 1            |           |

Page 7 of 48



Sampled: 05/28/13 08:50

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

3E30014-03

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

LN06214

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

Sampled By: Client
Semivolatile Organic Compounds by GC/MS

Matrix: Solid

| Di-n-octyl phthalate   ND   0.14   0.49   0.49   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method: EPA 8270C           | Batch: W3F0001 | Prepared: 06/01/13 09:40 |      |       | Analyzed: 06/04/13 20:08 |          | Analyst: abj |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--------------------------|------|-------|--------------------------|----------|--------------|
| Bis(2-chloroebryr)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte                     | Result         | MDL                      | MRL  | ML    | Units                    | Dilution | Qualifier    |
| Bis(2-chlorolsopropyl)ether         ND         0.14         0.49         0.49         mg/kg         1           Bis(2-chlorolsopropyl)ether         ND         0.12         0.49         0.49         mg/kg         1           Bis(2-chloryl)phthalate         ND         0.15         0.49         0.49         mg/kg         1           Carbazole         ND         0.089         0.49         0.49         mg/kg         1           Chrysene         ND         0.089         0.49         0.49         mg/kg         1           Dibenzo (a, h) anthracene         ND         0.089         0.49         0.49         mg/kg         1           Dibethyl phthalate         ND         0.059         0.49         0.49         mg/kg         1           Din-butyl phthalate         ND         0.079         0.49         0.49         mg/kg         1           Din-butyl phthalate         ND         0.14         0.49         0.49         mg/kg         1           Din-butyl phthalate         ND         0.14         0.49         0.49         mg/kg         1           Din-butyl phthalate         ND         0.11         0.49         0.49         mg/kg         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-chloroethoxy)methane  | ND             | 0.089                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Bis(2-ethylhexyl)pithalate   ND   0.12   0.49   0.49   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bis(2-chloroethyl)ether     | ND             | 0.11                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Bulyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis(2-chloroisopropyl)ether | ND             | 0.14                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Carbazole ND 0.089 0.49 0.49 mg/kg 1 Chrysene ND 0.089 0.49 0.49 mg/kg 1 Dibenzo (a,h) anthracene ND 0.049 0.99 mg/kg 1 Dibenzo (a,h) anthracene ND 0.089 0.49 0.49 mg/kg 1 Dibenzo furan ND 0.089 0.49 0.49 mg/kg 1 Dibenzo furan ND 0.089 0.49 0.49 mg/kg 1 Dibenzo furan ND 0.059 0.49 0.49 mg/kg 1 Dimethyl phthalate ND 0.079 0.49 0.49 mg/kg 1 Din-butyl phthalate ND 0.089 0.49 0.49 mg/kg 1 Din-butyl phthalate ND 0.099 0.49 mg/k | Bis(2-ethylhexyl)phthalate  | ND             | 0.12                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Chrysene         ND         0.089         0.49         0.49         mg/kg         1           Dibenzo (a,h) anthracene         ND         0.049         0.99         0.99         mg/kg         1           Dibenzo furan         ND         0.089         0.49         0.49         mg/kg         1           Dienbetlyl phthalate         ND         0.059         0.49         0.49         mg/kg         1           Din-brytlyl phthalate         ND         0.079         0.49         0.49         mg/kg         1           Din-brytlyl phthalate         ND         0.079         0.49         0.49         mg/kg         1           Fluorenthere         ND         0.14         0.49         0.49         mg/kg         1           Fluorenthere         ND         0.011         0.49         0.49         mg/kg         1           Fluorenthere         ND         0.069         0.49         0.49         mg/kg         1           Hexachlorobutadiene         ND         0.089         0.49         0.49         mg/kg         1           Hexachlorobutadiene         ND         0.089         0.49         0.49         mg/kg         1           Hexachlorochutadi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Butyl benzyl phthalate      | ND             | 0.15                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Dibenzo (a,h) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carbazole                   | ND             | 0.089                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Diberty phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chrysene                    | ND             | 0.089                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dibenzo (a,h) anthracene    | ND             | 0.049                    | 0.99 | 0.99  | mg/kg                    | 1        |              |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibenzofuran                | ND             | 0.089                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diethyl phthalate           | ND             | 0.059                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Di-n-octyl phthalate   ND   0.14   0.49   0.49   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dimethyl phthalate          | ND             | 0.87                     | 2.5  | 2.5   | mg/kg                    | 1        |              |
| Fluoranthene ND 0.11 0.49 0.49 mg/kg 1 Fluorene ND 0.069 0.49 0.49 mg/kg 1 Hexachlorobenzene ND 0.079 0.49 0.49 mg/kg 1 Hexachlorobutadiene ND 0.089 0.49 0.49 mg/kg 1 Hexachlorocyclopentadiene ND 0.12 0.49 0.49 mg/kg 1 Hexachlorochane ND 0.12 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.099 0.49 mg/kg 1 Indeno (1,2 | Di-n-butyl phthalate        | ND             | 0.079                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Fluorene   ND   0.069   0.49   0.49   mg/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di-n-octyl phthalate        | ND             | 0.14                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Hexachlorobenzene ND 0.079 0.49 0.49 mg/kg 1 Hexachlorobutadiene ND 0.089 0.49 0.49 mg/kg 1 Hexachlorocyclopentadiene ND 0.12 0.49 0.49 mg/kg 1 Hexachlorocyclopentadiene ND 0.069 0.49 0.49 mg/kg 1 Hexachlorocyclopentadiene ND 0.069 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Isophorone ND 0.099 0.49 0.49 mg/kg 1 Isophorone ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno ND 0.089 0.49 0.49 mg/kg 1 Indeno ND 0.089 0.49 0.49 mg/kg 1 Indeno ND 0.069 0.49 0.49 mg/kg 1 Indeno ND 0.069 0.49 0.49 mg/kg 1 Indeno ND 0.069 0.49 0.49 mg/kg 1 Indeno ND 0.079 0.49 m | Fluoranthene                | ND             | 0.11                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Hexachlorobutadiene ND 0.089 0.49 0.49 mg/kg 1 Hexachlorocyclopentadiene ND 0.12 0.49 0.49 mg/kg 1 Hexachlorocyclopentadiene ND 0.069 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.99 0.99 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.099 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.11 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.089 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.069 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.069 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.079 0.49 0.49 mg/kg 1 Indeno (1,2,3-cd) pyrene ND 0.049 0.99 mg/kg 1 Indeno | Fluorene                    | ND             | 0.069                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexachlorobenzene           | ND             | 0.079                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Personal Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hexachlorobutadiene         | ND             | 0.089                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Indeno (1,2,3-cd) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexachlorocyclopentadiene   | ND             | 0.12                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementary   Supplementar   | Hexachloroethane            | ND             | 0.069                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Naphthalene         ND         0.11         0.49         0.49         mg/kg         1           Nitrobenzene         ND         0.11         0.49         0.49         mg/kg         1           N-Nitrosodimethylamine         ND         0.089         0.49         0.49         mg/kg         1           N-Nitrosodi-n-propylamine         ND         0.089         0.49         0.49         mg/kg         1           N-Nitrosodiphenylamine         ND         0.069         0.49         0.49         mg/kg         1           N-Nitrosodiphenylamine         ND         0.069         0.49         0.49         mg/kg         1           Pentachlorophenol         ND         0.16         0.49         0.49         mg/kg         1           Pentachlorophenol         ND         0.079         0.49         mg/kg         1           Phenal remains         ND         0.079         0.49         mg/kg         1           Private remains         ND         0.079         0.49         mg/kg         1           Pyridine         ND         0.049         0.99         mg/kg         1           Surr: 2,4,6-Tribromophenol         62 %         Conc:30.4         40-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indeno (1,2,3-cd) pyrene    | ND             | 0.089                    | 0.99 | 0.99  | mg/kg                    | 1        |              |
| Nitrobenzene ND 0.11 0.49 0.49 mg/kg 1 N-Nitrosodimethylamine ND 0.089 0.49 0.49 mg/kg 1 N-Nitrosodi-n-propylamine ND 0.089 0.49 0.49 mg/kg 1 N-Nitrosodiphenylamine ND 0.069 0.49 0.49 mg/kg 1 N-Nitrosodiphenylamine ND 0.069 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.16 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Pertachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Pertachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Pertachlorophenol ND 0.049 0.99 0.99 mg/kg 1 Pertachlorophenol ND 0.079 0.49 0.49 mg/kg 1 Perta | Isophorone                  | ND             | 0.099                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| N-Nitrosodimethylamine ND 0.089 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Naphthalene                 | ND             | 0.11                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| N-Nitrosodi-n-propylamine ND 0.089 0.49 0.49 mg/kg 1 N-Nitrosodiphenylamine ND 0.069 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.16 0.49 0.49 mg/kg 1 Phenanthrene ND 0.079 0.49 0.49 mg/kg 1 Phenol ND 0.15 0.49 0.49 mg/kg 1 Pyrene ND 0.079 0.49 0.49 mg/kg 1 Pyrene ND 0.079 0.49 0.49 mg/kg 1 Pyridine ND 0.079 0.49 0.99 mg/kg 1 Pyridine ND 0.049 0.99 0.99 mg/kg 1 Purit 2,4,6-Tribromophenol 62 % Conc:30.4 40-97 % Surr: 2-Fluorophenol 79 % Conc:17.1 39-100 % Surr: 2-Fluorophenol 79 % Conc:38.9 26-115 % Surr: Nitroberzene-d5 70 % Conc:17.3 49-105 % Surr: Phenol-d5 76 % Conc:37.5 36-105 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nitrobenzene                | ND             | 0.11                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| N-Nitrosodiphenylamine ND 0.069 0.49 0.49 mg/kg 1 Pentachlorophenol ND 0.16 0.49 0.49 mg/kg 1 Phenanthrene ND 0.079 0.49 0.49 mg/kg 1 Phenol ND 0.15 0.49 0.49 mg/kg 1 Pyrene ND 0.079 0.49 0.49 mg/kg 1 Pyrene ND 0.079 0.49 0.49 mg/kg 1 Pyridine ND 0.079 0.49 0.99 mg/kg 1 Pyridine ND 0.049 0.99 0.99 mg/kg 1 Pyridine ND 0.079 0.49 0.49 mg/kg 1 Pyridine ND | N-Nitrosodimethylamine      | ND             | 0.089                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Pentachlorophenol ND 0.16 0.49 0.49 mg/kg 1 Phenanthrene ND 0.079 0.49 0.49 mg/kg 1 Phenol ND 0.15 0.49 0.49 mg/kg 1 Pyrene ND 0.079 0.49 0.49 mg/kg 1 Pyridine ND 0.079 0.49 0.99 mg/kg 1 Pyridine ND 0.049 0.99 0.99 mg/kg 1 Purr: 2,4,6-Tribromophenol 62 % Conc:30.4 40-97 % Surr: 2-Fluorophenol 79 % Conc:17.1 39-100 % Surr: 2-Fluorophenol 79 % Conc:38.9 26-115 % Surr: Nitrobenzene-d5 70 % Conc:17.3 49-105 % Surr: Phenol-d5 76 % Conc:37.5 36-105 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N-Nitrosodi-n-propylamine   | ND             | 0.089                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Phenanthrene ND 0.079 0.49 0.49 mg/kg 1 Phenol ND 0.15 0.49 0.49 mg/kg 1 Pyrene ND 0.079 0.49 0.49 mg/kg 1 Pyridine ND 0.049 0.99 0.99 mg/kg 1 Pyridine ND 0.049 0.99 0.99 mg/kg 1 Surr: 2,4,6-Tribromophenol 62 % Conc: 30.4 40-97 % Surr: 2-Fluorobiphenyl 69 % Conc: 17.1 39-100 % Surr: 2-Fluorophenol 79 % Conc: 38.9 26-115 % Surr: Nitrobenzene-d5 70 % Conc: 17.3 49-105 % Surr: Phenol-d5 76 % Conc: 37.5 36-105 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-Nitrosodiphenylamine      | ND             | 0.069                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Phenol ND 0.15 0.49 0.49 mg/kg 1 Pyrene ND 0.079 0.49 0.49 mg/kg 1 Pyridine ND 0.049 0.99 0.99 mg/kg 1 Surr: 2,4,6-Tribromophenol 62 % Conc:30.4 40-97 % Surr: 2-Fluorophenol 79 % Conc:17.1 39-100 % Surr: 2-Fluorophenol 79 % Conc:38.9 26-115 % Surr: Nitrobenzene-d5 70 % Conc:17.3 49-105 % Surr: Phenol-d5 76 % Conc:37.5 36-105 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pentachlorophenol           | ND             | 0.16                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Pyrene : ND 0.079 0.49 0.49 mg/kg 1  Pyridine : ND 0.049 0.99 0.99 mg/kg 1  Surr: 2,4,6-Tribromophenol : 62 % Conc:30.4 40-97 %  Surr: 2-Fluorobiphenyl : 69 % Conc:17.1 39-100 %  Surr: 2-Fluorophenol : 79 % Conc:38.9 26-115 %  Surr: Nitrobenzene-d5 : 70 % Conc:17.3 49-105 %  Surr: Phenol-d5 : 76 % Conc:37.5 36-105 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phenanthrene                | ND             | 0.079                    | 0.49 | 0.49  | mg/kg                    | Ť        |              |
| Pyridine         ND         0.049         0.99         0.99         mg/kg         1           Surr: 2,4,6-Tribromophenol         62 %         Conc:30.4         40-97         %           Surr: 2-Fluorobiphenyl         69 %         Conc:17.1         39-100         %           Surr: 2-Fluorophenol         79 %         Conc:38.9         26-115         %           Surr: Nitrobenzene-d5         70 %         Conc:17.3         49-105         %           Surr: Phenol-d5         76 %         Conc:37.5         36-105         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phenol                      | ND             | 0.15                     | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Surr: 2,4,6-Tribromophenol       62 % Conc:30.4       40-97       %         Surr: 2-Fluorobiphenyl       69 % Conc:17.1       39-100       %         Surr: 2-Fluorophenol       79 % Conc:38.9       26-115       %         Surr: Nitrobenzene-d5       70 % Conc:17.3       49-105       %         Surr: Phenol-d5       76 % Conc:37.5       36-105       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pyrene :                    | ND             | 0.079                    | 0.49 | 0.49  | mg/kg                    | 1        |              |
| Surr: 2,4,6-Tribromophenol       62 % Conc:30.4       40-97       %         Surr: 2-Fluorobiphenyl       69 % Conc:17.1       39-100       %         Surr: 2-Fluorophenol       79 % Conc:38.9       26-115       %         Surr: Nitrobenzene-d5       70 % Conc:17.3       49-105       %         Surr: Phenol-d5       76 % Conc:37.5       36-105       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pyridine                    | ND             | 0.049                    | 0.99 | 0.99  | mg/kg                    | 1        |              |
| Surr. 2-Fluorophenol     79 % Conc:38.9     26-115     %       Surr. Nitrobenzene-d5     70 % Conc:17.3     49-105     %       Surr. Phenol-d5     76 % Conc:37.5     36-105     %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surr: 2,4,6-Tribromophenol  | 62 %           | Conc:30.4                |      | 40-97 | %                        |          |              |
| Surr: Nitrobenzene-d5     70 % Conc: 17.3     49-105     %       Surr: Phenol-d5     76 % Conc: 37.5     36-105     %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surr: 2-Fluorobiphenyl      | 69 %           | Conc:17.1                | 3    | 9-100 | %                        |          |              |
| Surr: Nitrobenzene-d5 70 % Conc:17.3 49-105 % Surr: Phenol-d5 76 % Conc:37.5 36-105 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surr. 2-Fluorophenol        | 79 %           | Conc:38.9                | 2    | 6-115 | %                        |          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surr. Nitrobenzene-d5       | 70 %           | Conc: 17.3               | 4    | 9-105 | %                        |          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surr: Phenol-d5             | 76 %           | Conc:37.5                | 3    | 6-105 | %                        |          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surr: Terphenyl-d14         |                |                          | 3    | 6-106 |                          |          |              |

Page 8 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/28/13 08:54

Report ID: 3

3E30014

Date Received:

05/30/13 09:50

Project ID:

7600 Tyrone Ave, COC #13-1321,26, WO# Date Reported:

06/05/13 16:04

3E30014-04

LN06216

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

|                                  | Semivolatile C | organic Co | mpound     | is by GC/N | IS          |                |              |
|----------------------------------|----------------|------------|------------|------------|-------------|----------------|--------------|
| Method: EPA 8270C                | Batch: W3F0001 | Prepared   | 1: 06/01/1 | 3 09:40    | Analyzed: 0 | 06/04/13 20:38 | Analyst: abj |
| Analyte                          | Result         | MDL        | MRL        | ML         | Units       | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.088      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 1,2-Dichlorobenzene              | ND -           | 0.11       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 1,3-Dichlorobenzene              | ND             | 0.078      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 1,4-Dichlorobenzene              | ND             | 0.12       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2,4,5-Trichlorophenol            | ND             | 0.11       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2,4,6-Trichlorophenol            | ND             | 0.11       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2,4-Dichlorophenol               | ND             | 0.13       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2,4-Dimethylphenol               | ND             | 0.12       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2,4-Dinitrophenol                | ND             | 3.7        | 25         | 25         | rng/kg      | 1 ×            |              |
| 2,4-Dinitrotoluene               | ND             | 0.098      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2,6-Dinitrotoluene               | ND -           | 0.078      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2-Chloronaphthalene              | ND             | 0.078      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2-Chlorophenol                   | ND             | 0.098      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2-Methylnaphthalene              | ND             | 0.088      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2-Methylphenol                   | ND             | 0.12       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2-Nitroaniline                   | ND             | 0.13       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 2-Nitrophenol                    | ND             | 0.22       | 0.49       | 0.49       | mg/kg       | 4              |              |
| 3 & 4-Methylphenol               | ND             | 0.12       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.5        | 2.5        | 2.5        | mg/kg       | 1              |              |
| 3-Nitroaniline                   | ND             | 0.15       | 0.49       | 0.49       | mg/kg       | (1)            |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5        | 4.9        | 4.9        | mg/kg       | 1              |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.069      | 0.49       | 0.49       | mg/kg       | 1              |              |
| 4-Chloro-3-methylphenol          | ND             | 0.11       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 4-Chloroaniline                  | ND             | 0.13       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.088      | 0.49       | 0.49       | mg/kg       | 9              |              |
| 4-Nitroaniline                   | ND             | 0.13       | 0.49       | 0.49       | mg/kg       | 1              |              |
| 4-Nitrophenol                    | ND             | 0.15       | 0.49       | 0.49       | mg/kg       | 1              |              |
| Acenaphthene                     | ND             | 0.088      | 0.49       | 0.49       | mg/kg       | 1              |              |
| Acenaphthylene                   | ND             | 0.088      | 0.49       | 0.49       | mg/kg       | 1              |              |
| Aniline                          | ND -           | 0.23       | 0.49       | 0.49       | mg/kg       | 1              |              |
| Anthracene                       | ND             | 0.078      | 0.49       | 0.49       | mg/kg       | A              | 1            |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.098      | 0.49       | 0.49       | mg/kg       | 1              |              |
| Benzidine                        | ND             | 1.2        | 4.9        | 4.9        | mg/kg       | 1              |              |
| Benzo (a) anthracene             | ND             | 0.069      | 0.49       | 0.49       | mg/kg       | 1              |              |
| Benzo (a) pyrene                 | ND             | 0.078      | 0.49       | 0.49       | mg/kg       | (4)            |              |
| Benzo (b) fluoranthene           | ND             | 0.069      | 0.49       | 0.49       | mg/kg       | 1              |              |
| Benzo (g,h,i) perylene           | ND             | 0.059      | 0.98       | 0.98       | mg/kg       | 1              |              |
| Benzo (k) fluoranthene           | ND             | 0.13       | 0.49       | 0.49       | mg/kg       | 4              |              |
| Benzoic acid                     | ND             | 1.9        | 25         | 25         | mg/kg       | 1              |              |
| Benzyl alcohol                   | ND             | 0.14       | 0.49       | 0.49       | mg/kg       | 1              |              |

Page 9 of 48



LADWP - Environmental Laboratory

Los Angeles CA, 90012

Sampled: 05/28/13 08:54

1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-04 LN06216

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | : 06/01/1: | 3 09:40 | Analyzed: 0 | Analyst: ab |           |
|-----------------------------|----------------|-----------|------------|---------|-------------|-------------|-----------|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units       | Dilution    | Qualifier |
| Bis(2-chloroethoxy)methane  | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Bis(2-chloroethyl)ether     | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Bis(2-chloroisopropyl)ether | ND             | 0.14      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Butyl benzyl phthalate      | ND             | 0.15      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Carbazole                   | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Chrysene                    | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Dibenzo (a,h) anthracene    | ND             | 0.049     | 0.98       | 0.98    | mg/kg       | 1           |           |
| Dibenzofuran                | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Diethyl phthalate           | ND             | 0.059     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Dimethyl phthalate          | ND             | 0.86      | 2.5        | 2.5     | mg/kg       | 1           |           |
| Di-n-butyl phthalate        | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Di-n-octyl phthalate        | ND             | 0.14      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Fluoranthene                | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Fluorene                    | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Hexachlorobenzene           | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1           |           |
| -lexachlorobutadiene        | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Hexachlorocyclopentadiene   | ND             | 0.12      | 0.49       | 0.49    | mg/kg       | 1           |           |
| -lexachloroethane           | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1           |           |
| ndeno (1,2,3-cd) pyrene     | ND             | 0.088     | 0.98       | 0.98    | mg/kg       | 1           |           |
| sophorone                   | ND             | 0.098     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Naphthalene                 | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Vitrobenzene                | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1           |           |
| N-Nitrosodimethylamine      | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1           |           |
| I-Nitrosodi-n-propylamine   | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1           |           |
| N-Nitrosodiphenylamine      | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Pentachlorophenol           | ND             | 0.16      | 0.49       | 0.49    | mg/kg       | 1           |           |
| Phenanthrene                | ND -           | 0.078     | 0.49       | 0.49    | mg/kg       | 1           |           |
| Phenol                      | ND             | 0.15      | 0.49       | 0.49    | mg/kg       | 1           |           |
| yrene                       | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1           |           |
| yridine                     | ND             | 0.049     | 0.98       | 0.98    | mg/kg       | 1           |           |
| urr: 2,4,6-Tribromophenol   | 52 %           | Conc:25.5 | 4          | 10-97   | %           |             |           |
| urr. 2-Fluorobiphenyl       | 63 %           | Conc:15.4 | 3.         | 9-100   | %           |             |           |
| urr: 2-Fluorophenol         | 71 %           | Conc:35.0 | 2          | 6-115   | %           |             |           |
| urr: Nitrobenzene-d5        | 65 %           | Conc:16.0 |            | 9-105   | %           |             |           |
| urr. Phenol-d5              | 70 %           | Conc:34.3 |            | 6-105   | %           |             |           |
| urr: Terphenyl-d14          | 72 %           | Сопс:17.6 |            | 5-106   | %           |             |           |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm-311

Report ID:

3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/28/13 09:00

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-05

LN06217

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Semivolatile ( | -     |            |      |       | 06/04/49/34+00 | A-al-al-al-  |
|----------------------------------|----------------|-------|------------|------|-------|----------------|--------------|
|                                  | Batch: W3F0001 | 10000 | 1: 06/01/1 |      |       | 6/04/13 21:08  | Analyst: abj |
| Analyte                          | Result         | MDL   | MRL        | ML   | Units | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.089 | 0.50       | 0.50 | mg/kg | 1              |              |
| 1,2-Dichlorobenzene              | ND             | 0.11  | 0.50       | 0.50 | mg/kg | 1              |              |
| 1,3-Dichlorobenzene              | - ND           | 0.079 | 0.50       | 0.50 | mg/kg | 1              |              |
| 1,4-Dichlorobenzene              | ND             | 0.12  | 0.50       | 0.50 | mg/kg | 1              |              |
| 2,4,5-Trichlorophenol            | ND             | 0.11  | 0.50       | 0.50 | mg/kg | 1              |              |
| 2,4,6-Trichlorophenol            | ND             | 0.11  | 0.50       | 0.50 | mg/kg | 1              |              |
| 2,4-Dichlorophenol               | ND             | 0.13  | 0.50       | 0.50 | mg/kg | 1              |              |
| 2,4-Dimethylphenol               | ND             | 0.12  | 0.50       | 0.50 | mg/kg | 1              |              |
| 2,4-Dinitrophenol                | ND             | 3.8   | 25         | 25   | mg/kg | 1              |              |
| 2,4-Dinitrotoluene               | ND             | 0.099 | 0.50       | 0.50 | mg/kg | 1              |              |
| 2,6-Dinitrotoluene               | ND             | 0.079 | 0.50       | 0.50 | mg/kg | 1              |              |
| 2-Chloronaphthalene              | ND             | 0.079 | 0.50       | 0.50 | mg/kg | 1              |              |
| 2-Chlorophenol                   | ND             | 0.099 | 0.50       | 0.50 | mg/kg | 1              |              |
| 2-Methylnaphthalene              | ND             | 0.089 | 0.50       | 0.50 | mg/kg | 1              |              |
| 2-Methylphenol                   | ND             | 0.12  | 0.50       | 0.50 | mg/kg | 1              |              |
| 2-Nitroaniline                   | ND             | 0.13  | 0.50       | 0.50 | mg/kg | 1              |              |
| 2-Nitrophenol                    | ND             | 0.22  | 0.50       | 0.50 | mg/kg | 1              |              |
| 3 & 4-Methylphenol               | ND             | 0.12  | 0.50       | 0.50 | mg/kg | 1              |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.5   | 2.5        | 2.5  | mg/kg | 1              |              |
| 3-Nitroaniline                   | ND             | 0.15  | 0.50       | 0.50 | mg/kg | 1              |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5   | 5.0        | 5.0  | mg/kg | 1              |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.069 | 0.50       | 0.50 | mg/kg | 1              |              |
| 4-Chloro-3-methylphenol          | ND             | 0.11  | 0.50       | 0.50 | mg/kg | 1              |              |
| 4-Chloroaniline                  | ND             | 0.13  | 0.50       | 0.50 | mg/kg | 1              |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.089 | 0.50       | 0.50 | mg/kg | 1              |              |
| 4-Nitroaniline                   | ND             | 0.13  | 0.50       | 0.50 | mg/kg | 1              |              |
| 4-Nitrophenol                    | ND             | 0.15  | 0.50       | 0.50 | mg/kg | 1              |              |
| Acenaphthene                     | ND .           | 0.089 | 0.50       | 0.50 | mg/kg | 1              |              |
| Acenaphthylene                   | ND             | 0.089 | 0.50       | 0.50 | mg/kg | 1              |              |
| Aniline                          | ND             | 0.23  | 0.50       | 0.50 | mg/kg | 1              |              |
| Anthracene                       | ND             | 0.079 | 0.50       | 0.50 | mg/kg | 1              |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.099 | 0.50       | 0.50 | mg/kg | 1              |              |
| Benzidine                        | ND             | 1.2   | 5.0        | 5.0  | mg/kg | 1              |              |
| Benzo (a) anthracene             | ND             | 0.069 | 0.50       | 0.50 | mg/kg | 1              |              |
| Benzo (a) pyrene                 | ND             | 0.079 | 0.50       | 0.50 | mg/kg | 1              |              |
| Benzo (b) fluoranthene           | ND             | 0.069 | 0.50       | 0.50 | mg/kg | 1              |              |
| Benzo (g,h,i) perylene           | ND             | 0.059 | 0.99       | 0.99 | mg/kg | 1              |              |
| Benzo (k) fluoranthene           | ND             | 0.13  | 0.50       | 0.50 | mg/kg | 1              |              |
| Benzoic acid                     | ND             | 1.9   | 25         | 25   | mg/kg | 1              |              |
| Benzyl alcohol                   | ND             | 0.14  | 0.50       | 0.50 | mg/kg | 1              |              |

Page 11 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E30014 Date Received:

05/30/13 09:50

Los Angeles CA, 90012 PERMIT

Sampled: 05/28/13 09:00

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-05

LN06217

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | Prepared: 06/01/13 09:40 |       |       | Analyzed: 06/04/13 21:08 |           |  |
|-----------------------------|----------------|------------|--------------------------|-------|-------|--------------------------|-----------|--|
| Analyte                     | Result         | MDL        | MRL                      | ML    | Units | Dilution                 | Qualifier |  |
| Bis(2-chloroethoxy)methane  | ND             | 0.089      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Bis(2-chloroisopropyl)ether | ND             | 0.14       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Butyl benzyl phthalate      | ND             | 0.15       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Carbazole                   | ND             | 0.089      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Chrysene                    | ND             | 0.089      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Dibenzo (a,h) anthracene    | ND             | 0.050      | 0.99                     | 0.99  | mg/kg | 1                        |           |  |
| Dibenzofuran                | ND             | 0.089      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Diethyl phthalate           | ND             | 0.059      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Dimethyl phthalate          | ND             | 0.87       | 2.5                      | 2.5   | mg/kg | 1                        |           |  |
| Di-n-butyl phthalate        | ND             | 0.079      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Di-n-octyl phthalate        | ND             | 0.14       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Fluoranthene                | ND             | 0.11       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Fluorene                    | ND             | 0.069      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Hexachlorobenzene           | ND             | 0.079      | 0.50                     | 0.50  | mg/kg | 11                       |           |  |
| Hexachlorobutadiene         | ND             | 0.089      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Hexachlorocyclopentadiene   | ND             | 0.12       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Hexachloroethane            | ND             | 0.069      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.089      | 0.99                     | 0.99  | mg/kg | 1311                     |           |  |
| sophorone                   | ND             | 0.099      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Naphthalene                 | ND             | 0.11       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Nitrobenzene                | ND             | 0.11       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| N-Nitrosodimethylamine      | ND             | 0.089      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| N-Nitrosodi-n-propylamine   | ND             | 0.089      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| N-Nitrosodiphenylamine      | ND             | 0.069      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Pentachlorophenol           | ND             | 0.16       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| Phenanthrene                | ND             | 0.079      | 0.50                     | 0.50  | mg/kg | 1                        | 40-       |  |
| Phenol                      | ND             | 0.15       | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| yrene                       | ND             | 0.079      | 0.50                     | 0.50  | mg/kg | 1                        |           |  |
| yridine                     | ND             | 0.050      | 0.99                     | 0.99  | mg/kg | 1                        |           |  |
| Surr: 2,4,6-Tribromophenol  | 49 %           | Conc: 24.4 |                          | 40-97 | %     |                          |           |  |
| Surr. 2-Fluorobiphenyl      | 59 %           | Conc: 14.6 | 3                        | 9-100 | %     |                          |           |  |
| urr: 2-Fluorophenol         | 66 %           | Conc:32.6  | 2                        | 6-115 | %     |                          |           |  |
| un: Nitrobenzene-d5         | 51 %           | Conc:15.1  | 4                        | 9-105 | %     |                          |           |  |
| un: Phenol-d5               | 65 %           | Conc:32.3  | 3                        | 6-105 | %     |                          |           |  |
| um: Terphenyl-d14           | 62 %           | Conc: 15.3 | 3                        | 6-106 | %     |                          |           |  |



Sampled: 05/28/13 09:04

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Date Received:

05/30/13 09:50

Project ID: 7600 Tyrone Ave, COC #13-1321, 26, WO#

Date Reported:

06/05/13 16:04

3E30014-06

LN06219

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | 1: 06/01/13 | 3 09:40 | Analyzed: 0 | 06/04/13 21:39 | Analyst: abj |
|----------------------------------|----------------|----------|-------------|---------|-------------|----------------|--------------|
| Analyte                          | Result         | MDL      | MRL         | ML      | Units       | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.080    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 1,2-Dichlorobenzene              | ND             | 0.098    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 1,3-Dichlorobenzene              | ND             | 0.071    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 1,4-Dichlorobenzene              | ND             | 0.11     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2,4,5-Trichlorophenol            | ND             | 0.098    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2,4,6-Trichlorophenal            | ND             | 0.098    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2,4-Dichlorophenol               | ND             | 0.12     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2,4-Dimethylphenol               | ND             | 0.11     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2,4-Dinitrophenal                | ND             | 3.4      | 22          | 22      | mg/kg       | 1              |              |
| 2,4-Dinitrotoluene               | ND             | 0.089    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2,6-Dinitrotoluene               | ND             | 0.071    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2-Chloronaphthalene              | ND             | 0.071    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2-Chlorophenol                   | ND             | 0.089    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2-Methylnaphthalene              | ND             | 0.080    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2-Methylphenol                   | ND             | 0.11     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2-Nitroaniline                   | ND             | 0.12     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 2-Nitrophenol                    | ND             | 0.20     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 3 & 4-Methylphenol               | ND             | 0.11     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.3      | 2.2         | 2.2     | mg/kg       | 1              |              |
| 3-Nitroaniline                   | ND             | 0.13     | 0.45        | 0.45    | mg/kg       | 1              |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.5         | 4.5     | mg/kg       | 1              |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.062    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 4-Chloro-3-methylphenol          | ND             | 0.098    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 4-Chloroaniline                  | ND             | 0.12     | 0.45        | 0.45    | rng/kg      | 1              |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.080    | 0.45        | 0.45    | mg/kg       | 1              |              |
| 4-Nitroaniline                   | ND             | 0.12     | 0.45        | 0.45    | mg/kg       | 1.1            |              |
| 4-Nitrophenol                    | ND             | 0.13     | 0.45        | 0.45    | mg/kg       | 1              |              |
| Acenaphthene                     | ND             | 0.080    | 0.45        | 0.45    | mg/kg       | 1              |              |
| Acenaphthylene                   | ND             | 0.080    | 0.45        | 0.45    | mg/kg       | -1             |              |
| Aniline                          | ND             | 0.21     | 0.45        | 0.45    | mg/kg       | 1              |              |
| Anthracene                       | ND             | 0.071    | 0.45        | 0.45    | mg/kg       | 1              |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.089    | 0.45        | 0.45    | mg/kg       | 1              |              |
| Benzidine                        | ND             | 1.1      | 4.5         | 4.5     | mg/kg       | 1              |              |
| Benzo (a) anthracene             | ND             | 0.062    | 0.45        | 0.45    | mg/kg       | 1              |              |
| Benzo (a) pyrene                 | ND             | 0.071    | 0.45        | 0.45    | mg/kg       | 1              |              |
| Benzo (b) fluoranthene           | ND             | 0.062    | 0.45        | 0.45    | mg/kg       | 1              |              |
| Benzo (g,h,i) perylene           | ND             | 0.054    | 0.89        | 0.89    | mg/kg       | 1              |              |
| Benzo (k) fluoranthene           | ND             | 0.12     | 0.45        | 0.45    | mg/kg       | 1              |              |
| Benzoic acid                     | ND             | 1.7      | 22          | 22      | mg/kg       | 4              |              |
| Benzyl alcohol                   | ND             | 0.12     | 0.45        | 0.45    | mg/kg       | 1              |              |

Page 13 of 48



Sampled: 05/28/13 09:04

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-06 LN06219

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Batch: W3F0001 | Prepared       | Prepared: 06/01/13 09:40 |       |       | Analyzed: 06/04/13 21:39 |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------------------|-------|-------|--------------------------|-----------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result         | MDL            | MRL                      | ML    | Units | Dilution                 | Qualifier |
| Bis(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND             | 0.080          | 0.45                     | 0.45  | mg/kg | 1                        | 1.4       |
| Bis(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND             | 0.098          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Bis(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND             | 0.12           | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND             | 0.11           | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND             | 0.13           | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND             | 0.080          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND             | 0.080          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Dibenzo (a,h) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND             | 0.045          | 0.89                     | 0.89  | mg/kg | 1                        |           |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND             | 0.080          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND             | 0.054          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND             | 0.79           | 2.2                      | 2.2   | mg/kg | 1                        |           |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND             | 0.071          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND             | 0.12           | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND             | 0.098          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND             | 0.062          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND             | 0.071          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND             | 0.080          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND             | 0.11           | 0.45                     | 0.45  | mg/kg | 1                        |           |
| lexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND .           | 0.062          | 0.45                     | 0.45  | mg/kg | Ť                        |           |
| ndeno (1,2,3-cd) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND             | 0.080          | 0.89                     | 0.89  | mg/kg | 4                        |           |
| sophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND             | 0.089          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| laphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND             | 0.098          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| litrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND             | 0.098          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| I-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND             | 0.080          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| I-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND             | 0.080          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| -Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND             | 0.062          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| entachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND             | 0.14           | 0.45                     | 0.45  | mg/kg | 1                        |           |
| henanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND             | 0.071          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| henol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND             | 0.13           | 0.45                     | 0.45  | mg/kg | 1                        |           |
| yrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND             | 0.071          | 0.45                     | 0.45  | mg/kg | 1                        |           |
| yridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND             | 0.045          | 0.89                     | 0.89  | mg/kg | 1                        |           |
| urr: 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51 %           | Conc:22.8      |                          | 10-97 | %     |                          |           |
| urr: 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64 %           | Conc:14.3      | 3                        | 9-100 | %     |                          |           |
| urr: 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73 %           | Conc:32.8      | 2                        | 6-115 | %     |                          |           |
| urr: Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67 %           | Conc:14.9      | 4                        | 9-105 | %     |                          |           |
| urr. Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71 %           | Conc:31.9      | 3                        | 6-105 | %     |                          |           |
| un: Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74 %           | Conc:16.5      |                          | 6-106 | %     |                          |           |
| AND THE PROPERTY OF THE PARTY O | 7777,877       | Mental Control |                          | 1964  | 0.0   |                          |           |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012 and the problem of the desired beginning the section of

Sampled: 05/28/13 09:40

Report ID: 3E30014

3E30014-07

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

LN06229

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | d: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/04/13 22:09 | Analyst: abj                           |
|----------------------------------|----------------|----------|------------|---------|-------------|---------------|----------------------------------------|
| Analyte                          | Result         | MDL      | MRL        | ML      | Units       | Dilution      | Qualifier                              |
| 1,2,4-Trichlorobenzene           | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             | Carlo Sur Sec. 11 Hallman Sec. 1 Store |
| 1,2-Dichlorobenzene              | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | . 1           |                                        |
| 1,3-Dichlorobenzene              | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 1,4-Dichlorobenzene              | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2,4,5-Trichlorophenol            | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2,4,6-Trichlorophenol            | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2,4-Dichlorophenol               | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2,4-Dimethylphenol               | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2,4-Dinitrophenol                | ND             | 3.6      | 23         | 23      | mg/kg       | 1             |                                        |
| 2,4-Dinitrotoluene               | ND             | 0.094    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2,6-Dinitrotoluene               | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2-Chloronaphthalene              | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2-Chlorophenol                   | ND             | 0.094    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2-Methylnaphthalene              | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2-Methylphenol                   | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2-Nitroaniline                   | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 2-Nitrophenol                    | ND             | 0.21     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 3 & 4-Methylphenol               | ND             | 0.11     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 3,3'-Dichlorobenzidine           | ND             | 1.4      | 2.3        | 2.3     | mg/kg       | 1             |                                        |
| 3-Nitroaniline                   | ND             | 0.14     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.7        | 4.7     | mg/kg       | 1             |                                        |
| 4-Bromophenyl phenyl ether       | ND             | 0.066    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 4-Chloro-3-methylphenol          | ND             | 0.10     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 4-Chloroaniline                  | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 4-Chlorophenyl phenyl ether      | ND -           | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 4-Nitroaniline                   | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| 4-Nitrophenol                    | ND             | 0.14     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Acenaphthene                     | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 4             |                                        |
| Acenaphthylene                   | ND             | 0.085    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Aniline                          | ND             | 0.22     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Anthracene                       | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.094    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Benzidine                        | ND             | 1.2      | 4.7        | 4.7     | mg/kg       | 1             |                                        |
| Benzo (a) anthracene             | ND             | 0.066    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Benzo (a) pyrene                 | ND             | 0.075    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Benzo (b) fluoranthene           | ND             | 0.066    | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Benzo (g,h,i) perylene           | ND             | 0.056    | 0.94       | 0.94    | mg/kg       | 1             |                                        |
| Benzo (k) fluoranthene           | ND             | 0.12     | 0.47       | 0.47    | mg/kg       | 1             |                                        |
| Benzoic acid                     | ND             | 1.8      | 23         | 23      | mg/kg       | 1             |                                        |
| Benzyl alcohol                   | ND             | 0.13     | 0.47       | 0.47    | mg/kg       | 1             |                                        |

Page 15 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Land Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the C

Sampled: 05/28/13 09:40

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 05/30/13 09:50

06/05/13 16:04

Date Reported:

3E30014-07

LN06229

Sampled By: Client

Matrix: Solid

| Semivolatile Orga | nic Compounds by GC/MS |
|-------------------|------------------------|
|-------------------|------------------------|

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed: 06/04/13 22:09 |          | Analyst: abj |  |
|-----------------------------|----------------|------------|-----------|---------|--------------------------|----------|--------------|--|
| Analyte                     | Result         | MDL        | MRL       | ML      | Units                    | Dilution | Qualifier    |  |
| Bis(2-chloroethoxy)methane  | ND             | 0.085      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Carbazole                   | ND             | 0.085      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Chrysene                    | ND             | 0.085      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Dibenzo (a,h) anthracene    | ND             | 0.047      | 0.94      | 0.94    | mg/kg                    | 3        |              |  |
| Dibenzofuran                | ND             | 0.085      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Diethyl phthalate           | ND             | 0.056      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Dimethyl phthalate          | ND             | 0.83       | 2.3       | 2.3     | mg/kg                    | 1        |              |  |
| Di-n-butyl phthalate        | ND             | 0.075      | 0.47      | 0.47    | mg/kg                    |          |              |  |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Fluoranthene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Fluorene                    | ND             | 0.066      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Hexachlorobenzene           | ND             | 0.075      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Hexachlorobutadiene         | ND             | 0.085      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Hexachlorocyclopentadiene   | ND             | 0.11       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Hexachloroethane            | ND             | 0.066      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.085      | 0.94      | 0.94    | mg/kg                    | 4        |              |  |
| sophorone                   | ND             | 0.094      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Naphthalene                 | ND             | 0.10       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Nitrobenzene                | ND             | 0.10       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| N-Nitrosodimethylamine      | ND             | 0.085      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| N-Nitrosodi-n-propytamine   | ND             | 0.085      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| N-Nitrosodiphenylamine      | ND             | 0.066      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Pentachlorophenol           | ND             | 0.15       | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Phenanthrene                | ND             | 0.075      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Phenol                      | ND             | 0.14       | 0.47      | 0.47    | mg/kg                    | 4        |              |  |
| Pyrene                      | ND             | 0.075      | 0.47      | 0.47    | mg/kg                    | 1        |              |  |
| Pyridine                    | ND             | 0.047      | 0.94      | 0.94    | mg/kg                    | 1        |              |  |
| Surr. 2,4,6-Tribromophenol  | 46 %           | Conc:21.5  |           | 40-97   | %                        |          |              |  |
| Surr. 2-Fluorobiphenyl      | 57 %           | Conc:13.4  | 3         | 19-100  | %                        |          |              |  |
| Surr: 2-Fluorophenol        | 62 %           | Conc:29.0  | 2         | 6-115   | %                        |          |              |  |
| Surr. Nitrobenzene-d5       | 58 %           | Conc: 13.7 | 4         | 9-105   | %                        |          |              |  |
| Sum: Phenol-d5              | 61 %           | Conc:28.8  | 3         | 6-105   | %                        |          |              |  |
| turr. Terphenyl-d14         | 82 %           | Conc: 19.2 | 3         | 6-106   | %                        |          |              |  |

Page 16 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/28/13 09:44

Report ID: 3E30014

3E30014-08

Project ID: 7600 Tyrone Ave, COC

Sampled By: Client

#13-1321,26, WO#

LN06231

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                            | Semivolatile (<br>Batch: W3F0001 | The second | : 06/01/1 | The Park with the |       | 6/04/13 22:39 | Analyst: abj |
|----------------------------------------------|----------------------------------|------------|-----------|-------------------|-------|---------------|--------------|
|                                              |                                  | 200        |           |                   |       |               |              |
| Analyte 1,2,4-Trichlorobenzene               | Result                           | MDL        | MRL       | ML                | Units | Dilution      | Qualifier    |
| 1,2-Dichlorobenzene                          | ND                               | 0.077      | 0.43      | 0.43              | mg/kg | 1             |              |
| 1,3-Dichlorobenzene                          | ND                               | 0.094      | 0.43      | 0.43              | mg/kg |               |              |
|                                              | ND                               | 0.068      | 0.43      | 0.43              | mg/kg | 1             |              |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol | ND                               | 0.10       | 0.43      | 0.43              | mg/kg | 1             |              |
|                                              | ND                               | 0.094      | 0.43      | 0.43              | mg/kg | 1             |              |
| 2,4,6-Trichlorophenol 2,4-Dichlorophenol     | ND                               | 0.094      | 0.43      | 0.43              | mg/kg | 1             |              |
| 2,4-Dimethylphenol                           | ND                               | 0.11       | 0.43      | 0.43              | mg/kg | 1             |              |
|                                              | ND                               | 0.10       | 0.43      | 0.43              | mg/kg | 1             |              |
| 2,4-Dinitrophenol                            | ND                               | 3.2        | 21        | 21                | mg/kg | 1             |              |
| 2,4-Dinitrotoluene                           | ND                               | 0.085      | 0.43      | 0.43              | mg/kg | 1             |              |
| 2,6-Dinitrotoluene                           | ND                               | 0.068      | 0.43      | 0.43              | mg/kg | 1             |              |
| 2-Chlorophthalene                            | ND                               | 0.068      | 0.43      | 0.43              | mg/kg | 1             |              |
| 2-Chlorophenol                               | ND                               | 0.085      | 0.43      | 0.43              | mg/kg | 1             |              |
| 2-Methylnaphthalene                          | ND ·                             | 0.077      | 0.43      | 0.43              | mg/kg | 4             |              |
| 2-Methylphenol                               | ND                               | 0.10       | 0.43      | 0.43              | mg/kg | 1             |              |
| 2-Nitroaniline                               | ND                               | 0.11       | 0.43      | 0.43              | mg/kg | 1             |              |
| 2-Nitrophenol                                | ND                               | 0.19       | 0.43      | 0.43              | mg/kg | 1             |              |
| 3 & 4-Methylphenol                           | ND                               | 0.10       | 0.43      | 0.43              | mg/kg | 1             |              |
| 3,3'-Dichlorobenzidine                       | ND                               | 1.3        | 2.1       | 2.1               | mg/kg | 1             |              |
| 3-Nitroaniline                               | ND                               | 0.13       | 0.43      | 0.43              | mg/kg | 1             |              |
| 4,6-Dinitro-2-methylphenol                   | ND                               | 1.3        | 4.3       | 4.3               | mg/kg | 1             |              |
| 4-Bromophenyl phenyl ether                   | ND                               | 0.060      | 0.43      | 0.43              | mg/kg | 1             |              |
| 4-Chloro-3-methylphenol                      | ND                               | 0.094      | 0.43      | 0.43              | mg/kg | 1             |              |
| 4-Chloroaniline                              | ND                               | 0.11       | 0.43      | 0.43              | mg/kg | 1             |              |
| 4-Chlorophenyl phenyl ether                  | ND                               | 0.077      | 0.43      | 0.43              | mg/kg | 1             |              |
| 4-Nitroaniline                               | ND:                              | 0.11       | 0.43      | 0.43              | mg/kg | 1             |              |
| 4-Nitrophenol                                | ND                               | 0.13       | 0.43      | 0.43              | mg/kg | 1             |              |
| Acenaphthene                                 | ND                               | 0.077      | 0.43      | 0.43              | mg/kg | 1 -           |              |
| Acenaphthylene                               | ND                               | 0.077      | 0.43      | 0.43              | mg/kg | 1             |              |
| Aniline                                      | ND                               | 0.20       | 0.43      | 0.43              | mg/kg | 1             | 0.0          |
| Anthracene                                   | ND                               | 0.068      | 0.43      | 0.43              | mg/kg | 1             |              |
| Azobenzene/1,2-Diphenylhydrazine             | ND                               | 0.085      | 0.43      | 0.43              | mg/kg | 1             | ×            |
| Benzidine                                    | ND                               | 1.1        | 4.3       | 4.3               | mg/kg | 1             |              |
| Benzo (a) anthracene                         | ND                               | 0.060      | 0.43      | 0.43              | mg/kg | 1             |              |
| Benzo (a) pyrene                             | ND                               | 0.068      | 0.43      | 0.43              | mg/kg | 1             |              |
| Benzo (b) fluoranthene                       | ND                               | 0.060      | 0.43      | 0.43              | mg/kg | 1             |              |
| Benzo (g,h,i) perylene                       | ND                               | 0.051      | 0.85      | 0.85              | mg/kg | 1             |              |
| Benzo (k) fluoranthene                       | ND                               | 0.11       | 0.43      | 0.43              | mg/kg | 1             |              |
| Benzoic acid                                 | ND                               | 1.6        | 21        | 21                | mg/kg | 1             |              |
| Benzyl alcohol                               | ND                               | 0.12       | 0.43      | 0.43              | mg/kg | 1             |              |

Page 17 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012 

Sampled: 05/28/13 09:44

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-08

LN06231

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | : 06/01/13 | 3 09:40 | Analyzed: 0 | 6/04/13 22:39 | Analyst: at   |
|-----------------------------|----------------|-----------|------------|---------|-------------|---------------|---------------|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units       | Dilution      | Qualifie      |
| Bis(2-chloroethoxy)methane  | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             | 2)/552-0052-0 |
| Bis(2-chloroethyt)ether     | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 1             |               |
| Bis(2-chloroisopropyl)ether | ND             | 0.12      | 0.43       | 0.43    | mg/kg       | 1             |               |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.10      | 0.43       | 0.43    | mg/kg       | 1             |               |
| Butyl benzyl phthalate      | ND             | 0.13      | 0.43       | 0.43    | mg/kg       | 1             |               |
| Carbazole                   | ND             | 0.077     | 0.43       | 0,43    | mg/kg       | 1             |               |
| Chrysene                    | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |               |
| Dibenzo (a,h) anthracene    | ND             | 0.043     | 0.85       | 0.85    | mg/kg       | 1             |               |
| Dibenzofuran                | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |               |
| Diethyl phthalate           | ND             | 0.051     | 0.43       | 0.43    | mg/kg       | 1             |               |
| Dimethyl phthalate          | ND             | 0.75      | 2.1        | 2.1     | mg/kg       | 1             |               |
| Di-n-butyl phthalate        | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | 1             |               |
| 0i-n-octyl phthalate        | ND             | 0.12      | 0.43       | 0.43    | mg/kg       | 1             |               |
| Tuoranthene                 | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 1             |               |
| luorene                     | ND             | 0.060     | 0.43       | 0.43    | mg/kg       | 1             |               |
| lexachlorobenzene           | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | 1             |               |
| exachlorobutadiene          | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |               |
| exachlorocyclopentadiene    | ND             | 0.10      | 0.43       | 0.43    | mg/kg       | 1             |               |
| exachloroethane             | ND             | 0.060     | 0.43       | 0.43    | mg/kg       | t             |               |
| deno (1,2,3-cd) pyrene      | ND             | 0.077     | 0.85       | 0.85    | mg/kg       | 1             |               |
| ophorone                    | ND             | 0.085     | 0.43       | 0.43    | mg/kg       | 1             |               |
| aphthalene                  | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 1             |               |
| itrobenzene                 | ND             | 0.094     | 0.43       | 0.43    | mg/kg       | 1             |               |
| Nitrosodimethylamine        | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |               |
| -Nitrosodi-n-propylamine    | ND             | 0.077     | 0.43       | 0.43    | mg/kg       | 1             |               |
| Nitrosodiphenylamine        | ND             | 0.060     | 0.43       | 0.43    | mg/kg       | 1             |               |
| entachlorophenol            | ND             | 0.14      | 0.43       | 0.43    | mg/kg       | 1             |               |
| nenanthrene                 | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | 1             |               |
| nenol                       | ND             | 0.13      | 0.43       | 0.43    | mg/kg       | 1             |               |
| rrene                       | ND             | 0.068     | 0.43       | 0.43    | mg/kg       | -1            |               |
| ridine                      | ND             | 0.043     | 0.85       | 0.85    | mg/kg       | 1             |               |
| nr: 2,4,6-Tribromophenol    | 55 %           | Conc:23.2 | 4          | 10-97   | %           |               |               |
| rr: 2-Fluorobiphenyl        | 66 %           | Conc:14.0 |            | 9-100   | %           |               |               |
| rr. 2-Fluorophenol          | 78 %           | Conc:33.3 | 2          | 6-115   | %           |               |               |
| rr: Nitrobenzene-d5         | 69 %           | Conc:14.6 |            | 9-105   | %           |               |               |
| rr: Phenol-d5               | 76 %           | Conc:32.5 |            | 5-105   | %           |               |               |
| n. Terphenyl-d14            | 76 %           | Conc:16.3 |            | 5-106   | %           |               |               |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET

Sampled: 05/28/13 10:20

Report ID: 3E30014

Project ID:

7600 Tyrone Ave, COC #13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-09 LN06241

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared | : 06/01/1: | 3 09:40 | Analyzed: | 06/04/13 23:10 | Analyst: ab |  |
|---------------------------------|----------------|----------|------------|---------|-----------|----------------|-------------|--|
| Analyte                         | Result         | MDL      | MRL        | ML      | Units     | Dilution       | Qualifier   |  |
| 1,2,4-Trichlorobenzene          | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 1,2-Dichlorobenzene             | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 1,3-Dichlorobenzene             | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 1,4-Dichlorobenzene             | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2,4,5-Trichlorophenol           | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2,4,6-Trichlorophenol           | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2,4-Dichlorophenol              | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              | *           |  |
| 2,4-Dimethylphenol              | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2,4-Dinitrophenol               | ND             | 3.7      | 25         | 25      | mg/kg     | 1              |             |  |
| 2,4-Dinitrotoluene              | ND.            | 0.099    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2,6-Dinitrotoluene              | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2-Chloronaphthalene             | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2-Chlorophenol                  | ND             | 0.099    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2-Methylnaphthalene             | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2-Methylphenol                  | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2-Nitroaniline                  | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 2-Nitrophenol                   | ND             | 0.22     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 3 & 4-Methylphenol              | ND             | 0.12     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 3,3'-Dichlorobenzidine          | ND             | 1.5      | 2.5        | 2.5     | mg/kg     | 1              |             |  |
| 3-Nitroaniline                  | ND             | 0.15     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| 1,6-Dinitro-2-methylphenol      | ND             | 1.5      | 4.9        | 4.9     | mg/kg     | 1              |             |  |
| -Bromophenyl phenyl ether       | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| -Chloro-3-methylphenol          | ND             | 0.11     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| -Chloroaniline                  | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| -Chlorophenyl phenyl ether      | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| -Nitroaniline                   | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| -Nitrophenol                    | ND             | 0.15     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| cenaphthene                     | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| cenaphthylene                   | ND             | 0.089    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| niline                          | ND             | 0.23     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| nthracene                       | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.099    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| enzidine                        | ND             | 1.2      | 4.9        | 4.9     | mg/kg     | 1              |             |  |
| enzo (a) anthracene             | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| enzo (a) pyrene                 | ND             | 0.079    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| enzo (b) fluoranthene           | ND             | 0.069    | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| enzo (g,h,i) perylene           | 0.12           | 0.059    | 0.99       | 0.99    | mg/kg     | 1              | J           |  |
| enzo (k) fluoranthene           | ND             | 0.13     | 0.49       | 0.49    | mg/kg     | 1              |             |  |
| enzoic acid                     | ND             | 1.9      | 25         | 25      | mg/kg     | 1              |             |  |
| enzyl alcohol                   | ND             | 0.14     | 0.49       | 0.49    | mg/kg     | 1              |             |  |

Page 19 of 48



Sampled: 05/28/13 10:20

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 0

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-09

LN06241

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed: 0 | Analyzed: 06/04/13 23:10 |           |  |
|-----------------------------|----------------|------------|-----------|---------|-------------|--------------------------|-----------|--|
| Analyte                     | Result         | MDL        | MRL       | ML      | Units       | Dilution                 | Qualifier |  |
| Bis(2-chloroethoxy)methane  | ND             | 0.089      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Bis(2-chloroisopropyl)ether | ND             | 0.14       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Butyl benzyl phthalate      | ND             | 0.15       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Carbazole                   | ND             | 0.089      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Chrysene                    | ND             | 0.089      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Dibenzo (a,h) anthracene    | ND             | 0.049      | 0.99      | 0.99    | mg/kg       | 1                        |           |  |
| Dibenzofuran                | ND             | 0.089      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Diethyl phthalate           | ND             | 0.059      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Dimethyl phthalate          | ND             | 0.87       | 2.5       | 2.5     | mg/kg       | 1                        |           |  |
| Di-n-butyl phthalate        | ND ·           | 0.079      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Di-n-octyl phthalate        | ND             | 0.14       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Fluoranthene                | ND             | 0.11       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Fluorene                    | ND             | 0.069      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Hexachlorobenzene           | ND             | 0.079      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Hexachlorobutadiene         | ND             | 0.089      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Hexachlorocyclopentadiene   | ND             | 0.12       | 0.49      | 0.49    | mg/kg       | An and                   |           |  |
| Hexachloroethane            | ND             | 0.069      | 0.49      | 0.49    | mg/kg       | f                        |           |  |
| Indeno (1,2,3-cd) pyrene    | 0.17           | 0.089      | 0.99      | 0.99    | mg/kg       | 1                        | Ĵ         |  |
| Isophorone                  | ND             | 0.099      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Naphthalene                 | ND             | 0.11       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Nitrobenzene                | ND             | 0.11       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| N-Nitrosodimethylamine      | ND             | 0.089      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| N-Nitrosodi-n-propylamine   | ND             | 0.089      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| N-Nitrosodiphenylamine      | ND             | 0.069      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Pentachlorophenol           | ND             | 0.16       | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Phenanthrene                | ND.            | 0.079      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Phenol                      | ND             | 0.15       | 0.49      | 0.49    | mg/kg       | 4                        |           |  |
| Pyrene                      | ND             | 0.079      | 0.49      | 0.49    | mg/kg       | 1                        |           |  |
| Pyridine                    | ND             | 0.049      | 0.99      | 0.99    | mg/kg       | 10                       |           |  |
| Surr: 2,4,6-Tribromophenol  | 52 %           | Conc:25.5  |           | 40-97   | % .         |                          |           |  |
| Sur: 2-Fluorobiphenyl       | 62 %           | Conc:15.3  |           | 9-100   | %           |                          |           |  |
| Surr: 2-Fluorophenol        | 74 %           | Conc:36.3  |           | 6-115   | %           |                          |           |  |
| Surr: Nitrobenzene-d5       | 67 %           | Conc:16.4  |           | 9-105   | %           |                          |           |  |
| Surr. Phenol-d5             | 71 %           | Conc:35.2  |           | 6-105   | %           | -                        |           |  |
| Surr: Terphenyl-d14         | 68 %           | Conc: 16.6 |           | 6-106   | %           |                          |           |  |



Sampled: 05/28/13 10:24

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

LN06243 3E30014-10

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared: 06/01/13 09:40 |      |      | Analyzed: 0 | Analyzed: 06/04/13 23:40 |           |
|---------------------------------|----------------|--------------------------|------|------|-------------|--------------------------|-----------|
| Analyte                         | Result         | MDL                      | MRL  | ML   | Units       | Dilution                 | Qualifier |
| 1,2,4-Trichlorobenzene          | ND             | 0.080                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 1,2-Dichlorobenzene             | ND             | 0.098                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 1,3-Dichlorobenzene             | ND             | 0.071                    | 0.45 | 0.45 | mg/kg       | . 1                      |           |
| 1,4-Dichlorobenzene             | ND             | 0.11                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2,4,5-Trichlorophenol           | ND             | 0.098                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2,4,6-Trichlorophenol           | ND             | 0.098                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2,4-Dichlorophenol              | ND             | 0.12                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2,4-Dimethylphenol              | ND             | 0.11                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2,4-Dinitrophenol               | ND             | 3.4                      | 22   | 22   | mg/kg       | 4                        |           |
| 2,4-Dinitrotoluene              | ND             | 0.089                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2,6-Dinitrotoluene              | ND             | 0.071                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2-Chloronaphthalene             | ND             | 0.071                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2-Chlorophenol                  | ND             | 0.089                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2-Methylnaphthalene             | ND             | 0.080                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2-Methylphenol                  | ND             | 0.11                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2-Nitroaniline                  | ND             | 0.12                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 2-Nitrophenol                   | ND             | 0.20                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 3 & 4-Methylphenol              | ND             | 0.11                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| 3,3'-Dichlorobenzidine          | ND             | 1.3                      | 2.2  | 2.2  | mg/kg       | 1                        |           |
| l-Nitroaniline                  | ND             | 0.13                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| ,6-Dinitro-2-methylphenol       | ND .           | 1.4                      | 4.5  | 4.5  | mg/kg       | 1                        |           |
| -Bromophenyl phenyl ether       | ND             | 0.062                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| -Chloro-3-methylphenol          | ND             | 0.098                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| -Chloroaniline                  | ND             | 0.12                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| -Chlorophenyl phenyl ether      | ND             | 0.080                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| -Nitroaniline                   | ND             | 0.12                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| -Nitrophenol                    | ND             | 0.13                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| cenaphthene                     | ND             | 0.080                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| cenaphthylene                   | ND             | 0.080                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| niline                          | ND             | 0.21                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| nthracene                       | ND             | 0.071                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.089                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| enzidine                        | ND             | 1,1                      | 4.5  | 4.5  | mg/kg       | 1                        |           |
| enzo (a) anthracene             | ND             | 0.062                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| enzo (a) pyrene                 | ND             | 0.071                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| enzo (b) fluoranthene           | ND             | 0.062                    | 0.45 | 0.45 | mg/kg       | 1                        |           |
| enzo (g,h,i) perylene           | ND             | 0.054                    | 0.89 | 0.89 | mg/kg       | 1                        |           |
| enzo (k) fluoranthene           | ND             | 0.12                     | 0.45 | 0.45 | mg/kg       | 1                        |           |
| enzoic acid                     | ND             | 1.7                      | 22   | 22   | mg/kg       | 1                        |           |
| enzyl alcohol                   | ND             | 0.12                     | 0.45 | 0.45 | mg/kg       | 1                        |           |

Page 21 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

APPARENTAL WELFAMILIA SILIKO BUKAN BERMURAN

Sampled: 05/28/13 10:24

Surr: Terphenyl-d14

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-10

LN06243

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: | W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed: 0 | Analyzed: 06/04/13 23:40 |           |  |
|-----------------------------|--------|---------|------------|-----------|---------|-------------|--------------------------|-----------|--|
| Analyte                     |        | Result  | MDL        | MRL       | ML      | Units       | Dilution                 | Qualifier |  |
| Bis(2-chloroethoxy)methane  |        | ND      | 0.080      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Bis(2-chloroethyl)ether     |        | ND      | 0.098      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Bis(2-chloroisopropyl)ether |        | ND      | 0.12       | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Bis(2-ethylhexyl)phthalate  |        | ND      | 0.11       | 0.45      | 0.45    | mg/kg       | 1.                       |           |  |
| Butyl benzyl phthalate      |        | ND      | 0.13       | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Carbazole                   |        | ND      | 0.080      | 0.45      | 0.45    | mg/kg       | 1.                       |           |  |
| Chrysene                    |        | ND      | 0.080      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Dibenzo (a,h) anthracene    |        | ND      | 0.045      | 0.89      | 0.89    | mg/kg       | 3                        |           |  |
| Dibenzofuran                |        | ND      | 0.080      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Diethyl phthalate           |        | ND      | 0.054      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Dimethyl phthalate          |        | ND      | 0.79       | 2.2       | 2.2     | mg/kg       | 1                        |           |  |
| Di-n-butyl phthalate        |        | ND      | 0.071      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Di-n-octyl phthalate        |        | ND      | 0.12       | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| luoranthene                 |        | ND      | 0.098      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| luorene                     |        | ND      | 0.062      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| fexachlorobenzene           |        | ND      | 0.071      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Hexachlorobutadiene         |        | ND      | 0.080      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| Hexachlorocyclopentadiene   |        | ND      | 0.11       | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| fexachloroethane            |        | ND      | 0.062      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| ndeno (1,2,3-cd) pyrene     |        | ND      | 0.080      | 0.89      | 0.89    | mg/kg       | 1                        |           |  |
| sophorone                   |        | ND      | 0.089      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| laphthalene                 |        | ND      | 0.098      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| litrobenzene                |        | ND      | 0.098      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| -Nitrosodimethylamine       |        | ND      | 0.080      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| -Nitrosodi-n-propylamine    |        | ND      | 0.080      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| -Nitrosodiphenylamine       |        | ND      | 0.062      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| entachlorophenol            |        | ND      | 0.14       | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| henanthrene                 |        | ND      | 0.071      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| henol                       |        | ND      | 0.13       | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| yrene                       |        | ND      | 0.071      | 0.45      | 0.45    | mg/kg       | 1                        |           |  |
| yridine                     |        | ND      | 0.045      | 0.89      | 0.89    | mg/kg       | 1                        |           |  |
| urr: 2,4,6-Tribromophenol   |        | 61 %    | Conc:27.4  |           | 40-97   | %           |                          |           |  |
| urr: 2-Fluorobiphenyl       |        | 70 %    | Conc: 15.7 | 3         | 9-100   | %           |                          |           |  |
| urr: 2-Fluorophenol         |        | 82 %    | Conc:36.6  | 2         | 6-115   | %           |                          |           |  |
| urr: Nitrobenzene-d5        |        | 74 %    | Conc: 16.5 | 4         | 9-105   | %           |                          |           |  |
| urr, Phenol-d5              |        | 78 %    | Conc:34.8  |           | 6-105   | %           |                          |           |  |
|                             |        | ~~ ~    |            |           |         |             |                          |           |  |

Conc: 17.6

36-106





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/28/13 11:30

Report ID: 3E30014

3E30014-11

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

LN06259

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

Sampled By: Client

Matrix: Solid

| Semivolatile Organic C | ompounds by | GC/MS |
|------------------------|-------------|-------|
|------------------------|-------------|-------|

| Method: EPA 8270C                | Batch: W | 3F0001 | Prepared | Prepared: 06/01/13 09:40 |      |       | Analyzed: 06/05/13 00:11 |                                    |  |
|----------------------------------|----------|--------|----------|--------------------------|------|-------|--------------------------|------------------------------------|--|
| Analyte                          |          | Result | MDL      | MRL                      | ML   | Units | Dilution                 | Qualifier                          |  |
| 1,2,4-Trichlorobenzene           |          | ND     | 0.083    | 0.46                     | 0.46 | mg/kg | 1                        | a s. mm-afra segui de com-agita de |  |
| 1,2-Dichlorobenzene              | ~        | ND     | 0.10     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 1,3-Dichlorobenzene              |          | ND     | 0.074    | 0.46                     | 0.46 | mg/kg | -1                       |                                    |  |
| 1,4-Dichlorobenzene              |          | ND     | 0.11     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2,4,5-Trichlorophenol            |          | ND     | 0.10     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2,4,6-Trichlorophenol            |          | ND     | 0.10     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2,4-Dichlorophenol               |          | ND     | 0.12     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2,4-Dimethylphenol               |          | ND     | 0.11     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2,4-Dinitrophenol                |          | ND     | 3.5      | 23                       | 23   | mg/kg | 1                        |                                    |  |
| 2,4-Dinitrotoluene               |          | ND     | 0.092    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2,6-Dinitrotoluene               |          | ND     | 0.074    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2-Chloronaphthalene              |          | ND     | 0.074    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2-Chlorophenol                   |          | ND     | 0.092    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2-Methylnaphthalene              |          | ND     | 0.083    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2-Methylphenol                   |          | ND     | 0.11     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2-Nitroaniline                   |          | ND     | 0.12     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 2-Nitrophenol                    |          | ND     | 0.20     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 3 & 4-Methylphenol               |          | ND     | 0.11     | 0.46                     | 0.46 | mg/kg | 3                        |                                    |  |
| 3,3'-Dichlorobenzidine           |          | ND     | 1.4      | 2.3                      | 2.3  | mg/kg | 1                        |                                    |  |
| 3-Nitroaniline                   |          | ND     | 0.14     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 4,6-Dinitro-2-methylphenol       |          | ND     | 1.4      | 4.6                      | 4.6  | mg/kg | 1                        |                                    |  |
| 4-Bromophenyl phenyl ether       |          | ND     | 0.065    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 4-Chloro-3-methylphenol          |          | ND     | 0.10     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 4-Chloroaniline                  |          | ND     | 0.12     | 0.46                     | 0.46 | mg/kg | -1                       |                                    |  |
| 4-Chlorophenyl phenyl ether      |          | ND     | 0.083    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 4-Nitroaniline                   |          | ND     | 0.12     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| 4-Nitrophenol                    |          | ND     | 0.14     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Acenaphthene                     |          | ND     | 0.083    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Acenaphthylene                   |          | ND     | 0.083    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Aniline                          |          | ND     | 0.21     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Anthracene                       |          | ND     | 0.074    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Azobenzene/1,2-Diphenylhydrazine |          | ND     | 0.092    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Benzidine                        |          | ND     | 1.2      | 4.6                      | 4.6  | mg/kg | 1                        |                                    |  |
| Benzo (a) anthracene             |          | ND     | 0.065    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Benzo (a) pyrene                 |          | ND     | 0.074    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Benzo (b) fluoranthene           |          | ND     | 0.065    | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Benzo (g,h,i) perylene           |          | ND     | 0.055    | 0.92                     | 0.92 | mg/kg | 1                        |                                    |  |
| Benzo (k) fluoranthene           |          | ND     | 0.12     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |
| Benzoic acid                     |          | ND     | 1.8      | 23                       | 23   | mg/kg | 1                        |                                    |  |
| Benzyl alcohol                   |          | ND     | 0.13     | 0.46                     | 0.46 | mg/kg | 1                        |                                    |  |

Page 23 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E30014 Date Received:

05/30/13 09:50

Los Angeles CA, 90012 

Sampled: 05/28/13 11:30

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-11

LN06259

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 00:11 | Analyst: abj |  |
|-----------------------------|----------------|------------|------------|---------|-------------|---------------|--------------|--|
| Analyte                     | Resul          | t MDL      | MRL        | ML      | Units       | Dilution      | Qualifier    |  |
| Bis(2-chloroethoxy)methane  | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.46       | 0.46    | mg/kg       | 1             | 1+1          |  |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Carbazole                   | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Chrysene                    | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Dibenzo (a,h) anthracene    | ND             | 0.046      | 0.92       | 0.92    | mg/kg       | 1             |              |  |
| Dibenzofuran                | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Diethyl phthalate           | ND             | 0.055      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Dimethyl phthalate          | ND             | 0.81       | 2.3        | 2.3     | mg/kg       | 1             |              |  |
| Di-n-butyl phthalate        | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Fluoranthene                | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Fluorene                    | ND             | 0.065      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Hexachlorobenzene           | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Hexachlorobutadiene         | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Hexachlorocyclopentadiene   | ND             | 0.11       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Hexachloroethane            | ND             | 0.065      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.083      | 0.92       | 0.92    | mg/kg       | 1             |              |  |
| Isophorone                  | ND             | 0.092      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Naphthalene                 | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Nitrobenzene                | ND             | 0.10       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| N-Nitrosodimethylamine      | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | .1            |              |  |
| N-Nitrosodi-n-propylamine   | ND             | 0.083      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| N-Nitrosodiphenylamine      | ND             | 0.065      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Pentachlorophenol           | ND             | 0.15       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Phenanthrene                | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Phenol                      | ND             | 0.14       | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Pyrene                      | ND             | 0.074      | 0.46       | 0.46    | mg/kg       | 1             |              |  |
| Pyridine                    | ND             | 0.046      | 0.92       | 0.92    | mg/kg       | 1             |              |  |
| Surr. 2,4,6-Tribromophenol  | 56 %           | Conc: 25.8 |            | 40-97   | %           |               |              |  |
| Surr. 2-Fluorobiphenyl      | 69 %           | Conc: 15.9 |            | 39-100  | %           |               |              |  |
| Surr. 2-Fluorophenol        | 82 %           | Conc:37.9  |            | 26-115  | %           |               |              |  |
| Surr. Nitrobenzene-d5       | 72 %           | Conc:16.5  | 4          | 19-105  | %           |               |              |  |
| Surr. Phenol-d5             | 77 %           | Conc:35.4  | 3          | 86-105  | %           |               |              |  |
| Surr. Terphenyl-d14         | 75 %           | Conc:17.4  | 3          | 16-106  | %           |               |              |  |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/28/13 11:34

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-12

LN06261

Sampled By: Client

Matrix: Solid

#### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared | Prepared: 06/01/13 09:40 |      |       | Analyzed: 06/05/13 00:41 |          |
|---------------------------------|----------------|----------|--------------------------|------|-------|--------------------------|----------|
| Analyte                         | Result         | MDL      | MRL                      | ML   | Units | Dilution                 | Qualifie |
| 1,2,4-Trichlorobenzene          | ND             | 0.085    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 1,2-Dichlorobenzene             | ND             | 0.10     | 0.47                     | 0.47 | mg/kg | . 1                      |          |
| 1,3-Dichlorobenzene             | ND             | 0.075    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 1,4-Dichlorobenzene             | ND             | 0.11     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2,4,5-Trichlorophenol           | ND             | 0.10     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2,4,6-Trichlorophenol           | ND             | 0,10     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2,4-Dichlorophenol              | ND             | 0.12     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2,4-Dimethylphenol              | ND             | 0.11     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2,4-Dinitrophenol               | ND             | 3.6      | 24                       | 24   | mg/kg | 1                        |          |
| 2,4-Dinitrotoluene              | ND             | 0.094    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2,6-Dinitrotoluene              | ND             | 0.075    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2-Chloronaphthalene             | ND             | 0.075    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2-Chlorophenol                  | ND             | 0.094    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2-Methylnaphthalene             | ND -           | 0.085    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2-Methylphenol                  | ND             | 0.11     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2-Nitroaniline                  | ND             | 0.12     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| 2-Nitrophenol                   | ND             | 0.21     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| & 4-Methylphenol                | ND             | 0.11     | 0.47                     | 0.47 | mg/kg | f                        |          |
| ,3'-Dichlorobenzidine           | ND             | 1.4      | 2.4                      | 2.4  | mg/kg | 1                        |          |
| -Nitroaniline                   | ND             | 0.14     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| ,6-Dinitro-2-methylphenol       | ND             | 1.4      | 4.7                      | 4.7  | mg/kg | 1                        |          |
| -Bromophenyl phenyl ether       | ND             | 0.066    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| -Chloro-3-methylphenol          | ND             | 0.10     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| -Chloroaniline                  | ND             | 0.12     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| -Chlorophenyl phenyl ether      | ND             | 0.085    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| -Nitroaniline                   | ND             | 0.12     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| -Nitrophenol                    | ND             | 0.14     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| cenaphthene                     | ND             | 0.085    | 0.47                     | 0.47 | mg/kg | 4                        |          |
| cenaphthylene                   | ND             | 0.085    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| niline                          | ND             | 0.22     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| nthracene                       | ND             | 0.075    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.094    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| enzidine                        | ND             | 1.2      | 4.7                      | 4.7  | mg/kg | 4)                       |          |
| enzo (a) anthracene             | ND             | 0.066    | 0.47                     | 0.47 | mg/kg | 4                        |          |
| enzo (a) pyrene                 | ND             | 0.075    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| enzo (b) fluoranthene           | ND '           | 0.066    | 0.47                     | 0.47 | mg/kg | 1                        |          |
| enzo (g,h,i) perylene           | ND             | 0.057    | 0.94                     | 0.94 | mg/kg | 1                        |          |
| enzo (k) fluoranthene           | ND             | 0.12     | 0.47                     | 0.47 | mg/kg | 1                        |          |
| enzoic acid                     | ND             | 1.8      | 24                       | 24   | mg/kg | 1                        |          |
| enzyl alcohol                   | ND             | 0.13     | 0.47                     | 0.47 | mg/kg | 1                        |          |

Page 25 of 48





Sampled: 05/28/13 11:34

Surr: Terphenyl-d14

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Date Received:

05/30/13 09:50

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-12

LN06261

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 10.15 |        |       | 6/05/13 00:41 | Analyst: abj |
|-----------------------------|----------------|------------|-------|--------|-------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL   | ML     | Units | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.085      | 0.47  | 0.47   | mg/kg | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.47  | 0.47   | mg/kg | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.47  | 0.47   | mg/kg | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.47  | 0.47   | mg/kg | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.47  | 0.47   | mg/kg | 1             |              |
| Carbazole                   | ND             | 0.085      | 0.47  | 0.47   | mg/kg | 1             |              |
| Chrysene                    | ND             | 0.085      | 0.47  | 0.47   | mg/kg | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.047      | 0.94  | 0.94   | mg/kg | 1             |              |
| Dibenzofuran                | ND             | 0.085      | 0.47  | 0.47   | mg/kg | 1             |              |
| Diethyl phthalate           | ND             | 0.057      | 0.47  | 0.47   | mg/kg | 1             |              |
| Dimethyl phthalate          | ND             | 0.83       | 2.4   | 2.4    | mg/kg | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.075      | 0.47  | 0.47   | mg/kg | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.47  | 0.47   | mg/kg | 1             |              |
| Fluoranthene                | ND             | 0.10       | 0.47  | 0.47   | mg/kg | 1             |              |
| Fluorene                    | ND             | 0.066      | 0.47  | 0.47   | mg/kg | 1             |              |
| Hexachlorobenzene           | ND             | 0.075      | 0.47  | 0.47   | mg/kg | 1             |              |
| Hexachlorobutadiene         | ND             | 0.085      | 0.47  | 0.47   | mg/kg | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.11       | 0.47  | 0.47   | mg/kg | 1             |              |
| Hexachloroethane            | ND             | 0.066      | 0.47  | 0.47   | mg/kg | 1             |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.085      | 0.94  | 0.94   | mg/kg | 1             |              |
| Isophorone                  | ND             | 0.094      | 0.47  | 0.47   | mg/kg | 1             |              |
| Naphthalene                 | ND             | 0.10       | 0.47  | 0.47   | mg/kg | 1             |              |
| Nitrobenzene                | ND             | 0.10       | 0.47  | 0.47   | mg/kg | (1)           |              |
| N-Nitrosodimethylamine      | ND             | 0.085      | 0.47  | 0.47   | mg/kg | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.085      | 0.47  | 0.47   | mg/kg | 1             |              |
| N-Nitrosodiphenylamine      | ND             | 0.066      | 0.47  | 0.47   | mg/kg | 1 -           |              |
| Pentachlorophenol           | ND             | 0.15       | 0.47  | 0.47   | mg/kg | t             |              |
| Phenanthrene                | ND             | 0.075      | 0.47  | 0.47   | mg/kg | 1             |              |
| Phenol                      | ND             | 0.14       | 0.47  | 0.47   | mg/kg | 1             |              |
| Pyrene                      | ND             | 0.075      | 0.47  | 0.47   | mg/kg | 1             |              |
| Pyridine                    | ND             | 0.047      | 0.94  | 0.94   | mg/kg | 1             |              |
| Surr: 2,4,6-Tribromophenol  | 55 %           | Conc:26.1  | 1     | 40-97  | %     |               |              |
| Surr: 2-Fluorobiphenyl      | 67 %           | Conc: 15.7 | 3     | 9-100  | %     |               |              |
| Surr: 2-Fluorophenol        | 78 %           | Сопс:36.9  | 2     | 26-115 | %     |               |              |
| Surr: Nitrobenzene-d5       | 70 %           | Conc:16.6  | 4     | 9-105  | %     |               |              |
| Surr. Phenol-d5             | 75 %           | Conc:35.5  |       | 6-105  | %     |               |              |
|                             | 70.00          | 0 400      |       | 0 400  | 76    |               |              |

Conc: 18.0

36-106

76 %





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

# QUALITY CONTROL SECTION



Analytical Laboratory Service - Since 1964



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

#### Semivolatile Organic Compounds by GC/MS - Quality Control

#### Batch W3F0001 - EPA 8270C

| 4.44                             | 5      | Reporting |        | Spike     | Source   |       | % REC<br>Limits | 505 | RPD   | Dat<br>Qualifiers |
|----------------------------------|--------|-----------|--------|-----------|----------|-------|-----------------|-----|-------|-------------------|
| Analyte                          | Result | Limit     | Units  | Level     | Result   | %REC  | Limits          | RPD | Limit | Qualiner          |
| Blank (W3F0001-BLK1)             |        |           |        | Analyzed: | 06/04/13 | 14:03 |                 |     |       |                   |
| 1,2,4-Trichlorobenzene           | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 1,2-Dichlorobenzene              | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 1,3-Dichlorobenzene              | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 1,4-Dichlorobenzene              | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2,4,5-Trichlorophenol            | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2,4,6-Trichlorophenol            | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2,4-Dichlorophenol               | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2,4-Dimethylphenol               | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2,4-Dinitrophenol                | ND     | 2.5       | mg/kg  |           |          |       |                 |     |       |                   |
| 2,4-Dinitrotoluene               | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2,6-Dinitrotoluene               | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2-Chloronaphthalene              | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2-Chlorophenol                   | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2-Methylnaphthalene              | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2-Methylphenol                   | ND     | 0.050     | rng/kg |           |          |       |                 |     |       |                   |
| 2-Nitroaniline                   | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 2-Nitrophenol                    | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 3 & 4-Methylphenol               | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 3,3'-Dichlorobenzidine           | ND     | 0.25      | mg/kg  |           |          |       |                 |     |       |                   |
| 3-Nitroaniline                   | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 4,6-Dinitro-2-methylphenol       | ND     | 0.50      | mg/kg  |           |          |       |                 |     |       |                   |
| 4-Bromophenyl phenyl ether       | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 4-Chloro-3-methylphenol          | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 4-Chloroaniline                  | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 4-Chlorophenyl phenyl ether      | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 4-Nitroaniline                   | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| 4-Nitrophenol                    | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Acenaphthene                     | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Acenaphthylene                   | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Aniline                          | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Anthracene                       | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Azobenzene/1,2-Diphenylhydrazine | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Benzidine                        | ND     | 0.50      | mg/kg  |           |          |       |                 |     |       |                   |
| Benzo (a) anthracene             | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Benzo (a) pyrene                 | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Benzo (b) fluoranthene           | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Benzo (g,h,i) perylene           | ND     | 0.10      | mg/kg  |           |          |       |                 |     |       |                   |
| Benzo (k) fluoranthene           | ND     | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Benzoic acid                     | ND     | 2.5       | mg/kg  |           |          |       |                 |     |       |                   |
| Benzyl alcohol                   |        | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Bis(2-chloroethoxy)methane       |        | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| Bis(2-chloroethyl)ether          |        | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| is(2-chloroisopropyl)ether       |        | 0.050     | mg/kg  |           |          |       |                 |     |       |                   |
| lis(2-ethylhexyl)phthalate       |        | 0.050     | mg/kg  |           |          |       |                 | NR  |       | J                 |

Page 44 of 48



Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC #13-1321, 26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

#### Semivolatile Organic Compounds by GC/MS - Quality Control

#### Batch W3F0001 - EPA 8270C

|                            | 21.0   | Reporting |       | Spike       | Source     | 2022  | 8.2. 95                                                                                                                                              | 440 |       | Dat<br>Qualifier |
|----------------------------|--------|-----------|-------|-------------|------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------------------|
| Analyte                    | Result | Limit     | Units | Level       | Result     | %REC  | Limits                                                                                                                                               | RPD | Limit | Qualitien        |
| Blank (W3F0001-BLK1)       |        |           |       | Analyzed:   | 06/04/13   | 14:03 | % REC Limits RPD Limit  NR  40-97 39-100 26-115 49-105 36-105 36-106  28-120 NR 41-98 NR 43-121 NR 22-123 NR 26-126 NR 17-139 NR 44-105 NR 24-128 NR |     |       |                  |
| Butyl benzyl phthalate     | ND     | 0.050     | mg/kg |             |            |       | 1,4                                                                                                                                                  |     |       |                  |
| Carbazole                  | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Chrysene                   | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Dibenzo (a,h) anthracene   | ND     | 0.10      | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Dibenzofuran               | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Diethyl phthalate          | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Dimethyl phthalate         | ND     | 0.25      | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Di-n-butyl phthalate       | 0.0315 | 0.050     | mg/kg |             |            |       |                                                                                                                                                      | NR  |       | 1.5              |
| Di-n-octyl phthalate       | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Fluoranthene               | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Fluorene                   | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Hexachlorobenzene          | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Hexachlorobutadiene        | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Hexachlorocyclopentadiene  | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Hexachloroethane           | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Indeno (1,2,3-cd) pyrene   | ND     | 0.10      | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Isophorone                 | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Naphthalene                | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Nitrobenzene               | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| N-Nitrosodimethylamine     | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| N-Nitrosodi-n-propylamine  | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| N-Nitrosodiphenylamine     | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Pentachlorophenol          | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Phenanthrene               | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Phenol                     | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Pyrene                     | ND     | 0.050     | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Pyridine                   | ND     | 0.10      | mg/kg |             |            |       |                                                                                                                                                      |     |       |                  |
| Surr: 2,4,6-Tribromophenol | 4.31   |           | mg/kg | 5.00        |            | 86    | 40-97                                                                                                                                                |     |       |                  |
| Surr: 2-Fluorobiphenyl     | 2.47   |           | mg/kg | 2.50        |            | 99    |                                                                                                                                                      |     |       |                  |
| Surr. 2-Fluorophenol       | 7.19   |           | mg/kg | 5.00        |            | 144   |                                                                                                                                                      |     |       | S-11             |
| Surr: Nitrobenzene-d5      | 2.55   |           | mg/kg | 2.50        |            | 102   |                                                                                                                                                      |     |       |                  |
| Surr: Phenol-d5            | 5.47   |           | mg/kg | 5.00        |            | 109   | 36-105                                                                                                                                               |     |       | S-11             |
| Surr: Terphenyl-d14        | 2.80   |           | mg/kg | 2.50        |            | 112   |                                                                                                                                                      |     |       | S-11             |
| S (W3F0001-BS1)            |        |           | -     | Analyzed: 0 | 6/04/13 14 | :33   |                                                                                                                                                      |     | 1     |                  |
| ,2,4-Trichlorobenzene      | 1.94   | 0.050     | mg/kg | 2.50        | -          | 78    | 28-120                                                                                                                                               | NR  |       |                  |
| ,4-Dichlorobenzene         |        | 0.050     | mg/kg | 2.50        |            | 79    |                                                                                                                                                      |     |       |                  |
| ,4-Dinitrotoluene          |        | 0.050     | mg/kg | 2.50        |            | 83    |                                                                                                                                                      |     |       |                  |
| -Chlorophenol              |        | 0.050     | mg/kg | 2.50        |            | 78    |                                                                                                                                                      |     |       |                  |
| -Chloro-3-methylphenol     |        | 0.050     | mg/kg | 2.50        |            | 75    |                                                                                                                                                      |     |       |                  |
| -Nitrophenol               |        | 0.050     | mg/kg | 2.50        |            | 72    |                                                                                                                                                      |     |       |                  |
| cenaphthene                |        | 0.050     | mg/kg | 2.50        |            | 83    |                                                                                                                                                      |     |       |                  |
| l-Nitrosodl-n-propylamine  |        | 0.050     | mg/kg | 2.50        |            | 80    | 24-128                                                                                                                                               | NR  |       |                  |
| entachlorophenol           |        | 0.050     | mg/kg | 2.50        |            | 72    | 20-116                                                                                                                                               | NR  |       |                  |

Page 45 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

## Semivolatile Organic Compounds by GC/MS - Quality Control

| Datch | W3F0001 | CDA | 92700 |
|-------|---------|-----|-------|
|       |         |     |       |

LIGHT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY

| Analyte                         | Result | Reporting<br>Limit | Units  | Spike<br>Level | Source<br>Result | %REC  | % REC<br>Limits | RPD  | RPD<br>Limit | Dat<br>Qualifiers |
|---------------------------------|--------|--------------------|--------|----------------|------------------|-------|-----------------|------|--------------|-------------------|
|                                 | Kesuit | Limit              | Units  |                | 77.5874          |       |                 | NI D |              |                   |
| LCS (W3F0001-BS1)               |        |                    |        | Analyzed       | 06/04/13         |       |                 |      |              |                   |
| Phenol                          | 1.82   | 0.050              | mg/kg  | 2.50           |                  | 73    | 22-123          | NR   |              |                   |
| Pyrene                          | 2.13   | 0.050              | mg/kg  | 2.50           |                  | 85    | 42-118          | NR   |              |                   |
| Surr. 2,4,6-Tribromophenol      | 3.91   |                    | mg/kg  |                |                  | 78    | 40-97           |      |              |                   |
| Surr. 2-Fluorobiphenyl          | 2.15   |                    | mg/kg  |                |                  | 86    | 39-100          |      |              |                   |
| Surr. 2-Fluorophenol            | 4.65   |                    | mg/kg  | 5.00           |                  | 93    | 26-115          |      |              |                   |
| Surr: Nitrobenzene-d5           | 1.99   |                    | mg/kg  |                |                  | 80    | 49-105          |      |              |                   |
| Surr. Phenol-d5                 | 4.22   |                    | mg/kg  | 5.00           |                  | 84    | 36-105          |      |              |                   |
| Surr: Terphenyl-d14             | 2.35   |                    | mg/kg  | 2.50           |                  | 94    | 36-106          |      |              |                   |
| Matrix Spike (W3F0001-MS1)      | Source | e: 3E3001          | 4-01   | Analyzed:      | 06/04/13         | 15:03 |                 |      |              |                   |
| 1,2,4-Trichlorobenzene          | 16.2   | 0.49               | mg/kg  | 24.4           | ND               | 66    | 26-124          | NR   |              |                   |
| 1,4-Dichlorobenzene             | 16.9   | 0.49               | mg/kg  | 24.4           | ND               | 69    | 28-117          | NR   |              |                   |
| 2,4-Dinitrotoluene              | 19.2   | 0.49               | mg/kg  | 24.4           | ND               | 79    | 26-132          | NR   |              |                   |
| 2-Chlorophenol                  | 16.4   | 0.49               | mg/kg  | 24.4           | ND               | 67    | 24-124          | NR   |              |                   |
| 4-Chloro-3-methylphenol         | 15.9   | 0.49               | mg/kg  | 24.4           | ND               | 65    | 5-153           | NR   |              |                   |
| 4-Nitrophenol                   | 17.6   | 0.49               | mg/kg  | 24.4           | ND               | 72    | 0.6-139         | NR   |              |                   |
| Acenaphthene                    | 17.6   | 0.49               | mg/kg  | 24.4           | ND               | 72    | 33-117          | NR   |              |                   |
| N-Nitrosodi-n-propylamine       | 16.5   | 0.49               | mg/kg  | 24.4           | ND               | 68    | 20-128          | NR   |              |                   |
| Pentachlorophenol               | 16.9   | 0.49               | mg/kg  | 24.4           | 0.394            | 68    | 7-125           | NR   |              |                   |
| Phenol                          | 15.8   | 0.49               | rng/kg | 24.4           | ND               | 65    | 40-120          | NR   |              |                   |
| Pyrene                          | 20.1   | 0.49               | mg/kg  | 24.4           | ND               | 83    | 22-148          | NR   |              |                   |
| Surr. 2,4,6-Tribromophenol      | 34.6   | 0.10               | mg/kg  | 48.8           | 1                | 71    | 40-97           |      |              |                   |
| Surr. 2-Fluorobiphenyl          | 17.3   |                    | mg/kg  | 24.4           |                  | 71    | 39-100          |      |              |                   |
| Surr: 2-Fluorophenol            | 35.6   |                    | mg/kg  | 48.8           |                  | 73    | 26-115          |      |              |                   |
| Surr. Nitrobenzene-d5           | 16.1   |                    | mg/kg  | 24.4           |                  | 66    | 49-105          |      |              |                   |
| Surr. Phenol-d5                 | 34.3   |                    | mg/kg  | 48.8           |                  | 70    | 36-105          |      |              |                   |
| Surr: Terphenyl-d14             | 21.4   |                    | mg/kg  | 24.4           |                  | 88    | 36-106          |      |              |                   |
|                                 |        |                    |        |                | 00/04/40 4       |       |                 |      |              |                   |
| Matrix Spike Dup (W3F0001-MSD1) |        | 3E30014            |        | Analyzed: (    |                  |       | 00.404          |      | 20           |                   |
| 1,2,4-Trichlorobenzene          | 14.9   | 0.48               | mg/kg  | 23.9           | ND               | 62    | 26-124          | 8    | 30           |                   |
| 1,4-Dichlorobenzene             | 15.5   | 0.48               | mg/kg  | 23.9           | ND               | 65    | 28-117          | 9    | 30           |                   |
| 2,4-Dinitrotoluene              | 15.8   | 0.48               | mg/kg  | 23.9           | ND               | 66    | 26-132          | 19   | 30           |                   |
| 2-Chlorophenol                  | 15.3   | 0.48               | mg/kg  | 23.9           | ND               | 64    | 24-124          | 7    | 30           |                   |
| 4-Chloro-3-methylphenol         | 14.4   | 0.48               | mg/kg  | 23.9           | ND               | 60    | 5-153           | 10   | 30           |                   |
| 4-Nitrophenol                   | 13.6   | 0.48               | mg/kg  | 23.9           | ND               | 57    | 0.6-139         | 25   | 30           |                   |
| Acenaphthene                    | 16.0   | 0.48               | mg/kg  | 23.9           | ND               | 67    | 33-117          | 10   | 30           |                   |
| N-Nitrosodi-n-propylamine       | 14.2   | 0.48               | mg/kg  | 23.9           | ND               | 59    | 20-128          | 15   | 30           | Bx 12             |
| Pentachlorophenol               | 12.3   | 0.48               | mg/kg  | 23.9           | 0.394            | 50    | 7-125           | 31   | 30           | MS-05             |
| Phenol                          |        | 0.48               | mg/kg  | 23.9           | ND               | 61    | 40-120          | 9    | 30           |                   |
| Pyrene                          | 15.6   | 0.48               | mg/kg  | 23.9           | ND               | 65    | 22-148          | 25   | 30           |                   |
| Surr: 2,4,6-Tribromophenol      | 27.8   |                    | mg/kg  | 47.8           |                  | 58    | 40-97           |      |              |                   |
| Surr. 2-Fluorobiphenyl          | 14.9   |                    | mg/kg  | 23.9           |                  | 62    | 39-100          |      |              |                   |
| Surr. 2-Fluorophenol            | 31.0   |                    | mg/kg  | 47.8           |                  | 65    | 26-115          |      |              |                   |
| Surr. Nitrobenzene-d5           | 14.5   |                    | mg/kg  | 23.9           |                  | 61    | 49-105          |      |              |                   |
| Surr. Phenol-d5                 | 30.1   |                    | rng/kg | 47.8           |                  | 63    | 36-105          |      |              |                   |

Page 46 of 48



#### Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Reported: #13-1321,26, WO#

05/30/13 09:50 Date Received: 06/05/13 16:04

#### Semivolatile Organic Compounds by GC/MS - Quality Control

#### Batch W3F0001 - EPA 8270C

| Analyte                         | Result                   | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result         | %REC | % REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------|--------------------------|--------------------|-------|----------------|--------------------------|------|-----------------|-----|--------------|--------------------|
| Matrix Spike Dup (W3F0001-MSD1) | MSD1) Source: 3E30014-01 |                    |       |                | Analyzed: 06/04/13 15:33 |      |                 |     |              |                    |
| Surr: Terphenyl-d14             | 15.7                     |                    | mg/kg | 23.9           |                          | 66   | 36-106          |     |              |                    |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

#### Notes and Definitions

S-11 Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

MS-05 The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS

and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration.

NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

MRL Method Reporting Limit

NR Not Reportable

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Page 48 of 48

# DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

#### ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

GEORGE FAEUSTLE

PROJECT:

7600 TYRONE AVE

REPORT NO.:

C12055 (Revised and Updated)

#### **TABLE OF CONTENTS**

| <b>SECTION</b> |                                        | <b>PAGE</b>     |
|----------------|----------------------------------------|-----------------|
| COVER LETTER,  | COC,                                   | 100001 - 100003 |
| ATTACHMENT 1   | VOC<br>EPA METHOD 8260B                | 200001 – 200007 |
| ATTACHMENT 2   | METALS/HG<br>EPA METHOD 6010B/7471     | 300001 - 300008 |
| ATTACHMENT 3   | TEPH/MOTOR OIL/DRO<br>EPA METHOD 8015M | 400001 - 400004 |
| ATTACHMENT 4   | GRO<br>EPA METHOD 8015B                | 500001 - 500003 |
| ATTACHMENT 5   | PCBs<br>EPA METHOD 8082                | 600001 - 600003 |
| ATTACHMENT 6   | PESTICIDES<br>EPA METHOD 8081          | 700001- 700023  |
| ATTACHMENT 7   | SVOC<br>EPA METHOD 8270C               | 800001 - 800024 |

#### DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12055 COC 13-1326 Page 1 of 1 w/ attachments Updated and Revised

#### ENVIRONMENTAL LABORATORY DATA REPORT

#### 7600 TYRONE AVE, VAN NUYS Soil Samples

Soil samples from 7600 Tyrone Ave, Van Nuys, were submitted to the Environmental Laboratory on May 29, 2013 for the determination of their Volatile Organic Compounds (VOC), Metals, Semi-Volatile Organic Compounds (SVOC), Total Extractable Petroleum Hydrocarbons (TEPH) including Motor Oil (MO) and Diesel Range Organic (DRO), Chlorinated Pesticides, Polychlorinated Biphenyls (PCBs), and Gasoline Range Organics (GRO) content.

Testing information including tests requested and test methods are listed below. All quality assurance data indicate that the results for these samples are of acceptable quality.

| Analysis<br>Requested | Method         | Results       | Analyzed<br>by    |  |  |
|-----------------------|----------------|---------------|-------------------|--|--|
| VOC                   | EPA 8260 B     | Attachment #1 | Environmental Lab |  |  |
| Metals                | EPA 6010B/7471 | Attachment #2 | Environmental Lab |  |  |
| TEPH/Diesel/Motor Oil | EPA 8015M      | Attachment #3 | Environmental Lab |  |  |
| GRO                   | EPA 8015B      | Attachment #4 | Environmental Lab |  |  |
| PCB                   | EPA 8082       | Attachment #5 | Weck Laboratories |  |  |
| Pesticides            | EPA 8081A      | Attachment #6 | Weck Laboratories |  |  |
| SVOC                  | EPA 8270 C     | Attachment #7 | Weck Laboratories |  |  |

This report has been updated to include Pesticide Analyses (EPA 8081A- Attachment #6). The report was also revised as the MDL for Mercury Analysis in the original report was listed in parts per billion (ug/kg) instead of parts per million (mg/kg).

Additionally, please not that VOC analyses in Attachment #1 include results for this project from COC-1321 as well.

If you have any questions, or if further information is required, please contact Mr. Jeremy Stoa at (213) 367-7266 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 6/6/2013 Work Order No.: AHJ17

Job Card No.: J95550 Copies to: G. Faeustle

> N. Liu K. Han

J. Stoa FileNet Test Performed by: Environmental Lab

Weck Laboratories

Report By: JS/LK Date: 6/14/13 Checked by: JM Date: 6/14/13

APPROVED BY:

Kevin Han

Date

Interim Laboratory Manager Environmental Laboratory Environme Laboratory

1630 N. Main Street, Bldg. 7, 3rd Flr. Los Angeles, CA. 90012 (213) 367-7248/7399

## Department of Water and Pc r City of Los Angeles

**Chain of Custody Record** 

coc#: 13-1326

| (213)          | 367-7248,<br>367 <u>-</u> 7285               | FAX               |       | 0                |         | nam of Custody Record                |               | Keffi  | g#.            | 1.27     | SI               | 20,1111          |                | 7                      |
|----------------|----------------------------------------------|-------------------|-------|------------------|---------|--------------------------------------|---------------|--------|----------------|----------|------------------|------------------|----------------|------------------------|
| Sa             | mple L                                       | ocation:          | Typ   | 2013             | = Prof  | enty 7600 Typon & Ave, Van Nous,     | CA            | muai   |                | D Per    | sonnel:          | No. of Field Tes | st:            |                        |
| CHEM<br>(For s | ihem Lab us<br>IISTRY LOG<br>ample duplicate | e only<br>NUMBERS | 7 100 |                  | (24 Hr) | Sample Location and Description      | Preservativės | F43.18 | ontain<br>Type | A115     | Sample<br>Matrix | D                | Test<br>Result | Analyst(s)<br>Assigned |
| BIZ            | -1' L                                        | 106314            | Spe   | 13               | 1300    |                                      | 100           | -      | -              | -        | SOIL             | Plo (601018)     |                |                        |
| 2              | 2                                            | 06315             | 1     |                  |         | ARCHIVEATOLD                         |               |        |                |          | 1                | (ARCHIVE)        |                |                        |
| 3 A -          | 3'                                           | 06316             |       |                  | 134     |                                      |               | 11     | 1              |          |                  | V                |                |                        |
| A BI           |                                              | 06317             | -     | -                | 1306    |                                      |               | 11     | $\vdash$       | $\vdash$ | 1                | A5(6010B)        |                |                        |
| 6              | -2'                                          | 06318             | -     | 1-               |         | ARCHINE/HOLD                         | 1             | 1      | 1              | 1.       | 1                | CARCHINE)        |                |                        |
|                | 3-1                                          | 06319             |       | 20/2             | 0745    |                                      | V             | 1      | -              | 4        | 1-1-             | 200 (200) (2     | - 2            |                        |
| 8              | -2                                           | 06321             | 1 /   | 7/15             | 6747    | ARCHIVE SHOLD RUSH                   |               | 3      | SG             | ₩Z.      | ++               | COPS (BOBIA)/A   | s (6010B)      |                        |
| 9              | -3'                                          | 06327             |       |                  | 0149    | ABRICE ALL STREET                    |               | 1      | 11             | +        | 11               | (HECHNE)         |                |                        |
| no P           | 15-1                                         | 0637              |       |                  | 0800    |                                      |               | 11     | 11             |          |                  | · Y              |                |                        |
| \$             | 1-2                                          | 0632              |       |                  | 0802    | ARCHIN= AJOLD                        |               | 1      | 1              |          |                  | (ARCHIVE)        |                |                        |
| 12             | -                                            | 0632              | 5     |                  | 080     |                                      |               |        |                |          |                  |                  |                |                        |
| 138            | 18-1                                         | 0632              | 6     |                  | 0816    |                                      | -             |        |                |          | 11/              |                  |                |                        |
| 14             | 1-2                                          | 0632              | 1     | 1                | 0812    | ARCHIVE Aloud                        |               |        | 1              | 1        | 111              | (APCHIVE)        |                |                        |
| 15             | 1 -3                                         | 0632              |       | 1_               | 0814    |                                      | 14            | , \    | 1              | 1        | 111              | CLOUDE A THAT    | 3014) (827     | (SIECES                |
| 16             | 323-1                                        | J 063:            | 29    | W_               | 0830    |                                      | 3135/         | CE     | 5 3            | 52V      |                  | THE ZZNE LIST    | PHCC/SYOU      | CSYFCBS 1              |
|                |                                              | & Time            | R     | equest           | er Good | QETENDRE/K. DROKE Organization/      | Div. I An     | WD/    | AH             | 7        | Vile             | Analyst:         | Date_          |                        |
|                | 3                                            | tamp §            |       | Addre            |         | Tel.                                 | Fa            | x      | LJLD           |          |                  | Approved:        | Date_          |                        |
| 9              | 10                                           |                   |       | <b>H.</b> 7-5    | . 1     | P. L. IN                             |               |        |                |          | ^                | Signature        | 100            | 1 5-4-                 |
| COC13- 1326    | ADWP                                         |                   |       | Priori<br>2-4 Hr |         | Printed Name Sampled by: 1. 6.44. T. | 10            | -      | Sampl          | labor    | VA               | Signature        | Time           |                        |
| 3,             | 3                                            |                   |       | 1Day             |         | Sampled by DRaKE (AH) EnvironM       | EMA()         |        | 1              | D        | 134              | 9                | 1000           | 5/21/13                |
| ò              |                                              |                   | _   [ | 2 Wk             |         | Relinguished by:                     |               |        | Relin          | )        | 31               | alle             | 1030           | 5/29/13                |
| ŏ              | Chem L<br>Revi.                              | ab CEForm #15     |       | Speci            | DARID   | Received by                          | /             |        | Redei          |          | V                | 6                | 1040           | 5/29/13                |
|                | BB.                                          | AC AL             | BT    | 17               | DW      | * Plassa archiN=/HOLD all            | 2' 5an        | 40     | ES             | PZ       | ndi              | ing the 1'+3'R   | sults          |                        |

Environme I Laboratory

1630 N. Main Street, Bldg. 7, 3rd Flr. Los Angeles, CA. 90012 (213) 367-7248/7399

#### Department of Water and Po ... or City of Los Angeles

**Chain of Custody Record** 

coc#: 13-1326

- Page 2 of 2

| Preservatives                | 中Co<br>中Co<br>可能<br>No.<br>5<br>4<br>3<br>人 | ntaine<br>Type    | Size                       | Sample<br>Matrix            | ARCHNE AND<br>Rec<br>ARCHNE AND<br>THE 22 ME<br>CXP COOR<br>(ARCHIVE) | No. of Field<br>alysis<br>quired<br>106 (ac                    | Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyst(s)<br>Assigned<br>(8692)                                                                                                                    |
|------------------------------|---------------------------------------------|-------------------|----------------------------|-----------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Preservatives 8085/KE  LEE   | ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | ntain<br>Type     | Size                       | Sample<br>Matrix            | ARCHNE AGO<br>ARCHNE AGO<br>THEZZ ME<br>CCA COOK<br>(ARCHIVE)         | alysis<br>quired<br>(66) (80<br>13(A) +1                       | J<br>Hec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result (82106)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assigned                                                                                                                                            |
| Preservatives  9085/ICE  1CE | 54311                                       | Type              | Size                       | Matrix<br>Spil.             | ARCHNEZOGO<br>THEZZ NE<br>CXP (2007<br>(AKCHIVE)                      | puired  OB (S)  DXS/IP  BAA) + I                               | ncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result (82106)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assigned                                                                                                                                            |
| Preservatives  9085/ICE  1CE | 54311                                       | Type              | Size                       | Matrix<br>Spil.             | ARCHNEZOGO<br>THEZZ NE<br>CXP (2007<br>(AKCHIVE)                      | puired  OB (S)  DXS/IP  BAA) + I                               | ncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result (82106)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assigned                                                                                                                                            |
| 285/KE<br>↓<br>↓<br>↓        | 5431                                        | NO.               | N = /                      | SOIL!                       | ARCHNE AGO<br>THEZZ NE<br>CXP (2007<br>(AKCHTUZ)                      | 08) (\$<br>13) (\$)<br>3) + 1                                  | ncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (8270G)<br>SVQCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4002)                                                                                                                                              |
| 15                           | 3/                                          | -                 |                            | Y_                          | CCA-CEOS<br>(ARCHIVE)                                                 | 31A) + 1                                                       | ncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SVUCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (BOBZ)<br>CBS                                                                                                                                       |
| 15                           | 3/                                          | -                 |                            | Y_                          | CCA-CEOS<br>(ARCHIVE)                                                 | 31A) + 1                                                       | ncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SVUCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBS                                                                                                                                                 |
|                              | 1                                           | SES I             | 地上                         | SOIL                        | CARCHIVE)                                                             | 31A3+1                                                         | 15(6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 010B) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |
| 5035/162                     | 1                                           | 1                 | 1                          |                             | (ARCHIVE)                                                             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| 5035/1G                      | サオー                                         | 1                 | V                          |                             |                                                                       | J.                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |
| D35/16                       | 7                                           | 1                 |                            |                             |                                                                       | V                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                   |
| 1                            | 11                                          |                   | 11                         |                             | NEWS-                                                                 | 22 AP                                                          | celv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 005/54005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IPCBS )                                                                                                                                             |
| 1                            |                                             | I                 |                            |                             | HECHNE)                                                               | ) [                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |
|                              | V                                           | 1                 | V                          |                             |                                                                       | V                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| 11                           | 5                                           | 1                 | 1                          | H                           | T22 M=                                                                | ale AT                                                         | PHIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SVXS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     |
|                              | 11                                          | T                 | П                          |                             |                                                                       |                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
|                              | 1                                           | 1                 | J                          |                             |                                                                       | J.                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
|                              | 1                                           | 1                 | 1                          | 100                         | T22 N=                                                                | tale App                                                       | Hick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Morden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /pre 100                                                                                                                                            |
|                              | Ti                                          | 11                | 11                         |                             | Vaprilly-                                                             | ) //                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ticoped                                                                                                                                             |
| 1                            | 1                                           |                   |                            |                             | , MEL HILLS                                                           | V                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
|                              | -                                           | 4                 | -                          | 12                          |                                                                       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |
|                              | -                                           | +                 | -                          | 000                         | 3                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |
|                              |                                             | 1                 |                            | g)                          | 51                                                                    | THE RESERVE OF THE                                             | design of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | AND THE PERSON NAMED IN                                                                                                                             |
| iv. LAD                      | q(u                                         | AI.               | la=                        | Tim                         | Analyst:                                                              |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |
|                              |                                             |                   |                            | 41,51,00                    | Approve                                                               | :d:                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     |
|                              | -                                           |                   |                            |                             | 1                                                                     |                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
|                              |                                             |                   | 1                          | -1                          | Signature                                                             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date                                                                                                                                                |
|                              | 1                                           | auurt             | ed by                      | Le                          | (1/0)                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/21/1                                                                                                                                              |
| -                            |                                             | Relie             | wishe                      | d Ky                        | 197                                                                   |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     |
|                              |                                             | 9                 | 13                         | TH                          | XVe                                                                   |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/29/13                                                                                                                                             |
|                              |                                             | Recei             | ved by                     | 1                           | 4                                                                     | 1 Yı                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/29/1                                                                                                                                              |
| SE A                         | PCH                                         | V=                | Ah                         | Db                          | THING I                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |
|                              | Fa                                          | Div. LADWP<br>Fax | Piv. LADWP Al-Fax  Sametar | Fax  Sametar by Religionshe | Sayunta to:  Received by                                              | T22 No T22 No T22 No Analyst: Approve  Sample by:  Received by | T22 N=las/TP  T22 N=las/TP  APC HIV=)  Analyst: Approved:  Fax  Signature  Sayupika by:  Religious field by:  T37  Religious field by:  Religious field by:  T37  Religious field by:  T38  Religious fi | T22 N=13/5 TPH ((APC HIV=)  Analyst: Approved:  Fax  Signature  Sameting by:  Retriguestied by:  Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T22 N=135/TPH cc/VDCs/SVCs  APCHIN=)  Date Approved: Date Date Sample ov: Signature  Fax  Signature  J000  Religioushed by: J036  Received by  LO36 |

## **ATTACHMENT #1**

# VOLATILE ORGANIC COMPOUNDS (VOC)

EPA METHOD 8260 B

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

Page 1 of 2 Sample Matrix: So

PROJECT: 7600 TYRONE

Date Date Chemistry Log No. Date Sampled Received Analyzed Sample Description 5/28/2013 LN06217 5/28/2013 6/3/2013 7600 TYRONE, B25-1 LN06219 7600 TYRONE, B25-3 5/28/2013 5/28/2013 6/3/2013 LN06229 5/28/2013 | 5/28/2013 | 6/3/2013 7600 TYRONE, B26-1 LN06231 5/28/2013 5/28/2013 6/3/2013 7600 TYRONE, B26-3 LN06335 7600 TYRONE, B27-1 5/29/2013 5/29/2013 6/3/2013 LN06337 5/29/2013 7600 TYRONE, B27-3 5/29/2013 6/3/2013 LN06341 7600 TYRONE, B28-1 5/29/2013 5/29/2013 6/3/2013

| O-market de                   |       |        | LN06217 | LN06219 | LN06229 | LN06231 | LN06335 | LN06337 | LN0634 |
|-------------------------------|-------|--------|---------|---------|---------|---------|---------|---------|--------|
| Compounds                     | MDL   | PQL    | Amount  
| 1                             | ug/kg | ug/kg  | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg  |
| Acatons                       | 00    | 100.0  |         |         | - 1     | -       | _3      |         |        |
| Acetone                       | 32    | 160.0  | nd      
| tert-Amyl methyl ether (TAME) | 23    | 115.0  | nd      | nd      | nd      | nd      | nd      | nd<br>  | nd     |
| Benzene<br>Bromobenzene       | 26    | 130.0  | nd      
| Bromochloromethane            | 26    | 130.0  | nd      
| Bromodichloromethane          | 24    | 120.0  | nd      
|                               | 22    | 110.0  | nd      | nd<br>, | nd      | nd      | nd      | nd      | nd     |
| Bromoform                     | 23    | 115.0  | nd      
| Bromomethane                  | 20    | 100.0  | nd      
| Methyl ethyl ketone (MEK)     | 26    | 130.0  | nd      | nd      | nď      | nd      | nd      | nd      | nd     |
| tert-Butyl alcohol (TBA)      | 373   | 1865.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd     |
| Butylbenzene                  | 29    | 145.0  | nd      
| sec-Butylbenzene              | 27    | 135.0  | nd      
| tert-Butylbenzene             | 29    | 145.0  | nd      
| tert-Butyl ethyl ether (ETBE) | 20    | 100.0  | nd      
| Carbon disulfide              | 116   | 580.0  | nd      | nd      | nď      | nd      | nd      | nd      | nd     |
| Carbon Tetrachloride          | 32    | 160.0  | nd      
| Chlorobenzene                 | 28    | 140.0  | nd      
| Chloroethane                  | 42    | 210.0  | nd      
| 2-Chloroethyl vinyl ether     | 23    | 115.0  | nd      
| Chloroform                    | 30    | 150.0  | nd      | nd      | nď      | nd      | nd      | nd      | nd     |
| Chloromethane                 | 70    | 350.0  | nd      
| 2-Chlorotoluene               | 27    | 135.0  | nd      | nď      | nd      | nd      | nd      | nd      | nd     |
| 4-Chlorotoluene               | 28    | 140.0  | nd      | nd      | nd      | nd      | nď      | nd      | nd     |
| Dibromochloromethane          | 25    | 125.0  | nd      
| 1,2-Dibromo-3-chloropropane   | 31    | 155.0  | nd      
| 1,2-Dibromoethane             | 23    | 115.0  | nd      | nd      | nd      | nd      | nd      | nd      | nď     |
| Dibromomethane                | 33    | 165.0  | nd      | nď      | nd      | nd      | nd      | nd      | nd     |
| 1,2-Dichlorobenzene           | 27    | 135.0  | nd      | nd      | nd      | nd      | nd      | nd      | nď     |
| 1,3-Dichlorobenzene           | 27    | 135.0  | nd      | nd      | nď      | nd      | nd      | nd      | nd     |
| 1,4-Dichlorobenzene           | 33    | 165.0  | nd      
| Dichlorodifluoromethane       | 37    | 185.0  | nd      
| 1,1-Dichloroethane            | 29    | 145.0  | nd      
| 1,2-Dichloroethane            | 22    | 110.0  | nd '    | nd      | nd      | nd      | nd      | nd      | nd     |
| 1,1-Dichloroethene            | 28    | 140.0  | nd      
| cis-1,2-Dichloroethene        | 26    | 130.0  | nd      | nd      | nd.     | nd      | nd      | nd      | nd     |
| trans-1,2-Dichloroethene      | 32    | 160.0  | nd      
| 1,2-Dichloropropane           | 22    | 110.0  | nd      
| 1,3-Dichloropropane           | 21    | 105.0  | nd      
| 2,2-Dichloropropane           | 38    | 190.0  | nd      | nd      | nd      | nď      | nd-     | nd      | nd     |
| 1,1-Dichloropropene           | 27    | 135.0  | nd      
| cis-1,3-Dichloropropene       | 26    | 130.0  | nd      
| rans-1,3-Dichloropropene      | 29    | 145.0  | nd      | nd      | nď      | nd      | nd      | nd      | nd     |
| Diisopropyl ether (DIPE)      | 26    | 130.0  | nd      
| thylbenzene                   | 30    | 150.0  | nd      
| dexachlorobutadiene           | 44    | 220.0  | nd      | nd      | nd      | nd      | nd      | nď      | nd     |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |  |
|-------------------|--------------|------------------|------------------|--------------------|--|
| LN06217           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-1 |  |
| LN06219           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B25-3 |  |
| LN06229           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-1 |  |
| LN06231           | 5/28/2013    | 5/28/2013        | 6/3/2013         | 7600 TYRONE, B26-3 |  |
| LN06335           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-1 |  |
| LN06337           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B27-3 |  |
| LN06341           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-1 |  |

|                               |       |       | LN06217 | LN06219 | LN06229 | LN06231 | LN06335 | LN06337 | LN06341 |
|-------------------------------|-------|-------|---------|---------|---------|---------|---------|---------|---------|
| Compounds                     | MDL   | PQL   | Amount  |
|                               | ug/kg | ug/kg | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   | ug/kg   |
| 2-Hexanone                    | 21    | 105.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Isopropylbenzene              | 33    | 165.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| p-Isopropyitoluene            | 28    | 140.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Methyl-t-butyl ether (MTBE)   | 23    | 115.0 | nď      | nd      | nd      | nd      | nd      | nd      | nd      |
| Methylene chloride            | 31    | 155.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Iodomethane                   | 20    | 100.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Methyl isobutył ketone (MIBK) | 19    | 95.0  | nd      |
| Naphthalene                   | 30    | 150.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Propylbenzene                 | 30    | 150.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Styrene                       | 33    | 165.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,1,1,2-Tetrachloroethane     | 23    | 115.0 | nd      | nď      | nd      | nd      | nd      | nď      | nd      |
| 1,1,2,2-Tetrachloroethane     | 40    | 200.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Tetrachloroethylene           | 27    | 135.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Toluene                       | 25    | 125.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,2,3-Trichlorobenzene        | 29    | 145.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,2,4-Trichlorobenzene        | 31    | 155.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,1,1-Trichloroethane         | 26    | 130.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,1,2-Trichloroethane         | 23    | 115.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| Trichloroethylene             | 24    | 120.0 | nd      | nd      | nd      | nď      | nd      | nd      | nd      |
| Trichlorofluoromethane        | 35    | 175.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,2,3-Trichloropropane        | 22    | 110.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,2,4-Trimethylbenzene        | 25    | 125.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| 1,3,5-Trimethylbenzene        | 28    | 140.0 | nd      | nď      | nd      | nd      | nd      | nd      | nd      |
| Vinyl acetate                 | 52    | 260.0 | nd      | nd      | nd      | nd -    | nd      | nd      | nd      |
| Vinyl Chloride (Chloroethene) | 36    | 180.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| m & p-Xylene                  | 75    | 375.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |
| o-Xylene                      | 28    | 140.0 | nd      | nd      | nd      | nd      | nd      | nd      | nd      |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL nd - Not Detected; below detection limit

|                            |                         | Quality Cont | rol Data |        |        |        |        |        |
|----------------------------|-------------------------|--------------|----------|--------|--------|--------|--------|--------|
| Surrogates                 | QC Limits<br>% Recovery |              |          |        |        |        |        |        |
| 30 (ug/L each)             | Lower-Upper             |              |          |        |        |        |        |        |
| SURR: Bromofluorobenzene   | 74 - 121                | 104.0%       | 103.7%   | 102.7% | 103.3% | 102.3% | 103.3% | 102.7% |
| SURR: Dibromofluoromethane | 80 - 120                | 97.0%        | 96.0%    | 95.0%  | 96.3%  | 95.3%  | 95.3%  | 95.3%  |
| SURR: Toluene-d8           | 81 - 117                | 93.7%        | 92.3%    | 90.0%  | 92.3%  | 92.3%  | 92.3%  | 92.3%  |
| Comment:                   | 01-117                  | 93.176       | 32.376   | 90.076 | 32.376 | 32.378 | 52.378 |        |

44.000

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 1 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN06343           | . 5/29/2013  | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-3 |
|                   |              |                  |                  |                    |
|                   |              |                  |                  |                    |
|                   |              | fi fi            |                  |                    |
| *                 |              |                  |                  |                    |
| A.                | p i          | : a , )          |                  |                    |
|                   | 10000        |                  |                  |                    |

| M1                            | 75      |         | LN06343 |
|-------------------------------|---------|---------|---------|
| Compounds                     | MDL     | PQL     | Amount  |
| 16                            | (ug/kg) | (ug/kg) | (ug/kg) |
| Acetone                       | 32      | 160.0   | nď      |
| tert-Amyl methyl ether (TAME) | 23      | 115.0   | nd      |
| Benzene                       | 26      | 130.0   | nd      |
| Bromobenzene                  | 26      | 130.0   | nd      |
| Bromochloromethane            | 24      | 120.0   | nd      |
| Bromodichloromethane          | 22      | 110.0   | nd      |
| Bromoform                     | 23      | 115.0   | nd      |
| Bromomethane                  | 20      | 100.0   | nd      |
| 2-Butanone (MEK)              | 26      | 130.0   | nd      |
| tert-Butyl alcohol (TBA)      | 373     | 1865.0  | nd      |
| n-Butylbenzene                | 29      | 145.0   | nd      |
| sec-Butylbenzene              | 27      | 135.0   | nd      |
| tert-Butylbenzene             | 29      | 145.0   | nd      |
| tert-Butyl ethyl ether (ETBE) | 20      | 100.0   | nd      |
| Carbon disulfide              | 116     | 580.0   | nd      |
| Carbon Tetrachloride          | 32      | 160.0   | nd      |
| Chlorobenzene                 | 28      | 140.0   | nd      |
| Chloroethane                  | 42      | 210.0   | nd      |
| 2-Chloroethyl vinyl ether     | 23      | 115.0   | nd      |
| Chloroform                    | 30      | 150.0   | nd      |
| Chloromethane                 | 70      | 350.0   | nd      |
| 2-Chlorotoluene               | 27      | 135.0   | nd      |
| 4-Chlorotoluene               | 28      | 140.0   | nd      |
| Dibromochloromethane          | 25      | 125.0   | nd      |
| 1,2-Dibromo-3-chloropropane   | 31      | 155.0   | nd      |
| 1,2-Dibromoethane (EDB)       | 23      | 115.0   | nd      |
| Dibromomethane                | 33      | 165.0   | nd      |
| 1,2-Dichlorobenzene           | 27      | 135.0   | nd      |
| 1,3-Dichlorobenzene           | 27      | 135.0   | nd      |
| 1,4-Dichlorobenzene           | 33      | 165.0   | nd      |
| Dichlorodifluoromethane       | 37      | 185.0   | nd      |
| 1,1-Dichloroethane            | 29      | 145.0   | nď      |
| 1,2-Dichloroethane            | 22      | 110.0   | nď      |
| 1,1-Dichloroethene            | 28      | 140.0   | nd      |
| cis-1,2-Dichloroethene        | 26      | 130.0   | nd      |
| trans-1,2-Dichloroethene      | 32      | 160.0   | nd      |
| 1,2-Dichloropropane           | 22      | 110.0   | nď      |
| 1,3-Dichloropropane           | 21      | 105.0   | nd      |
| 2,2-Dichloropropane           | 38      | 190.0   | nd      |
| 1,1-Dichloropropene           | 27      | 135.0   | nd      |
| cis-1,3-Dichloropropene       | 26      | 130.0   | nd      |
| trans-1,3-Dichloropropene     | 29      | 145.0   | nď      |
| Diisopropyl ether (DIPE)      | 26      | 130.0   | nd      |
| Ethylbenzene                  | 30      | 150.0   | nd      |
| Hexachlorobutadiene           | 44      | 220.0   | nd `    |
|                               |         |         | north   |

Report of GC/MS Analysis for Purgeable Volatile Organics

EPA SW-846 Method 8260 Page 2 of 2 Sample Matrix: Soil

PROJECT: 7600 TYRONE

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description |
|-------------------|--------------|------------------|------------------|--------------------|
| LN06343           | 5/29/2013    | 5/29/2013        | 6/3/2013         | 7600 TYRONE, B28-3 |
|                   | -            |                  |                  |                    |
| Entraction .      |              |                  |                  |                    |
|                   |              |                  |                  |                    |
| \$                |              |                  | 1000             |                    |

|                             |         |         | LN06343 |
|-----------------------------|---------|---------|---------|
| Compounds                   | MDL     | PQL     | Amount  |
|                             | (ug/kg) | (ug/kg) | (ug/kg) |
| 2-Hexanone                  | 21      | 105.0   | nd      |
| isopropylbenzene            | 33      | 165.0   | nd      |
| p-Isopropyltoluene          | 28      | 140.0   | nd      |
| Methyl-t-butyl ether (MTBE) | 23      | 115.0   | nd      |
| Methylene chloride          | 31      | 155.0   | nd      |
| Methyl iodide (Iodomethane) | 20      | 100.0   | nd      |
| 4-Methyl-2-pentanone (MIBK) | 19      | 95.0    | nd      |
| Naphthalene                 | 30      | 150.0   | nd      |
| Propylbenzene               | 30      | 150.0   | nd      |
| Styrene (Phenylethylene)    | 33      | 165.0   | nd      |
| 1,1,1,2-Tetrachloroethane   | 23      | 115.0   | nd      |
| 1,1,2,2-Tetrachloroethane   | 40      | 200.0   | nd      |
| Tetrachloroethylene (PCE)   | 27      | 135.0   | nd      |
| Toluene                     | 25      | 125.0   | nd      |
| 1,2,3-Trichlorobenzene      | 29      | 145.0   | nd      |
| 1,2,4-Trichlorobenzene      | 31      | 155.0   | nd      |
| 1,1,1-Trichloroethane       | 26      | 130.0   | nď      |
| 1,1,2-Trichloroethane       | 23      | 115.0   | nd      |
| Trichloroethylene (TCE)     | 24      | 120.0   | nď      |
| Trichlorofluoromethane      | 35      | 175.0   | nd      |
| 1,2,3-Trichloropropane      | 22      | 110.0   | nd      |
| 1,2,4-Trimethylbenzene      | 25      | 125.0   | nd      |
| 1,3,5-Trimethylbenzene      | 28      | 140.0   | nď      |
| Vinyl acetate               | 52      | 260.0   | nd      |
| Vinyl Chloride              | 36      | 180.0   | nď      |
| m & p-Xylene                | 75      | 375.0   | nď      |
| o-Xylene                    | 28      | 140.0   | nd      |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

|             | Quality Control Data                              |                                                                  |                                                                  |                                                                  |                                                                  |
|-------------|---------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| QC Limits   |                                                   |                                                                  |                                                                  |                                                                  |                                                                  |
| % Recovery  |                                                   |                                                                  |                                                                  | 10                                                               |                                                                  |
| Lower-Upper |                                                   |                                                                  |                                                                  |                                                                  |                                                                  |
| 74 - 121    | 103.7%                                            |                                                                  |                                                                  |                                                                  |                                                                  |
| 80 - 120    | 95.0%                                             |                                                                  |                                                                  |                                                                  |                                                                  |
| 81 - 117    | 92.7%                                             |                                                                  | 2                                                                |                                                                  | 12                                                               |
|             | % Recovery<br>Lower-Upper<br>74 - 121<br>80 - 120 | QC Limits % Recovery Lower-Upper  74 - 121 103.7% 80 - 120 95.0% | QC Limits % Recovery Lower-Upper  74 - 121 103.7% 80 - 120 95.0% | QC Limits % Recovery Lower-Upper  74 - 121 103.7% 80 - 120 95.0% | QC Limits % Recovery Lower-Upper  74 - 121 103.7% 80 - 120 95.0% |

Comment:

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No. | Date Sampled | Date<br>Received | Date<br>Analyzed | Sample Description | on                                         |
|-------------------|--------------|------------------|------------------|--------------------|--------------------------------------------|
| Blank             | 5/28/2013    | 5/28/2013        | 6/3/2013         | Method Blank       | B 3                                        |
| =                 |              |                  |                  |                    | VI.                                        |
|                   |              |                  |                  |                    |                                            |
|                   | 6            |                  |                  |                    | ** 50 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - |
|                   | 0            |                  |                  |                    |                                            |
|                   |              |                  |                  |                    |                                            |
| 7 22 1            |              |                  | 4 4              | ×                  |                                            |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | Blank<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|--------------------------|
| Acetone                       | 32           | 160.0        | nd                       |
| tert-Amyl methyl ether (TAME) | 23           | 115.0        | nd                       |
| Benzene                       | 26           | 130.0        | nd                       |
| Bromobenzene                  | 26           | 130.0        | nd                       |
| Bromochloromethane            | 24           | 120.0        | nd                       |
| Bromodichloromethane          | 22           | 110.0        | nd                       |
| Bromoform                     | 23           | 115.0        | nd                       |
| Bromomethane                  | 20           | 100.0        | nd                       |
| Methyl ethyl ketone (MEK)     | 26           | 130.0        | nd                       |
| tert-Butyl alcohol (TBA)      | 373          | 1865.0       | nd                       |
| Butylbenzene                  | 29           | 145.0        | nd                       |
| sec-Butylbenzene              | 27           | 135.0        | nd                       |
| tert-Butylbenzene             | 29           | 145.0        | nd                       |
| tert-Butyl ethyl ether (ETBE) | 20           | 100.0        | nd                       |
| Carbon disulfide              | 116          | 580.0        | nd                       |
| Carbon Tetrachloride          | 32           | 160.0        | nd                       |
| Chlorobenzene                 | 28           | 140.0        | nď                       |
| Chloroethane                  | 42           | 210.0        | nd                       |
| 2-Chloroethyl vinyl ether     | 23           | 115.0        | nd                       |
| Chloroform                    | 30           | 150.0        | nd                       |
| Chloromethane                 | 70           | 350.0        | nd                       |
| 2-Chlorotoluene               | 27           | 135.0        | nd                       |
| 4-Chlorotoluene               | 28           | 140.0        | nd                       |
| Dibromochloromethane          | 25           | 125.0        | nd                       |
| 1,2-Dibromo-3-chloropropane   | 31           | 155.0        | nd                       |
| 1,2-Dibromoethane             | 23           | 115.0        | nd                       |
| Dibromomethane                | 33           | 165.0        | nd                       |
| 1,2-Dichlorobenzene           | 27           | 135.0        | nd                       |
| 1,3-Dichlorobenzene           | 27           | 135.0        | nd                       |
| 1,4-Dichlorobenzene           | 33           | 165.0        | nd                       |
| Dichlorodifluoromethane       | 37           | 185.0        | nd                       |
| 1,1-Dichloroethane            | 29           | 145.0        | nd                       |
| 1,2-Dichloroethane            | 22           | 110.0        | nd                       |
| 1,1-Dichloroethene            | 28           | 140.0        | nd                       |
| cis-1,2-Dichloroethene        | 26           | 130.0        | nd                       |
| trans-1,2-Dichloroethene      | 32           | 160.0        | nd                       |
| 1,2-Dichloropropane           | 22           | 110.0        | nd                       |
| 1,3-Dichloropropane           | 21           | 105.0        | nd                       |
| 2,2-Dichloropropane           | 38           | 190.0        | nd                       |
| 1,1-Dichloropropene           | 27           | 135.0        | nd                       |
| cis-1,3-Dichloropropene       | 26           | 130.0        | nd                       |
| trans-1,3-Dichloropropene     | 29           | 145.0        | nd                       |
| Diisopropyl ether (DIPE)      | 26           | 130.0        | nd                       |
| Ethylbenzene                  | 30           | 150.0        | nd                       |
|                               |              |              |                          |

Report of GC/MS Analysis for Purgeable Volatile Organics EPA SW-846 Method 8260

PROJECT: 7600 TYRONE

Sample Matrix:

Soil

| Chemistry Log No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date Sampled | Date<br>Received | Date<br>Analyzed    | Sample Description |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|---------------------|--------------------|
| Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/28/2013    | 5/28/2013        | 6/3/2013            | Method Blank       |
| 71, 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |                     |                    |
| - De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |                     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                     |                    |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |              |                  | - MARINEN           |                    |
| All and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  | THE PERSON NAMED IN | . 20               |

| Compounds                     | MDL<br>ug/kg | PQL<br>ug/kg | Blank<br>Amount<br>ug/kg |
|-------------------------------|--------------|--------------|--------------------------|
| Hexachlorobutadiene           | 44           | 220.0        | nd                       |
| 2-Hexanone                    | 21           | 105.0        | nd                       |
| Isopropylbenzene              | 33           | 165.0        | nd                       |
| p-Isopropyltoluene            | 28           | 140.0        | nd                       |
| Methyl-f-butyl ether (MTBE)   | 23           | 115.0        | nd                       |
| Methylene chloride            | 31           | 155.0        | nd                       |
| Iodomethane                   | 20           | 100.0        | nd                       |
| Methyl isobutyl ketone (MIBK) | 19           | 95.0         | nd                       |
| Naphthalene                   | 30           | 150.0        | nd                       |
| Propylbenzene                 | 30           | 150.0        | nd                       |
| Styrene                       | 33           | 165.0        | nd                       |
| 1,1,1,2-Tetrachloroethane     | 23           | 115.0        | nd                       |
| 1,1,2,2-Tetrachloroethane     | 40           | 200.0        | nd                       |
| Tetrachloroethylene           | 27           | 135.0        | nd                       |
| Toluene                       | 25           | 125.0        | nd                       |
| 1,2,3-Trichlorobenzene        | 29           | 145.0        | nd                       |
| 1,2,4-Trichlorobenzene        | 31           | 155.0        | nd                       |
| 1,1,1-Trichloroethane         | 26           | 130.0        | nd                       |
| 1,1,2-Trichloroethane         | 23           | 115.0        | nd                       |
| Trichloroethylene             | 24           | 120.0        | nd                       |
| Trichlorofluoromethane        | 35           | 175.0        | nd                       |
| 1,2,3-Trichloropropane        | 22           | 110.0        | nd                       |
| 1,2,4-Trimethylbenzene        | 25           | 125.0        | nd                       |
| 1,3,5-Trimethylbenzene        | 28           | 140.0        | nd                       |
| Vinyl acetate                 | 52           | 260.0        | nd                       |
| Vinyl Chloride (Chloroethene) | 36           | 180.0        | nd                       |
| n & p-Xylene                  | 75           | 375.0        | nd                       |
| o-Xylene                      | 28           | 140.0        | nd                       |

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5xMDL)

J - Concentration above MDL below PQL

nd - Not Detected; below detection limit

| 9                          |             |                      |     |   |
|----------------------------|-------------|----------------------|-----|---|
|                            |             | Quality Control Data |     |   |
|                            | QC Limits   |                      |     | 6 |
| Surrogates                 | % Recovery  |                      |     |   |
| 30 (ug/L each)             | Lower-Upper |                      |     |   |
| SURR: Bromofluorobenzene   | 74 - 121    | 102.0%               |     |   |
| SURR: Dibromofluoromethane | 80 - 120    | 96.7%                | 8 9 |   |
| SURR: Toluene-d8           | 81 - 117    | 92.7%                | * * |   |
| Comment:                   |             |                      |     |   |

Analyst: Bryan Tiu

Reviewed by: Rose Gentallan

#### Quality Assurance Report

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED:

6/3/13

ANALYTICAL METHOD:

**USEPA 8260** 

BATCH #: LN06217 LN LN06217 LN06219 LN06229 LN06231 LN06335 LN06337 LN06341 LN06343

LAB SAMPLE I.D.: LN06217

UNIT:

ug/kg

| (I).               | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS  | SPIKE<br>CONC<br>(DUP) | MSD  | %MSD | RPD    | MS/MSD<br>LIMIT | RPD LIMIT |
|--------------------|------------------|---------------|------|------|------------------------|------|------|--------|-----------------|-----------|
| 1,1-Dichloroethene | ND               | 30.0          | 25.3 | 84.3 | 30.0                   | 25.9 | 86.3 | 2.3 %  | 59-172          | 22%       |
| Benzene            | ND               | 30.0          | 29.9 | 99.7 | 30.0                   | 30.5 | 102  | 2.3 %  | 66-142          | 21%       |
| Trichloroethylene  | ND               | 30.0          | 30.8 | 103  | 30.0                   | 31.3 | 104  | 0.97 % | 62-137          | 24%       |
| Toluene            | ND               | 30.0          | 30.6 | 102  | 30.0                   | 31.5 | 105  | 2.9 %  | 59-139          | 21%       |
| Chlorobenzene      | ND               | 30.0          | 35.7 | 119  | 30.0                   | 36.6 | 122  | 2.5 %  | 60-133          | 21%       |

Laboratory Quality Control Check Sample (LCS)

DATE PERFORMED:

6/3/13

ANALYTICAL METHOD:

**USEPA 8260** 

SUPPLY SOURCE:

LAB LCS I.D.:

Q8087

LOT NUMBER:

DATE OF SOURCE:

UNIT:

ug/kg

| ANALYTE               | LCS RESULT<br>ug/kg | TRUE VALUE<br>ug/kg | % RECOVERY      | Advisory Range |
|-----------------------|---------------------|---------------------|-----------------|----------------|
| 1,1,2-Trichloroethane | 29.9                | 30                  | 99.7            | 70 - 130       |
| 1,2-Dichloroethane    | 32.1                | 30                  | 107.0           | 70 - 130       |
| 1,4-Dichlorobenzene   | 31.3                | 30                  | 104.3           | 70 - 130       |
| Benzene               | 28.9                | 30                  | 96.3            | 70 - 130       |
| Bromoform             | 33                  | 30                  | 110.0           | 70 - 130       |
| Carbon Tetrachloride  | 27                  | 30                  | 90.0            | 70 - 130       |
| Tetrachloroethylene   | 28.2                | 30                  | 94.0            | 70 - 130       |
| Trichloroethylene     | 27.2                | 30                  | 90.7            | 70 - 130       |
|                       |                     |                     | William Control |                |
| r pilat               |                     |                     |                 |                |
|                       |                     |                     |                 |                |
|                       |                     |                     |                 |                |
|                       |                     |                     |                 |                |
| 22.                   |                     |                     |                 |                |
|                       |                     |                     |                 | 1              |
| ÷ .                   |                     |                     | 100             |                |
|                       |                     |                     |                 | 7              |
| T                     |                     |                     |                 |                |
| 7                     |                     |                     |                 |                |
| .02                   |                     |                     |                 | 16             |

## **ATTACHMENT #2**

METALS/MERCURY
EPA METHOD 6010B/7471

COC 13-1326

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY   | DATE    | DATE        | DATE     | H H      |                      |        | 348        |            |         |          | Ti.                                     |                  |
|--------------|---------|-------------|----------|----------|----------------------|--------|------------|------------|---------|----------|-----------------------------------------|------------------|
| LOG NO.      | SAMPLED | RECEIVED    | ANALYZED |          |                      |        | SAMPLE I   | DESCRIPTIC | N       |          | (W. B. Barret Vacco                     | 20.4 1-171 0 70  |
| LN06329      | 5/29/13 | 5/29/13     | 6/5/13   | 4        |                      | 7600   | TYRONE,    | B23-1      | ))      |          |                                         | 1 1 2 2 2 2      |
| LN06331      | 5/29/13 | 5/29/13     | 6/5/13   |          | -44                  | 7600   | TYRONE,    | B23-3      |         |          | *************************************** |                  |
| LN06335      | 5/29/13 | 5/29/13     | 6/5/13   |          |                      | 7600   | TYRONE,    | B27-1      |         | 5        |                                         |                  |
| LN06337      | 5/29/13 | 5/29/13     | 6/5/13   | 1        |                      | 7600   | TYRONE,    | B27-3      |         |          | mano a                                  | *****            |
| LN06338      | 5/29/13 | 5/29/13     | 6/5/13   |          | 30 c 1 maior and 100 | 7600   | TYRONE,    | B24-1      |         |          |                                         | 2 76-1-1         |
| LN06340      | 5/29/13 | 5/29/13     | 6/5/13   | <u> </u> |                      | 7600   | TYRONE,    | B24-3      |         |          |                                         | energy, contra   |
|              | LIMIT   | LIMIT       |          | r        | 1                    | 1 1000 | 1.330/2200 | I NOCZO    | LN06335 | 12102222 | 12000220                                | 1210/2140        |
| METAL        | (mg/kg) | STLC (ma/l) | METHOD   | MDI      | 10                   | . D.E  | LN06329    | LN06331    |         | LN06337  | LN06338<br>mg/kg                        | LN06340<br>mg/kg |
|              |         | (mg/l)      | METHOD   | MDL      | RL                   | D, F.  | mg/kg      | mg/kg      | mg/kg   | mg/kg    | mg/kg                                   | İ                |
| Antimony     | 500     | 15          | 6010B    | 1.0      | 5.0                  | 1      | 3.3J       | 4.0J       | 2.7J    | 3.8J     | 3.3J                                    | 4.2J             |
| Arsenic      | 500     | 5           | 6010B    | 2.6      | 13.0                 | 1      | ND         | ND         | ND      | ND       | ND                                      | ND .             |
| Barium       | 10000   | 100         | 6010B    | 3.7      | 18.5                 | 1      | 218        | 300        | 190     | 256      | 205                                     | 296              |
| Beryllium    | 75      | 0.75        | 6010B    | 0.7      | 3.50                 | 1      | ND         | ND         | ND      | ND       | ND                                      | ND               |
| Cadmium      | 100     | i           | 6010B    | 0.6      | 3.0                  | 1      | 3.3        | 4.0        | 3.1     | 3.6      | 3.2                                     | 4.1              |
| Chromium (T) | 500     | 5           | 6010B    | 1.4      | 7.0                  | 1      | 20         | 23         | 18      | 23       | 19                                      | 23               |
| Cobalt       | 8000    | 80          | 6010B    | 1.0      | 5.0                  | . 1    | 15         | 20         | 14      | 18       | 16                                      | 21               |
| Copper       | 2500    | 25          | 6010B    | 1.6      | 8.0                  | 1      | 21         | 22         | 14      | 20       | 18                                      | 22               |
| Lead         | 1000    | 5           | 6010B    | 0.9      | 4.5                  | 1      | 39         | 15         | 12      | 14       | 42                                      | 15               |
| Molybdenum   | 3500    | 350         | 6010B    | 0.3      | 1.5                  | 1      | ND         | ND         | 0.5J    | ND       | ND                                      | ND               |
| Nickel       | 2000    | 20          | 6010B    | 0.6      | 3.0                  | 1      | 20         | 24         | 20      | 23       | 20                                      | 24               |
| Selenium     | 100     | 1           | 6010B    | 1.6      | 8.0                  | 1      | ND         | ND         | ND      | ND       | ND                                      | ND               |
| Silver       | 500     | 5           | 6010B    | 1.5      | 7.5                  | 1      | ND         | ND         | ND      | ND       | ND                                      | ND               |
| Thallium     | 700     | 7           | 6010B    | 1.0      | 5.0                  | 1      | ND         | ND         | ND      | ND       | ND                                      | ND               |
| Vanadium     | 2400    | 24          | 6010B    | 1.8      | 9.00                 | 1      | 31         | 38         | 30      | 35       | 30                                      | 37               |
| Zinc         | 5000    | 250         | 6010B    | 1.9      | 9.50                 | 1      | 124        | 79         | 59      | 74       | 93                                      | 78               |
| Mercury      | 20      | 0.2         | 7471     | 0.00002  | 0.0001               | Ī      | 0.0480     | 0.0210     | 0.0200  | 0.0200   | 0.0240                                  | 0.0230           |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

COC 13-1326

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE    | DATE                                   | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| LOG NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLED | RECEIVED                               | ANALYZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) į     |        |          | SAMPLE I                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *************************************** |
| LN06341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/29/13 | 5/29/13                                | 6/5/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |          | TYRONE,                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| LN06343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/29/13 | 5/29/13                                | 6/5/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i entre | _      | 7600     | TYRONE,                 | 328-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                       |
| and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | assur. |          | 1872                    | Committee Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of | 94-4400-000-00                          |
| ((Anni 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | p ==================================== |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i       |        |          | 11/44 or pully distance | rins (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1      | 1        | ( Company of )          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       | the second of                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIMIT   | LIMIT                                  | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | 1       | 4      | - (0.500 |                         | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                       |
| ACTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TTLC    | STLC                                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | i .     | 1      |          | LN06341                 | LN06343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , jak                                   |
| METAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mg/kg) | (mg/l)                                 | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MDL     | RL     | D. F.    | mg/kg                   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                     |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500     | 15                                     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0     | 5.0    | 1        | 2.01                    | 4.0J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                       |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500     | 5                                      | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6     | 13.0   | 1        | ND                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 11111                                 |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000   | 100                                    | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7     | 18.5   | 1        | 99                      | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75      | 0.75                                   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7     | 3.50   | 1        | ND                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                       |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100     | I                                      | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6     | 3.0    | 1        | 1.8J                    | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                       |
| Chromium (T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500     | 5                                      | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4     | 7.0    | 1        | 10                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8000    | 80                                     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0     | 5.0    | 1        | 7.8                     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2500    | 25                                     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6     | 8.0    | 1        | 7.7.1                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000 i  | 5                                      | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9     | 4.5    | 1        | 6.7                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                       |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3500    | 350                                    | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3     | 1.5    | 1        | 0.44J                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000    | 20                                     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6     | 3.0    | 1        | 12.3                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100     | 1                                      | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6     | 8.0    | 1        | ND                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                    |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500     | 5                                      | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5     | 7.5    | 1        | ND                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 700     | 7                                      | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0     | 5.0    | 1        | ND                      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11144                                   |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2400    | 24                                     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8     | 9.0    | 1        | 19                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000    | 250                                    | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9     | 9.5    | 1.       | 36                      | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20      | 0.2                                    | 7471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00002 | 0.0001 | 1        | 0.0093                  | 0.0190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: KC/YC

COC 13-1326

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 6010B

Sample Matrix: SOIL

| LABORATORY<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>ANALYZED |     |       |       | SAMPLE DES | SCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|-----------------|------------------|------------------|-----|-------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LN06337 Dup           | 05/29/13        | 5/29/13          | 6/5/13           |     |       | 7600  | TYRONE, B2 | 7-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                 |                  |                  |     |       |       | 100000     | 7074.004.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                 |                  |                  |     |       |       |            | Acceptance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                 |                  | and the second   |     |       |       |            | 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 11 |
|                       |                 |                  |                  |     | AWA M | 12212 |            | 500 W// W// W// W// W// W// W// W// W// W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PC + .                | LIMIT           | LIMIT            |                  |     |       |       | Dup        | G 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| METAL                 | TTLC            | STLC             |                  |     |       |       | LN06337    | 1)<br>CORONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | (mg/kg)         | (mg/l)           | METHOD           | MDL | T     | D. F. | (mg/kg)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antimony              | 500             | 15               | 6010B            | 1.0 | 5.0   | 1     | 3.8J       | <del>- manus o</del> ļ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Arsenic               | 500             | .5               | 6010B            | 2.6 | 13.0  | 1     | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Barium                | 10000           | 100              | 6010B            | 3.7 | 18.5  | 1     | 249        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Beryllium             | 75              | 0.75             | 6010B            | 0.7 | 3.50  | 1     | ND         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cadmium               | 001             | 11               | 6010B            | 0.6 | 3.0   | 1     | 3.5        | \$ FF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chromium (T)          | 2500            | 5                | 6010B            | 1.4 | 7.0   | 1     | 21         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cobalt                | 8000            | 80               | 6010B            | 0.1 | 5.0   | 1     | 17         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Copper                | 2500            | 25               | 6010B            | 1.6 | 8.0   | 1     | 19         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead                  | 1000            | 5                | 6010B            | 0.9 | 4.5   | 1     | 14         | Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Molybdenum            | 3500            | 350              | 6010B            | 0.3 | 1.5   | 1     | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nickel                | 2000            | 20               | 6010B            | 0,6 | 3.0   | 1     | 22         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selenium              | 100             | 1                | 6010B            | 1.6 | 8.0   | 1     | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Silver                | 500             | 5                | 6010B            | 1.5 | 7.5   | 1     | ND         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thallium              | 700             | 7                | 6010B            | 1.0 | 5.0   | 1     | ND ,       | i .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vanadium              | 2400            | 24               | 6010B            | 1.8 | 9.0   | 1     | 34         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zinc                  | 5000            | 250              | 6010B            | 1.9 | 9.5   | 1     | 71         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: KC

COC 13-1326

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 6010B

Sample Matrix: SOIL

#### PROJECT: 7600 TYRONE

| LABORATORY | DATE    | DATE     | DATE     |     |      |       |          |            |         |         |         |         |
|------------|---------|----------|----------|-----|------|-------|----------|------------|---------|---------|---------|---------|
| LOG NO.    | SAMPLED | RECEIVED | ANALYZED |     |      |       | SAMPLE 1 | DESCRIPTIO | N       |         |         | 110     |
| LN06317    | 5/29/13 | 5/29/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B17-1      |         |         |         |         |
| LN06319    | 5/30/13 | 5/30/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B17-3      |         |         |         |         |
| LN06320    | 5/31/13 | 5/31/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B13-1      |         |         |         |         |
| LN06322    | 6/1/13  | 6/1/13   | 6/4/13   |     |      | 7600  | TYRONE,  | B13-3      |         |         |         |         |
| LN06323    | 6/2/13  | 6/2/13   | 6/4/13   |     |      | 7600  | TYRONE,  | B15-1      |         |         |         |         |
| LN06325    | 6/2/13  | 6/2/13   | 6/4/13   |     |      | 7600  | TYRONE,  | B15-3      |         |         |         |         |
|            | LIMIT   | LIMIT    |          |     |      |       |          |            |         |         |         |         |
|            | TTLC    | STLC     |          |     |      |       | LN06317  | LN06319    | LN06320 | LN06322 | LN06323 | LN06325 |
| METAL      | (mg/kg) | (mg/l)   | METHOD   | MDL | RL   | D. F. | mg/K.g   | mg/Kg      | mg/Kg   | mg/Kg   | mg/Kg   | mg/Kg   |
| Arsenic    | 500     | 5        | 6010B    | 2.6 | 13.0 | 100   | ND       | ND         | ND      | ND      | ND      | ND      |

| LABORATORY | DATE    | DATE     | DATE     |     |      | 100   | 1        |            | 4       |         |    |   |
|------------|---------|----------|----------|-----|------|-------|----------|------------|---------|---------|----|---|
| LOG NO.    | SAMPLED | RECEIVED | ANALYZED | -   |      |       | SAMPLE I | DESCRIPTIO | N       |         | ė. |   |
| LN06326    | 5/29/13 | 5/29/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B16-1      |         |         |    |   |
| LN06328    | 5/30/13 | 5/30/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B16-3      |         |         |    |   |
| LN06332    | 5/31/13 | 5/31/13  | 6/4/13   |     |      | 7600  | TYRONE,  | B14-1      |         |         |    |   |
| LN06334    | 6/1/13  | 6/1/13   | 6/4/13   |     |      | 7600  | TYRONE,  | B14-3      |         | it      |    |   |
| 4.         |         |          |          |     |      |       |          |            |         |         |    | - |
| • ••       |         |          |          |     |      |       |          |            |         |         |    |   |
| Ser.       |         |          |          |     |      |       |          |            |         |         |    |   |
|            | LIMIT   | LIMIT    |          |     |      |       |          |            |         |         |    |   |
|            | TTLC    | STLC     |          |     |      |       | LN06326  | LN06328    | LN06332 | LN06334 |    |   |
| METAL      | (mg/kg) | (mg/l)   | METHOD   | MDL | RL   | D. F. | mg/Kg    | mg/Kg      | mg/Kg   | mg/Kg   |    |   |
| *Arsenic   | 500     | 5        | 6010B    | 2.6 | 13.0 | 100   | ND       | ND         | ND      | ND      |    |   |
|            |         |          |          |     |      |       |          |            |         |         |    |   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analayst: YC

13-1326

#### ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA METHOD 6010B

Sample Matrix: Soil

#### PROJECT: 7600 TYRONE

| LABORATORY<br>LOG NO. | DATE SAMPLED    | DATE<br>RECEIVED | DATE<br>ANALYZED |     |     |       | SAMPLE I         | DESCRIPTIO       | N |      |   |
|-----------------------|-----------------|------------------|------------------|-----|-----|-------|------------------|------------------|---|------|---|
| LN06314               | 5/31/13         | 5/31/13          | 6/4/13           |     |     | 7600  | TYRONE,          | B14-1            |   |      |   |
| LN06316               | 6/1/13          | 6/1/13           | 6/4/13           |     |     | 7600  | TYRONE,          | B14-3            |   | <br> |   |
|                       |                 |                  |                  |     |     |       |                  | ,                |   | <br> |   |
| 2                     | LIMIT           | LIMIT            |                  | 1   |     |       | -                |                  |   |      | * |
| METAL                 | TTLC<br>(mg/kg) | STLC (mg/l)      | METHOD           | MDL | RL  | D. F. | LN06314<br>mg/Kg | LN06316<br>mg/Kg |   |      |   |
| Lead                  | 1000            | 5                | 6010B            | 0.9 | 4.5 | 100   | 27.0             | 15.0             |   |      |   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

\*\* - exceed TTLC limit

\* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: YC

#### QA/QC Report

#### I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 06/05/13

ANALYTICAL METHOD

USEPA 6010/7000

BATCH #:

\$TTLCS-7753 (LN06329 LN06331 LN06337 LN06338 LN06340 LN06341 LN06343)

LAB SAMPLE I.D.: BLANK SOIL

UNIT: (Circle One) (mg/kg

mg/L

| 0118131      | SAMPLE | SPIKE |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (DUP)<br>SPIKE |     |      |      | BS/BSD<br>% REC. | RPD   |
|--------------|--------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|------|------------------|-------|
| METAL        | RESULT | CONC  | BS  | %BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONC           | BSD | %BSD | RPD  | LIMIT            | LIMIT |
| Antimony     | ND     | 200   | 153 | 76.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 147 | 73.5 | 4.0% | 14 - 89          | < 30  |
| Arsenic      | ND     | 200   | 203 | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200            | 203 | 102  | 0.0% | 70 - 130         | < 30  |
| Barium       |        |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |     |      |      | · i              |       |
| Beryllium    | ND     | 200   | 189 | 94.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 191 | 95.5 | 1.1% | 70 - 130         | < 30  |
| Cadmium      | ND     | 200   | 196 | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 194 | 97.0 | 1.0% | 70 - 130         | < 30  |
| Chromium (T) | ND     | 200   | 193 | 96.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 196 | 98.0 | 1.5% | 70 - 130         | < 30  |
| Cobalt       | ND     | 200   | 206 | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200            | 203 | 102  | 1.0% | 70 - 130         | < 30  |
| Copper       | ND     | 200   | 190 | 95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 195 | 97.5 | 2.6% | 70 - 130         | < 30  |
| Lead         | ND     | 200   | 199 | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 199 | 99.5 | 0.0% | 70 - 130         | < 30  |
| Molybdenum   | ND     | 200   | 201 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200            | 196 | 98.0 | 2.0% | 70 - 130         | < 30  |
| Nickel       | ND     | 200   | 197 | 98.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 199 | 99.5 | 1.0% | 70 - 130         | < 30  |
| Selenium     | ND     | 200   | 191 | 95.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 192 | 96.0 | 0.5% | 70 - 130         | < 30  |
| Silver       |        |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |     |      |      |                  |       |
| Thallium     | ND     | 200   | 171 | 85.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 174 | 87.0 | 1.7% | 70 - 130         | < 30  |
| Vanadium     | ND     | 200   | 199 | 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200            | 202 | 101  | 1.5% | 70 - 130         | < 30  |
| Zinc         | ND     | 200   | 200 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200            | 200 | 100  | 0.0% | 70 - 130         | < 30  |
|              |        | 1     |     | A Sept. Man. Amon. Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission |                |     |      |      | ALC HANGE        |       |

BS = Blank Spike BSD = Blank Spike Duplicate

%BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC

PROJECT: 7600 TYRONE COC 13-1326

#### QA/QC Report

#### II. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE ANALYZED: 06/06/13

ANALYTICAL METHOD

USEPA 6010/7000

BATCH #:

\$TTLCS-7753 (LN06329 LN06331 LN06337 LN06338 LN06340 LN06341 LN06343)

LAB SAMPLE I.D.: LN06337

UNIT: (Circle One) (mg/kg)

mg/L

| METAL        | SAMPLE<br>RESULT | SPIKE<br>CONC | MS  | %MS  | (DUP)<br>SPIKE<br>CONC | MSD | %MSD | RPD   | MS/MSD<br>% REC.<br>LIMIT | RPD<br>LIMIT |
|--------------|------------------|---------------|-----|------|------------------------|-----|------|-------|---------------------------|--------------|
| Antimony     | 3.8              | 200           | 49  | 22.6 | 200                    | 39  | 17.6 | 24.9% | 14 - 89                   | < 30         |
| Arsenic      | ND               | 200           | 188 | 94.0 | 200                    | 178 | 89.0 | 5.5%  | 70 - 130                  | < 30         |
| Barium       |                  |               |     |      |                        |     |      |       |                           |              |
| Beryllium    | ND               | 200           | 180 | 90.0 | 200                    | 186 | 93.0 | 3.3%  | 70 - 130                  | < 30         |
| Cadmium      | 3.6              | 200           | 174 | 85.2 | 200                    | 172 | 84.2 | 1.2%  | 70 - 130                  | < 30         |
| Chromium (T) | 23               | 200           | 194 | 85.5 | 200                    | 203 | 90.0 | 5.1%  | 70 - 130                  | < 30         |
| Cobalt       | 18               | 200           | 193 | 87.5 | 200                    | 193 | 87.5 | 0.0%  | 70 - 130                  | < 30         |
| Copper       | 20               | 200           | 198 | 89.0 | 200                    | 210 | 95.0 | 6.5%  | 70 - 130                  | < 30         |
| Lead         | 14               | 200           | 175 | 80.5 | 200                    | 176 | 81.0 | 0.6%  | 70 - 130                  | < 30         |
| Molybdenum   | ND               | 200           | 173 | 86.5 | 200                    | 170 | 85.0 | 1.7%  | 70 - 130                  | . < 30       |
| Nickel       | 23               | 200           | 198 | 87.5 | 200                    | 208 | 92.5 | 5.6%  | 70 - 130                  | < 30         |
| Selenium     | ND               | 200           | 179 | 89.5 | 200                    | 178 | 89.0 | 0.6%  | 70 - 130                  | < 30         |
| Silver       |                  |               |     |      |                        |     |      |       |                           |              |
| Thallium     | ND               | 200           | 139 | 69.5 | 200                    | 138 | 69.0 | 0.7%  | 70 - 130                  | < 30         |
| Vanadium     | 35               | 200           | 212 | 88.5 | 200                    | 226 | 95.5 | 7.6%  | 70 - 130                  | < 30         |
| Zinc         | 74               | 200           | 247 | 86.5 | 200                    | 260 | 93.0 | 7.2%  | 70 - 130                  | < 30         |

MS = Matrix Spike MSD = Matrix Spike Duplicate %MS = Percent Recovery of Matrix Spike

RPD = Relative Percent Difference %MSD = Percent Recovery of Matrix Spike Duplicate

Analyst: KC

PROJECT: 7600 TYRONE COC 13-1326

#### III. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 06/05/13

ANALYTICAL

USEPA 6010/7000

SUPPLY SOURCE: VHG

LAB LCS I.D.:

Q8732

LOT NUMBER:

201-0040

UNIT: (Circle One) (mg/kg)

kg) mg/L

| METAL        | LCS RESULTS mg/kg | TRUE VALUE mg/kg | %<br>Recovery | Acceptable Range % Recovery |
|--------------|-------------------|------------------|---------------|-----------------------------|
| Antimony     | 68                | 80               | 85.0          | 48 - 84                     |
| Arsenic      | 420               | 400              | 105           | 70 - 130                    |
| Barium       | 387               | 400              | 96.8          | 70 - 130                    |
| Beryllium    | 10                | 12.5             | 80.0          | 70 - 130                    |
| Cadmium      | 11                | 12.5             | 88.0          | 70 - 130                    |
| Chromium (T) | 79                | 80               | 98.8          | 70 - 130 .                  |
| Cobalt       | 43                | 50               | 86.0          | 70 - 130                    |
| Copper       | 81                | 80               | 101           | 70 - 130                    |
| Lead         | 85                | 80               | 106           | 70 - 130                    |
| Molybdenum   |                   | i                |               | <del></del>                 |
| Nickel       | . 82              | 80               | 102           | 70 - 130                    |
| Selenium     | 197               | 200              | 98.5          | 70 - 130                    |
| Silver       | 10.1              | 12.5             | 80.8          | 70 - 130                    |
| Thallium     | 70                | 80               | 87.5          | 70 - 130                    |
| Vanadium     | 89                | 80               | 111           | 70 - 130                    |
| Zinc         | 203               | 200              | 102           | 70 - 130                    |
|              |                   | †                |               |                             |

Analyst: KC

Reviewed by: The UCH 13

## **ATTACHMENT #3**

TOTAL EXTRACTABLE PETROLEUM
HYDROCARBONS (TEPH)
MOTOR OIL (MO)
DIESEL RANGE ORGANIC (DRO)

**EPA METHOD 8015M** 

## ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL
Project: 7600 TYRONE

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED | DATE<br>EXTRACTED                    | DATE<br>ANALYZED | SAMP    | LE DESCI | RIPTION | INST.      | RUN     | BATCH   |
|-------------------|-----------------|------------------|--------------------------------------|------------------|---------|----------|---------|------------|---------|---------|
| LN06329           | 05/29/13        | 05/29/13         | 05/31/13                             | 05/31/13         | 7600    | TYRONE,  | B23-1   | GC Agilent | 05      | 3113    |
| LN06331           | 05/29/13        | 05/29/13         | 05/31/13                             | 05/31/13         | 7600    | TYRONE,  | B23-3   | GC Agilent | 05      | 3113    |
| LN06335           | 05/29/13        | 05/29/13         | 05/31/13                             | 05/31/13         | 7600    | TYRONE,  | B27-1   | GC Agilent | 05      | 3113    |
| LN06337           | 05/29/13        | 05/29/13         | 05/31/13                             | 05/31/13         | 7600    | TYRONE,  | B27-3   | GC Agilent | 05      | 3113    |
| LN06338           | 05/29/13        | 05/29/13         | 05/31/13                             | 05/31/13         | 7600    | TYRONE,  | B24-1   | GC Agilent | 05      | 3113    |
| LN06340           | 05/29/13        | 05/29/13         | 05/31/13                             | 05/31/13         | 7600    | TYRONE,  | B24-3   | GC Agilent | 05      | 3113    |
| LN06341           | 05/29/13        | 05/29/13         | 05/31/13                             | 05/31/13         | 7600    | TYRONE,  | B28-1   | GC Agilent | 05.     | 3113    |
|                   |                 |                  | Ni Seria. (Seria Colaccia) matababah |                  |         |          |         |            |         |         |
|                   |                 | MDL / PQL        | МВ                                   | LN06329          | LN06331 | LN06335  | LN06337 | LN06338    | LN06340 | LN06341 |
|                   | 100(10)         | mg/kg            | mg/kg                                | mg/kg            | mg/kg   | mg/kg    | mg/kg   | mg/kg      | mg/kg   | mg/kg   |
| Dilution          | Factor          | -                | 1                                    | 1                | 1       | 1        | 1       | 1          | 1       | 1       |
| ТЕРН (С9          | - C36)          | 4/20             | ND                                   | ND               | 4.2 J   | 4.0 J    | 13.1 J  | 60.6       | 4.4 J   | ND      |
| DRO (C10          | - C28)          | 29 / 145         | ND                                   | ND               | ND      | ND       | ND      | ND         | ND      | ND      |
| MOTOR             | OIL             | 35 / 175         | ND                                   | ND               | ND      | ND       | ND      | 60.6 J     | ND      | ND      |
| Quality           | Control D       | ata_             | МВ                                   |                  |         |          |         |            |         |         |
| Surrogate/In      | ternal Std.     | % ACP            | % RC                                 | % RC             | % RC    | % RC     | % RC    | % RC       | % RC    | % RC    |
| 1-Chloroocta      | idecane         | (60 - 140)       | 90.5%                                | 96.5%            | 96.0%   | 106%     | 94.0%   | 100%       | 96.5%   | 80.0%   |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## ANALYTICAL TEST RESULT FOR EPA 8015M TEPH (Total Extractable Petroleum Hydrocarbons, C9 - C36)

Sample Matrix: SOIL
Project: 7600 TYRONE

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED | DATE<br>RECEIVED   | DATE -   | DATE<br>ANALYZED | SAMPLE DESCRIPTION | INST.      | RUN BATCH      |
|-------------------|-----------------|--------------------|----------|------------------|--------------------|------------|----------------|
| LN06343           | 05/29/13        | 05/29/13           | 05/31/13 | 05/31/13         | 7600 TYRONE, B28-3 | GC Agilent | 053113         |
|                   |                 |                    |          |                  |                    |            |                |
|                   |                 |                    |          | 0.11.01.1        |                    |            | and the second |
|                   |                 |                    |          |                  | - Charles          |            |                |
|                   |                 |                    |          |                  | Surger Surger      |            |                |
|                   |                 | 1,                 |          |                  | - SINOT            |            |                |
|                   |                 | MDL / PQL<br>mg/kg |          | LN06343<br>mg/kg |                    |            |                |
| Dilution Fa       | ctor            | ĺ                  |          | 1                |                    |            |                |
| TEPH (C9 -        | C36)            | 4/20               |          | ND               |                    |            |                |
| DRO (C10 -        | C28)            | 29 / 145           |          | ND               |                    |            |                |
| MOTOR O           | OIL             | 35 / 175           |          | ND               |                    |            |                |
| Quality C         | ontrol D        | ata_               |          |                  |                    |            |                |
| Surrogate/Inter   | nal Std.        | % ACP              |          | % RC             |                    |            |                |
| 1-Chlorooctade    | ecane           | (60 - 140)         |          | 107%             |                    |            |                |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

## QA/QC REPORT TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

#### I. Sample Duplicate

| SAMPLE<br>LOG NO. | DATE<br>SAMPLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE<br>RECEIVED | DATE<br>EXTRACTED                       | DATE<br>ANALYZED | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INST.      | RUN BATCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LN06216 DUP       | 05/28/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05/28/13         | 05/31/13                                | 05/31/13         | 7600 TYRONE, B22-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GC Agilent | 053113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | tt a tomasaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                         | -                | - 100 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 |            | A WARRANGE CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | *************************************** |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | metal war.                              |                  | 20-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                  | VEATURE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |
|                   | 1 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10 | 1                |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MDL/PQL          |                                         | LN06216<br>DUP   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg            |                                         | mg/kg            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dilution F        | actor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                         | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ТЕРН (С9          | - C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/20             |                                         | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DRO (C10          | - C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 / 145         |                                         | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MOTOR             | OIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35 / 175         |                                         | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quality           | Control Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ata_             |                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate/Inte    | ernal Std.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % ACP            |                                         | % RC             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 100      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | * •                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-Chlorooctac     | decane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (60 - 140)       |                                         | 88.5%            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - above MDL but below PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*</sup>High recovery caused by overlap with TEPH peaks.

#### QA/QC REPORT

TEPH (Total Extractable Petroleum Hydrocarbon, C9 - C36)

Sample Matrix: SOIL Project: 7600 TYRONE

II. Laboratory Quality Control Check Sample (LCS)

LCS Log No .:

Q8245 (TEPH), Q8709 (DRO), Q8278 (MO)

Unit:

mg/kg

| ANALYTE         | RUN BATCH | DATE ANALYZED | SPIKE CONC. | RESULT | %REC. | Acceptable Range                             |
|-----------------|-----------|---------------|-------------|--------|-------|----------------------------------------------|
| ТЕРН            | 053113    | 5/31/2013     | 280         | 209    | 74.6  | 70 - 130                                     |
| DRO             | 053113    | 5/31/2013     | 500         | 379    | 75.8  | 70 - 130                                     |
| МО              | 053113    | 5/31/2013     | 500         | 436    | 87.2  | 70 - 130                                     |
|                 |           |               |             |        |       |                                              |
|                 |           |               | <u> </u>    |        |       |                                              |
|                 |           |               |             |        |       |                                              |
|                 |           |               |             |        |       |                                              |
|                 |           |               |             |        |       |                                              |
|                 | -101      |               |             |        |       |                                              |
|                 |           |               |             |        |       | man i de de de de de de de de de de de de de |
| Section Control |           |               |             |        |       |                                              |

Analysts

J. Yi

Reviewed by

R. Gentallan

## **ATTACHMENT #4**

# GASOLINE RANGE ORGANICS (GRO) EPA METHOD 8015B

#### ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL Project: 7600 TYRONE

| DATE        | DATE                                                                | DATE                                                                                                                                                                                                                                                                         | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INSTR.                                                         |                                                                     | ,                                                                             |
|-------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
| SAMPLED     | RECEIVED                                                            | EXTRACTED                                                                                                                                                                                                                                                                    | ANALYZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LE DESCRIP                                       | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ID                                                             | RUN LOG                                                             | BATCH.                                                                        |
| 05/29/13    | 05/29/13                                                            | 05/29/13                                                                                                                                                                                                                                                                     | 05/30/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600 TYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ONE, B23-1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AG gas                                                         | 201                                                                 | 30530                                                                         |
| 05/29/13    | 05/29/13                                                            | 05/29/13                                                                                                                                                                                                                                                                     | 05/30/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600 TYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ONE, B23-3                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AG gas                                                         | 201                                                                 | 30530                                                                         |
| 05/29/13    | 05/29/13                                                            | 05/29/13                                                                                                                                                                                                                                                                     | 05/30/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600 TYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ONE, B27-1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AG gas                                                         | 201                                                                 | 30530                                                                         |
| 05/29/13    | 05/29/13                                                            | 05/29/13                                                                                                                                                                                                                                                                     | 05/30/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600 TYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ONE, B27-3                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AG gas                                                         | 20130530                                                            |                                                                               |
| 05/29/13    | 05/29/13                                                            | 05/29/13                                                                                                                                                                                                                                                                     | 05/30/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600 TYRONE, B24-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | AG gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20130530                                                       |                                                                     |                                                                               |
| 05/29/13    | 05/29/13                                                            | 05/29/13                                                                                                                                                                                                                                                                     | 05/30/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600 TYRONE, B24-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | AG gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20130530                                                       |                                                                     |                                                                               |
| 05/29/13    | 05/29/13                                                            | 05/29/13                                                                                                                                                                                                                                                                     | 05/30/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7600 TYRONE, B28-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | AG gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2013                                                           | 30530                                                               |                                                                               |
|             |                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                     |                                                                               |
|             | MDL / PQL<br>mg/kg                                                  | MB<br>mg/kg                                                                                                                                                                                                                                                                  | LN06329<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LN06331<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LN06335<br>mg/kg                                 | LN06332<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LN06338<br>mg/kg                                               | LN06340<br>mg/kg                                                    | LN0634<br>mg/kg                                                               |
|             | 1                                                                   | 1                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4**                                                            | 1                                                                   | 1                                                                             |
| )           | 1.1 / 5.5                                                           | ND                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                             | ND                                                                  | ND                                                                            |
| ontrol Data |                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                     |                                                                               |
| nal Std.    | % ACP                                                               | % RC                                                                                                                                                                                                                                                                         | %RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %RC                                              | %RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %RC                                                            | %RC                                                                 | %RC                                                                           |
| nzene-d4    | (70 - 130)                                                          | 109%                                                                                                                                                                                                                                                                         | 107%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108%                                             | 108%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107%                                                           | 108%                                                                | 108%                                                                          |
|             | SAMPLED<br>05/29/13<br>05/29/13<br>05/29/13<br>05/29/13<br>05/29/13 | SAMPLED   RECEIVED     05/29/13   05/29/13     05/29/13   05/29/13     05/29/13   05/29/13     05/29/13   05/29/13     05/29/13   05/29/13     05/29/13   05/29/13     05/29/13   05/29/13     05/29/13   05/29/13     MDL / PQL   mg/kg     1     1.1 / 5.5     ontrol Data | SAMPLED         RECEIVED         EXTRACTED           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13           05/29/13         05/29/13         05/29/13 | SAMPLED         RECEIVED         EXTRACTED         ANALYZED           05/29/13         05/29/13         05/29/13         05/30/13           05/29/13         05/29/13         05/29/13         05/30/13           05/29/13         05/29/13         05/29/13         05/30/13           05/29/13         05/29/13         05/29/13         05/30/13           05/29/13         05/29/13         05/29/13         05/30/13           05/29/13         05/29/13         05/29/13         05/30/13           05/29/13         05/29/13         05/29/13         05/30/13           05/29/13         05/29/13         05/29/13         05/30/13           MDL / PQL         MB         LN06329           mg/kg         mg/kg         mg/kg           1         1         1           0)         1.1 / 5.5         ND         ND | SAMPLED   RECEIVED   EXTRACTED   ANALYZED   SAMP | SAMPLED         RECEIVED         EXTRACTED         ANALYZED         SAMPLE DESCRIP           05/29/13         05/29/13         05/30/13         7600 TYRONE, B23-1           05/29/13         05/29/13         05/30/13         7600 TYRONE, B23-3           05/29/13         05/29/13         05/30/13         7600 TYRONE, B27-1           05/29/13         05/29/13         05/30/13         7600 TYRONE, B27-3           05/29/13         05/29/13         05/30/13         7600 TYRONE, B24-1           05/29/13         05/29/13         05/30/13         7600 TYRONE, B24-1           05/29/13         05/29/13         05/30/13         7600 TYRONE, B24-3           05/29/13         05/29/13         05/30/13         7600 TYRONE, B24-3           05/29/13         05/29/13         05/30/13         7600 TYRONE, B28-1           MDL / PQL         MB         LN06329         LN06331         LN06335           mg/kg         mg/kg         mg/kg         mg/kg         mg/kg           mg/kg         1         1         1         1           05/29/13         1         1         1         1           05/29/13         05/30/13         7600 TYRONE, B24-3         1           05/29/13         05/30 | SAMPLED   RECEIVED   EXTRACTED   ANALYZED   SAMPLE DESCRIPTION | SAMPLED   RECEIVED   EXTRACTED   ANALYZED   SAMPLE DESCRIPTION   ID | SAMPLED   RECEIVED   EXTRACTED   ANALYZED   SAMPLE DESCRIPTION   ID   RUN LOG |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

<sup>\*\*</sup> Sample was analyzed at higher dilution: Sample extract was either exhibiting high turbidity or highly colored MDL/PQL at higher dilution is calculted as MDL/PQL (dilution x1) multipled by the dilution factor

#### ANALYTICAL TEST RESULT FOR EPA 8015B GRO (Gasoline Range Organics)

Sample Matrix: SOIL
Project: 7600 TYRONE

|                      | DATE     | DATE               | DATE<br>EXTRACTED | DATE             | SAMPLE DESCRIPTION | INSTR. | RUN LOG/BATCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|----------|--------------------|-------------------|------------------|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | 05/29/13 | 05/29/13           | 05/29/13          | 05/30/13         | 7600 TYRONE, B28-3 | AG gas | 20130530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |          |                    |                   |                  |                    |        | TANDANIA (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |          |                    |                   |                  |                    |        | 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |          |                    |                   |                  |                    |        | I Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Cons |
|                      |          |                    |                   |                  |                    |        | N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |          |                    |                   |                  |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L                    |          |                    | 1                 |                  | 1.200              |        | 1900000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |          | MDL / PQL<br>mg/kg | MB<br>mg/kg       | LN06343<br>mg/kg |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dilution Factor      |          | 1                  | 1                 | 1                |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gasoline (GRO)       | -        | 1.1 / 5.5          | ND                | ND               |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quality Contro       | ol Data_ |                    |                   |                  |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate/Internal S | Std.     | % ACP              | % RC              | %RC              |                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| l, 2 Dichlorobenzer  | ne-d4    | (70 - 130)         | 109%              | 108%             |                    |        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |          |                    |                   |                  |                    |        | 2000 A 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

PQL - Practical Quantitation Limit (5 x MDL)

J - Geater than MDL, but less than PQL

ACP % = Acceptable Range of Percent

% RC = % Recovery

#### QA/QC REPORT

GRO (Gasoline Range Organics)

Sample Matrix: SOIL
Project: 7600 TYRONE

I. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Reporting Unit:

mg/kg

| SAMPLE  | BATCH    | SAMPLE | SPIKE |      | 1 1  | (a) gr | 2000  |      | MS/MSD | RPD |
|---------|----------|--------|-------|------|------|--------|-------|------|--------|-----|
| LOG NO. | QC       | CONC   | CONC  | MS   | % MS | MSD    | % MSD | RPD  | % ACP  | ACI |
| LN06205 | 20130530 | ND     | 22.0  | 22.4 | 102% | 22.9   | 104%  | 2.2% | 70-130 | 30  |

SPIKE CONC = Spiking Concentration;

MS = Matrix Spike

MSD = Matrix Spike Duplicate

% MS = Percent Recovery of MS

% MSD = Percent Recovery of MSD

RPD = Relative Percent Difference

ACP = Acceptable Range of Percent

#### II. Laboratory Quality Control Check Sample (LCS)

LCS Log No.

Q8637

| ANALYTE  | BATCH QC | DATE ANALYZED | SPIKE CONC. | RESULT | % REC. | Acceptable Range |
|----------|----------|---------------|-------------|--------|--------|------------------|
| Gasoline | 20130530 | 5/30/2013     | 22.0        | 20.9   | 95.0   | 70 - 130         |

Analyzed by

Reviewed by

B. Estrada

R. Gentallan

de 6/4/13

## **ATTACHMENT #5**

# POLYCHLORINATED BIPHENYLS (PCBs)

EPA Method 8082

# ENVIRONMENTAL LABORATORY DATA REPORT

# ANALYTICAL RESULT FOR PCBs by EPA600/SR-94/112/8082 (Polychlorinated Biphenyls)

Sample Matrix: Soil (Low Level)

| LABORATORY        | DATE      | DATE      | DATE       | DATE       |            |            |            |            |  |  |  |
|-------------------|-----------|-----------|------------|------------|------------|------------|------------|------------|--|--|--|
| LOG NO.           | SAMPLED   | RECEIVED  | EXTRACTECE | ANALYZED   | 1.644.5    | SAMPLE DI  | SCRIPTION  |            |  |  |  |
| LN06329           | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  |            |            |            |            |  |  |  |
| LN06331           | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  | -          |            | 1          |            |  |  |  |
| LN06335           | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  |            |            |            |            |  |  |  |
| LN06337           | 5/29/2013 | 5/29/2013 | 5/30/2013  | 5/31/2013  |            | 10         | 22         |            |  |  |  |
| LN06341           | 5/29/2013 | 5/29/2013 | 5/30/2013  | 6/4/2013   |            |            |            |            |  |  |  |
| LN06343           | 5/29/2013 | 5/29/2013 | 5/30/2013  | 6/4/2013   | ******     |            |            |            |  |  |  |
|                   |           |           |            |            |            |            |            |            |  |  |  |
| - 'p'             |           | MDL/PQL   | LN06329    | LN06331    | LN06335    | LN06337    | LN06341    | LN06343    |  |  |  |
| <b>PARAMETERS</b> |           | (mg/kg)   | (mg/kg)    | (mg/kg)    | (mg/kg)    | (mg/kg)    | (mg/kg)    | (mg/kg)    |  |  |  |
| PCB - 1221        |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND.        |  |  |  |
| PCB - 1232        |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |  |  |
| PCB - 1242        |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | , ND       |  |  |  |
| PCB - 1248        |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |  |  |
| PCB - 1254        |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND         | ND         |  |  |  |
| PCB - 1260        |           | 0.07/0.2  | ND         | ND         | ND         | ND         | ND .       | ND         |  |  |  |
| SURROGATE PARA    | METERS    | QC LIMIT  | % Recovery | % Recovery | % Recovery | % Recovery | % Recovery | % Recovery |  |  |  |
| DECACHLOROBIPH    | ENYL      | 70 - 130  | 99         | 94         | 102        | 106        | 95         | 93         |  |  |  |

MDL - Method Detection Limit

ND - Not Detected; below method detection limit

Analyst: D. Wong

Reviewed by: A 6/4/13

COC: 13-1326 Page 2 of 3

Project Name:

Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

# QA/QC Report

I. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

ANALYTICAL METHOD:

USEPA 600/SR-94/112

**USEPA 8082** 

DATE ANALYZED: 06/04/13 BATCH#:

53013

LAB SAMPLE I.D.: LN06364

UNIT: mg/kg

| PARAMETERS | SAMPLE<br>RESULT | SPIKE<br>CONC | MS   | %MS | (DUP)<br>SPIKE<br>CONC | MSD  | %MSD | RPD | MS/MSD<br>% REC.<br>LIMIT | RPD |
|------------|------------------|---------------|------|-----|------------------------|------|------|-----|---------------------------|-----|
| PCB-1242   | 0.0              | 25.0          | 20.8 | 83  | 25.0                   | 20.3 | 81   | 2%  | 70 - 130                  | 30  |
| PCB-1260   | 0.0              | 25.0          | NR   | NR  | 25.0                   | NR   | NR   | NR  | 70 - 130                  | 30  |

NR = Not reported dut to matrix interference.

MS - Matrix Spike MSD - Matrix Spike Dupllicate %MS - Percent Recovery of Matrix Spike

RPD - Relative Percent Difference %MSD - Percent Recovery of Matrix Spike Duplicate

Reviewed by: 12 6/4/13

COC: 13-1326 Page 3 of 3

Project Name: Tyrone Property, 7600 Tyrone Ave., Van Nuys, CA

# II. Laboratory Control Check Sample (LCS)

DATE ANALYZED:

06/04/13

ANALYTICAL METHOD: USEPA 600/SR-94/112

| BATCH No.  | 053013 |                |    |      | UNIT: mg/k | g USEPA 8082          |
|------------|--------|----------------|----|------|------------|-----------------------|
| PARAMETERS | TRUE   | LCS1<br>RESULT | RC | LCS2 | °¢<br>RC.  | ACCEPTANCE LIMITS (%) |
| PCB - 1242 | 25.0   | 19.6           | 78 | NA   | NA         | 80 - 120              |
| PCB - 1260 | 25.0   | 21.9           | 88 | NA   | NA         | 80 - 120              |

Note: Low LCS recovery for 1242 (78%). Although LCS is 2% below acceptance limit, it should have no significant effect on the quality of this batch of analyses.

%RC - Percent Recovery NA - Not Analyzed Batch - ten samples per batch

Reviewed by: 1 6/4/13

# **ATTACHMENT #6**

**PESTICIDES** 

EPA METHOD 8081





## **CERTIFICATE OF ANALYSIS**

Client: LADWP - Environmental Laboratory

1630 North Main Street, Bldg. 7, Rm 311

Los Angeles, CA 90012

213-367-7267

(213) 367-7285

Report Date: 0

06/13/13 15:54

Received Date:

05/30/13 09:50

Turn Around:

5 workdays

Attention: Kevin Han

Work Order #:

3E30013

47055-2, COC #13-1321,26

Client Project:

7600 Tyrone Ave, COC #13-1321,26,

WO#

## NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

### Dear Kevin Han:

Phone: Fax:

Enclosed are the results of analyses for samples received 05/30/13 09:50 with the Chain of Custody document. The samples were received in good condition, at 2.8 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

## Case Narrative:

Reviewed by:

Kim G Tu Project Manager ISO 17025









Report ID: 3E3

Project ID:

3E30013 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/13/13 15:54

# ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Sampled by: Sample Comments | Lab ID     | Matrix | Date Sampled   |
|-----------|-----------------------------|------------|--------|----------------|
| LN06208   | Client                      | 3E30013-01 | Solid  | 05/28/13 08:10 |
| LN06210   | Client                      | 3E30013-02 | Solid  | 05/28/13 08:14 |
| LN06232   | Client                      | 3E30013-03 | Solid  | 05/28/13 09:50 |
| LN06234   | Client                      | 3E30013-04 | Solid  | 05/28/13 09:54 |
| LN06250   | Client                      | 3E30013-05 | Solid  | 05/28/13 10:50 |
| LN06252   | Client                      | 3E30013-06 | Solid  | 05/28/13 10:54 |
| LN06320   | Client                      | 3E30013-07 | Solid  | 05/29/13 07:45 |
| LN06322   | Client                      | 3E30013-08 | Solid  | 05/29/13 07:49 |
| LN06323   | Client                      | 3E30013-09 | Solid  | 05/29/13 08:00 |
| LN06325   | Client                      | 3E30013-10 | Solid  | 05/29/13 08:04 |
| LN06326   | Client                      | 3E30013-11 | Solid  | 05/29/13 08:10 |
| LN06328   | Client                      | 3E30013-12 | Solid  | 05/29/13 08:14 |
| LN06332   | Client                      | 3E30013-13 | Solid  | 05/29/13 08:40 |
| LN06334   | Client                      | 3E30013-14 | Solid  | 05/29/13 08:44 |
| LN06341   | Client                      | 3E30013-15 | Solid  | 05/29/13 09:30 |
| LN06343   | Client                      | 3E30013-16 | Solid  | 05/29/13 09:34 |

ANALYSES



Sampled: 05/28/13 08:10

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

3E30013-01

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

LN06208

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

Matrix: Solid

Sampled By: Client

Chlorinated Pesticides and/or PCBs

Method: EPA 8081A Proported: 05/31/43 07:36 Apalyzod: 06/04/43 17:02 Apalyzot: br

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/1 | 13 07:26 | Analyzed: 0 | 6/04/13 17:02 | Analyst: bma |
|-------------------------------|----------------|-----------|---------|----------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL     | ML       | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.5       | 23      | 23       | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.2       | 23      | 23       | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.1       | 23      | 23       | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11        | 23      | 23       | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 23      | 23       | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 12        | 23      | 23       | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.3       | 23      | 23       | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 95        | 470     | 470      | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| DCPA                          | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.3       | 23      | 23       | ug/kg       | 4             |              |
| Dieldrin                      | ND             | 7.0       | 23      | 23       | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.3       | 23      | 23       | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.0       | 23      | 23       | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.1       | 23      | 23       | ug/kg       | 1             |              |
| Endrin                        | ND             | 12        | 23      | 23       | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.5       | 23      | 23       | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.3       | 23      | 23       | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 12        | 23      | 23       | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.3       | 23      | 23       | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 13        | 23      | 23       | ug/kg       | 40            |              |
| Heptachlor epoxide            | ND             | 8.5       | 23      | 23       | ug/kg       | 1             |              |
| Kepone                        | ND             | 200       | 470     | 470      | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.1       | 23      | 23       | ug/kg       | 3             |              |
| Mirex                         | ND             | 7.3       | 23      | 23       | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 80        | 700     | 700      | ug/kg       | 1             |              |
| trans-Nonachlor               | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| Surr. Decachlorobiphenyl      | 68 %           | Conc:158  |         | 21-125   | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 63 %           | Conc:145  |         | 18-112   | %           |               |              |





Sampled: 05/28/13 08:14

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID:

3E30013-02

7600 Tyrone Ave, COC

LN06210

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: |     |        | Analyzed: 0 | 6/04/13 17:30 | Analyst: bma |
|-------------------------------|----------------|-----------|-----|--------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL | ML     | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 24        | 24  | 24     | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 24        | 24  | 24     | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 24        | 24  | 24     | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.7       | 24  | 24     | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.5       | 24  | 24     | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.4       | 24  | 24     | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11        | 24  | 24     | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 24  | 24     | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 13        | 24  | 24     | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.7       | 24  | 24     | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 100       | 490 | 490    | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 24        | 24  | 24     | ug/kg       | 1             |              |
| DCPA                          | ND             | 24        | 24  | 24     | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.6       | 24  | 24     | ug/kg       | 11            |              |
| Dieldrin                      | ND             | 7.3       | 24  | 24     | ug/kg       | 4             |              |
| Endosulfan I                  | ND             | 5.6       | 24  | 24     | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.1       | 24  | 24     | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.4       | 24  | 24     | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 24  | 24     | ug/kg       | 4             |              |
| Endrin aldehyde               | ND             | 6.8       | 24  | 24     | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.5       | 24  | 24     | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 13        | 24  | 24     | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.8       | 24  | 24     | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 13        | 24  | 24     | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.9       | 24  | 24     | ug/kg       | 1             |              |
| Kepone                        | ND             | 210       | 490 | 490    | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.4       | 24  | 24     | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.6       | 24  | 24     | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 24        | 24  | 24     | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 84        | 730 | 730    | ug/kg       | 1             |              |
| trans-Nonachlor               | ND             | 24        | 24  | 24     | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 61 %           | Conc: 148 | 3   | 21-125 | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 67 %           | Conc: 162 | - 6 | 18-112 | %           |               |              |





Sampled: 05/28/13 09:50

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

3E30013-03

Project ID:

LN06232

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: |     |        | Analyzed: 0 | 6/04/13 17:58 | Analyst: bma |
|-------------------------------|----------------|-----------|-----|--------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL | ML     | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 21        | 21  | 21     | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 21        | 21  | 21     | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 21        | 21  | 21     | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.1       | 21  | 21     | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 6.5       | 21  | 21     | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 4.6       | 21  | 21     | ug/kg       | 1             |              |
| Aldrin                        | ND             | 9.8       | 21  | 21     | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 12        | 21  | 21     | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 11        | 21  | 21     | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 6.7       | 21  | 21     | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 86        | 420 | 420    | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 21        | 21  | 21     | ug/kg       | 1             |              |
| DCPA                          | ND             | 21        | 21  | 21     | ug/kg       | 1             |              |
| elta-BHC                      | ND             | 4.8       | 21  | 21     | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 6.3       | 21  | 21     | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 4.8       | 21  | 21     | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 2.7       | 21  | 21     | ug/kg       | 1             |              |
| ndosulfan sulfate             | ND             | 4.6       | 21  | 21     | ug/kg       | 1             |              |
| Endrin                        | ND             | 11        | 21  | 21     | ug/kg       | 1             |              |
| Indrin aldehyde               | ND             | 5.9       | 21  | 21     | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 3.9       | 21  | 21     | ug/kg       | 1             |              |
| amma-BHC (Lindane)            | ND             | 11        | 21  | 21     | ug/kg       | 1             |              |
| amma-Chlordane                | ND             | 8.4       | 21  | 21     | ug/kg       | 1             |              |
| leptachlor                    | ND             | 11        | 21  | 21     | ug/kg       | 1             |              |
| leptachlor epoxide            | ND             | 7.7       | 21  | 21     | ug/kg       | 11            |              |
| epone                         | ND             | 190       | 420 | 420    | ug/kg       | 111           |              |
| fethoxychlor                  | ND             | 4.6       | 21  | 21     | ug/kg       | 1             |              |
| firex                         | ND             | 6.6       | 21  | 21     | ug/kg       | 1             |              |
| exychlordane                  | ND             | 21        | 21  | 21     | ug/kg       | 1             |              |
| oxaphene                      | ND             | 72        | 630 | 630    | ug/kg       | 1             |              |
| ans-Nonachlor                 | ND             | 21        | 21  | 21     | ug/kg       | 1             |              |
| urr: Decachlorobiphenyl       | 64 %           | Conc: 135 | 2   | 21-125 | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 77 %           | Conc: 163 |     | 18-112 | %           |               |              |





Los Angeles CA, 90012

Sampled: 05/28/13 09:54

Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 05 Date Reported: 05

05/30/13 09:50 06/13/13 15:54

3E30013-04

LN06234

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: 0 | 06/04/13 18:26 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|----------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution       | Qualifier    |
| 2,4'-DDD                      | ND             | 24        | 24       | 24      | ug/kg       | 1              |              |
| 2,4'-DDE                      | ND             | 24        | 24       | 24      | ug/kg       | 1              |              |
| 2,4'-DDT                      | ND             | 24        | 24       | 24      | ug/kg       | 1              |              |
| 4,4'-DDD                      | ND             | 4.6       | 24       | 24      | ug/kg       | 1              |              |
| 4,4'-DDE                      | ND             | 7.4       | 24       | 24      | ug/kg       | 1              |              |
| 4,4'-DDT                      | ND             | 5.3       | 24       | 24      | ug/kg       | 1              |              |
| Aldrin                        | ND             | 11        | 24       | 24      | ug/kg       | 1              |              |
| alpha-BHC                     | ND             | 14        | 24       | 24      | ug/kg       | 1              |              |
| alpha-Chlordane               | ND             | 12        | 24       | 24      | ug/kg       | 1              |              |
| beta-BHC                      | ND             | 7.6       | 24       | 24      | ug/kg       | 1              |              |
| Chlordane (tech)              | ND             | 98        | 480      | 480     | ug/kg       | 1              |              |
| cis-Nonachlor                 | ND             | 24        | 24       | 24      | ug/kg       | 1              |              |
| DCPA                          | ND             | 24        | 24       | 24      | ug/kg       | 1              |              |
| delta-BHC                     | ND             | 5.5       | 24       | 24      | ug/kg       | 1              |              |
| Dieldrin                      | ND             | 7.2       | 24       | 24      | ug/kg       | 1              |              |
| Endosulfan I                  | ND             | 5.5       | 24       | 24      | ug/kg       | 1              |              |
| Endosulfan II                 | ND             | 3.1       | 24       | 24      | ug/kg       | 1              |              |
| Endosulfan sulfate            | ND             | 5.3       | 24       | 24      | ug/kg       | 1              |              |
| Endrin                        | ND             | 13        | 24       | 24      | ug/kg       | 1              |              |
| Endrin aldehyde               | ND             | 6.7       | 24       | 24      | ug/kg       | 1              |              |
| Endrin ketone                 | ND             | 4.4       | 24       | 24      | ug/kg       | 1              |              |
| gamma-BHC (Lindane)           | ND             | 13        | 24       | 24      | ug/kg       | 1              |              |
| gamma-Chlordane               | ND             | 9.6       | 24       | 24      | ug/kg       | 1              |              |
| Heptachior                    | ND             | 13        | 24       | 24      | ug/kg       | 1              |              |
| Heptachlor epoxide            | ND             | 8.7       | 24       | 24      | ug/kg       | 1              |              |
| Kepone                        | ND             | 210       | 480      | 480     | ug/kg       | 1              |              |
| Methoxychlor                  | ND             | 5.3       | 24       | 24      | ug/kg       | 4              |              |
| Mirex                         | ND             | 7.5       | 24       | 24      | ug/kg       | 4              |              |
| Oxychlordane                  | ND             | 24        | 24       | 24      | ug/kg       | 1              |              |
| Toxaphene                     | ND             | 82        | 720      | 720     | ug/kg       | 1              |              |
| rans-Nonachlor                | ND             | 24        | 24       | 24      | ug/kg       | 1              |              |
| Surr: Decachlorobiphenyl      | 59 %           | Conc:141  | 4        | 21-125  | %           |                |              |
| Surr: Tetrachloro-meta-xylene | 67 %           | Conc:161  | 3        | 18-112  | %           |                |              |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Sampled: 05/28/13 10:50

Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 05/30/13 09:50

Matrix: Solid

Date Reported: 06/13/13 15:54

3E30013-05

LN06250

Sampled By: Client

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/1 | 13 07:26 | Analyzed: 0 | 6/04/13 18:55 | Analyst: bma |
|-------------------------------|----------------|-----------|---------|----------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL     | ML       | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.4       | 23      | 23       | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.1       | 23      | 23       | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.0       | 23      | 23       | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11        | 23      | 23       | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 13        | 23      | 23       | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 12        | 23      | 23       | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.2       | 23      | 23       | ug/kg       | 4             |              |
| Chlordane (tech)              | ND             | 94        | 460     | 460      | ug/kg       | 1             |              |
| cis-Nonachler                 | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| DCPA                          | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.2       | 23      | 23       | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 6.9       | 23      | 23       | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.2       | 23      | 23       | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 2.9       | 23      | 23       | ug/kg       | 4             |              |
| Endosulfan sulfate            | ND             | 5.0       | 23      | 23       | ug/kg       | 1             |              |
| Endrin                        | ND             | 12        | 23      | 23       | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.4       | 23      | 23       | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.2       | 23      | 23       | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 12        | 23      | 23       | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.2       | 23      | 23       | ug/kg       | 4             |              |
| Heptachlor                    | ND             | 12        | 23      | 23       | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.3       | 23      | 23       | ug/kg       | 1             |              |
| Kepone                        | ND             | 200       | 460     | 460      | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.0       | 23      | 23       | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.2       | 23      | 23       | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 79        | 690     | 690      | ug/kg       | 1             |              |
| trans-Nonachlor               | ND             | 23        | 23      | 23       | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 64 %           | Conc: 146 |         | 21-125   | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 65 %           | Conc:148  |         | 18-112   | %           |               |              |





Sampled: 05/28/13 10:54

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/13/13 15:54

3E30013-06

LN06252

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: ( | 06/04/13 19:23 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|----------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution       | Qualifier    |
| 2,4'-DDD                      | ND             | 23        | 23       | 23      | ug/kg       | 1              |              |
| 2,4'-DDE                      | ND             | 23        | 23       | 23      | ug/kg       | 1              |              |
| 2,4'-DDT                      | ND             | 23        | 23       | 23      | ug/kg       | 1              |              |
| 4,4'-DDD                      | ND             | 4.4       | 23       | 23      | ug/kg       | 1              |              |
| 4,4'-DDE                      | ND             | 7.1       | 23       | 23      | ug/kg       | 1              |              |
| 4,4'-DDT                      | ND             | 5.1       | 23       | 23      | ug/kg       | 1              |              |
| Aldrin                        | ND             | 11        | 23       | 23      | ug/kg       | 1              |              |
| alpha-BHC                     | ND             | 13        | 23       | 23      | ug/kg       | 1              |              |
| alpha-Chlordane               | ND             | 12        | 23       | 23      | ug/kg       | 1              |              |
| beta-BHC                      | ND             | 7.3       | 23       | 23      | ug/kg       | 1              |              |
| Chlordane (tech)              | ND             | 94        | 460      | 460     | ug/kg       | 1              |              |
| cis-Nonachlor                 | ND             | 23        | 23       | 23      | ug/kg       | 1              |              |
| DCPA                          | ND             | 23        | 23       | 23      | ug/kg       | 1              |              |
| delta-BHC                     | ND             | 5.3       | 23       | 23      | ug/kg       | 1              |              |
| Dieldrin                      | ND             | 6.9       | 23       | 23      | ug/kg       | 1              |              |
| Endosulfan I                  | ND             | 5.3       | 23       | 23      | ug/kg       | 1              |              |
| Endosulfan II                 | ND             | 2.9       | 23       | 23      | ug/kg       | 1              |              |
| Endosulfan sulfate            | ND             | 5.1       | 23       | 23      | ug/kg       | 1              |              |
| Endrin                        | ND             | 12        | 23       | 23      | ug/kg       | 1              |              |
| Endrin aldehyde               | ND             | 6.5       | 23       | 23      | ug/kg       | 1              |              |
| Endrin ketone                 | ND             | 4.2       | 23       | 23      | ug/kg       | 1              |              |
| gamma-BHC (Lindane)           | ND             | 12        | 23       | 23      | ug/kg       | 1              |              |
| gamma-Chlordane               | ND             | 9.2       | 23       | 23      | ug/kg       | 1              |              |
| Heptachlor                    | ND             | 13        | 23       | 23      | ug/kg       | 1              |              |
| Heptachlor epoxide            | ND             | 8.4       | 23       | 23      | ug/kg       | 1.             |              |
| Kepone                        | ND             | 200       | 460      | 460     | ug/kg       | 1              |              |
| Methoxychlor                  | ND             | 5.1       | 23       | 23      | ug/kg       | 1              |              |
| Mirex                         | ND             | 7.2       | 23       | 23      | ug/kg       | 1              |              |
| Oxychlordane                  | ND             | 23        | 23       | 23      | ug/kg       | 1              |              |
| oxaphene                      | ND             | 79        | 690      | 690     | ug/kg       | 1              |              |
| rans-Nonachlor                | ND             | 23        | 23       | 23      | ug/kg       | 1              |              |
| Surr: Decachlorobiphenyl      | 63 %           | Conc: 146 | 2        | 21-125  | %           |                |              |
| Surr: Tetrachloro-meta-xylene | 64 %           | Conc: 147 |          | 18-112  | %           |                |              |





Sampled: 05/29/13 07:45

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID:

3E30013

7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-07

Project ID:

LN06320

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/1 | 3 07:26 | Analyzed: 0 | 6/04/13 19:51 | Analyst: bma |
|-------------------------------|----------------|-----------|---------|---------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL     | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 21        | 21      | 21      | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 21        | 21      | 21      | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 21        | 21      | 21      | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.0       | 21      | 21      | ug/kg       | 1             |              |
| 4,4'-DDE                      | 40             | 6.3       | 21      | 21      | ug/kg       | 1             |              |
| 4,4"-DDT                      | 10             | 4.5       | 21      | 21      | ug/kg       | 3             | 4            |
| Aldrin                        | ND             | 9.5       | 21      | 21      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 12        | 21      | 21      | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 11        | 21      | 21      | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 6.5       | 21      | 21      | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 84        | 410     | 410     | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 21        | 21      | 21      | ug/kg       | 1             |              |
| DCPA                          | ND             | 21        | 21      | 21      | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 4.7       | 21      | 21      | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 6.2       | 21      | 21      | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 4.7       | 21      | 21      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 2.6       | 21      | 21      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 4.5       | 21      | 21      | ug/kg       | 1             |              |
| Endrin                        | ND             | 11        | 21      | 21      | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 5.8       | 21      | 21      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 3.8       | 21      | 21      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 11        | 21      | 21      | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 8.2       | 21      | 21      | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 11        | 21      | 21      | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 7.5       | 21      | 21      | ug/kg       | 1             |              |
| Kepone                        | ND             | 180       | 410     | 410     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 4.5       | 21      | 21      | ug/kg       | 1             |              |
| Mirex                         | ND             | 6.4       | 21      | 21      | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 21        | 21      | 21      | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 71        | 620     | 620     | ug/kg       | 1             |              |
| trans-Nonachlor               | ND.            | 21        | 21      | 21      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 66 %           | Conc: 135 |         | 21-125  | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 70 %           | Conc: 144 |         | 18-112  | %           |               |              |
|                               |                |           |         |         |             |               |              |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Appeles CA. 90012 Report ID: Project ID: 3E30013

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

Los Angeles CA, 90012

Sampled: 05/29/13 07:49

3E30013-08 LN06322

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/1: | 3 07:26 | Analyzed: 0 | 6/04/13 20:20 | Analyst: bma |  |
|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|--|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |  |
| 2,4'-DDD                      | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |  |
| 2,4'-DDE                      | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |  |
| 2,4'-DDT                      | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |  |
| 4,4'-DDD                      | ND             | 4.8       | 25       | 25      | ug/kg       | 1             |              |  |
| 4,4'-DDE                      | ND             | 7.7       | 25       | 25      | ug/kg       | 1             |              |  |
| 4,4'-DDT                      | ND             | 5.5       | 25       | 25      | ug/kg       | 1             |              |  |
| Aldrin                        | ND             | 12        | 25       | 25      | ug/kg       | 1             |              |  |
| alpha-BHC                     | ND             | 15        | 25       | 25      | ug/kg       | 1             |              |  |
| alpha-Chlordane               | ND             | 13        | 25       | 25      | ug/kg       | 1             |              |  |
| beta-BHC                      | ND             | 7.9       | 25       | 25      | ug/kg       | 1             |              |  |
| Chlordane (tech)              | ND             | 100       | 500      | 500     | ug/kg       | 1             |              |  |
| cis-Nonachlor                 | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |  |
| DCPA                          | ND             | 25        | 25       | 25      | ug/kg       | 4             |              |  |
| delta-BHC                     | ND             | 5.7       | 25       | 25      | ug/kg       | 1             |              |  |
| Dieldrin                      | ND             | 7.5       | 25       | 25      | ug/kg       | 1             |              |  |
| Endosulfan I                  | ND             | 5.7       | 25       | 25      | ug/kg       | 1             |              |  |
| Endosulfan II                 | ND             | 3.2       | 25       | 25      | ug/kg       | 1             |              |  |
| Endosulfan sulfate            | ND             | 5,5       | 25       | 25      | ug/kg       | 1             |              |  |
| Endrin                        | ND             | 13        | 25       | 25      | ug/kg       | 1             |              |  |
| Endrin aldehyde               | ND             | 7.0       | 25       | 25      | ug/kg       | 1             |              |  |
| Endrin ketone                 | ND             | 4.6       | 25       | 25      | ug/kg       | 1             |              |  |
| gamma-BHC (Lindane)           | ND             | 13        | 25       | 25      | ug/kg       | 1             |              |  |
| gamma-Chlordane               | ND             | 10        | 25       | 25      | ug/kg       | 1             |              |  |
| Heptachlor                    | ND             | 14        | 25       | 25      | ug/kg       | 1             |              |  |
| Heptachlor epoxide            | ND             | 9.1       | 25       | 25      | ug/kg       | 1             |              |  |
| Kepone                        | ND             | 220       | 500      | 500     | ug/kg       | 1             |              |  |
| Methoxychlor                  | ND             | 5.5       | 25       | 25      | ug/kg       | 1             |              |  |
| Mirex                         | ND             | 7.8       | 25       | 25      | ug/kg       | 1             |              |  |
| Oxychlordane                  | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |  |
| Toxaphene                     | ND             | 85        | 750      | 750     | ug/kg       | 1             |              |  |
| rans-Nonachlor                | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |  |
| Surr: Decachlorobiphenyl      | 63 %           | Conc:156  |          | 21-125  | %           |               |              |  |
| Surr: Tetrachloro-meta-xylene | 65 %           | Conc: 162 |          | 18-112  | %           |               |              |  |



WIL

Sampled: 05/29/13 08:00

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 0

05/30/13 09:50

Date Reported: 06/13/13 15:54

3E30013-09

LN06323

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: 0 | 6/04/13 20:48 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.7       | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.5       | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.3       | 24       | 24      | ug/kg       | M.            |              |
| Aldrin                        | ND             | 11        | 24       | 24      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 24       | 24      | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 13        | 24       | 24      | ug/kg       | 4             |              |
| beta-BHC                      | ND             | 7.7       | 24       | 24      | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 99        | 490      | 490     | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| DCPA                          | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.5       | 24       | 24      | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 7.3       | 24       | 24      | ug/kg       | 7             |              |
| Endosulfan I                  | ND             | 5.5       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.1       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.3       | 24       | 24      | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 24       | 24      | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.8       | 24       | 24      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.5       | 24       | 24      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 13        | 24       | 24      | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.7       | 24       | 24      | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 13        | 24       | 24      | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.8       | 24       | 24      | ug/kg       | 1             |              |
| Kepone                        | ND             | 210       | 490      | 490     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.3       | 24       | 24      | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.6       | 24       | 24      | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 83        | 730      | 730     | ug/kg       | 1             |              |
| trans-Nonachlor               | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 65 %           | Conc: 157 | 2        | 21-125  | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 79 %           | Conc: 191 |          | 18-112  | %           |               |              |



Will

Sampled: 05/29/13 08:04

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

3E30013-10

LN06325

Sampled By: Client

Matrix: Solid

| 2,4*-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: 0 | 6/04/13 23:38 | Analyst: bma |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|
| 2,4-DDE ND 23 23 23 ug/kg 1 2,4-DDT ND 23 23 23 ug/kg 1 4,4-DDT ND 4.5 23 23 ug/kg 1 4,4-DDD ND 4.5 23 23 ug/kg 1 4,4-DDT TR. TR. TR. TR. TR. TR. TR. TR. TR. TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4+-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4'-DDD                      | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 4,4*-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,4'-DDE                      | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 4,4*-DDE       15       7.2       23       23       ug/kg       1       J         4,4*-DDT       7.8       5.2       23       23       ug/kg       1       J         Aldrin       ND       11       23       23       ug/kg       1         alpha-BHC       ND       14       23       23       ug/kg       1         alpha-Chlordane       ND       12       23       23       ug/kg       1         beta-SHC       ND       7.4       23       23       ug/kg       1         Chlordane (tech)       ND       96       470       ug/kg       1         cis-Nonachlor       ND       98       470       ug/kg       1         DCPA       ND       23       23       23       ug/kg       1         DCPA       ND       5.4       23       23       ug/kg       1         Endosulfan       ND       7.0       23       23       ug/kg       1         Endosulfan II       ND       3.0       23       23       ug/kg       1         Endosulfan Sulfate       ND       5.2       23       23       ug/kg       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4'-DDT                      | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 4,4*-DDT         7.8         5.2         23         23         ug/kg         1           Aldrin         ND         11         23         23         ug/kg         1           alpha-BHC         ND         14         23         23         ug/kg         1           alpha-Chlordane         ND         12         23         23         ug/kg         1           beta-BHC         ND         7.4         23         23         ug/kg         1           Chlordane (tech)         ND         96         470         470         ug/kg         1           Chlordane (tech)         ND         96         470         470         ug/kg         1           DCPA         ND         23         23         23         ug/kg         1           Deldranchlor         ND         5.4         23         23         ug/kg         1           Dleldrin         ND         7.0         23         23         ug/kg         1           Endosulfan I         ND         7.0         23         23         ug/kg         1           Endosulfan sulfate         ND         5.2         23         23         ug/kg         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,4'-DDD                      | ND             | 4.5       | 23       | 23      | ug/kg       | 1             |              |
| Aldrin ND 11 23 23 ug/kg 1 alpha-BHC ND 14 23 23 ug/kg 1 alpha-Chlordane ND 12 23 23 ug/kg 1 alpha-Chlordane ND 12 23 23 ug/kg 1 beta-BHC ND 7.4 23 23 ug/kg 1 Chlordane (tech) ND 96 470 470 ug/kg 1 cls-Nonachior ND 23 23 23 ug/kg 1  DCPA ND 23 23 23 ug/kg 1  DCPA ND 5.4 23 23 ug/kg 1  DCPA ND 5.4 23 23 ug/kg 1  DCPA ND 5.4 23 23 ug/kg 1  DCPA ND 5.4 23 23 ug/kg 1  Dicidrin ND 7.0 23 23 ug/kg 1  Endosulfan I ND 5.4 23 23 ug/kg 1  Endosulfan I ND 5.4 23 23 ug/kg 1  Endosulfan II ND 3.0 23 23 ug/kg 1  Endosulfan sulfate ND 5.2 23 23 ug/kg 1  Endosulfan sulfate ND 6.6 23 23 ug/kg 1  Endosulfan sulfate ND 6.6 23 23 ug/kg 1  Endosulfan endosulfan will ug/kg 1  Endosulfan endosulfan will ug/kg 1  Endosulfan betone ND 6.8 23 23 ug/kg 1  Endon katone ND 6.8 23 23 ug/kg 1  Endon katone ND 6.8 23 23 ug/kg 1  Endosulfan endosulfane ND 12 23 23 ug/kg 1  Endon katone ND 6.5 23 23 ug/kg 1  Endon katone ND 6.6 23 23 ug/kg 1  Endon katone ND 6.6 23 23 ug/kg 1  Endon katone ND 6.6 23 23 ug/kg 1  Endon katone ND 6.6 23 23 ug/kg 1  Endon katone ND 6.6 23 23 ug/kg 1  Endon katone ND 6.6 23 23 ug/kg 1  Endon katone ND 6.6 23 23 ug/kg 1  Endon katone ND 6.7 23 23 ug/kg 1  Endon katone ND 6.8 23 23 ug/kg 1  Endon katone ND 6.8 23 23 ug/kg 1  Endon katone ND 6.8 23 23 ug/kg 1  Endon katone ND 6.8 23 23 ug/kg 1  Endon katone ND 6.8 23 23 ug/kg 1  Endosulfan sug/kg 1  Endosulfan | 4,4'-DDE                      | 15             | 7.2       | 23       | 23      | ug/kg       | 1             | J            |
| alpha-BHC       ND       14       23       23       ug/kg       1         alpha-Chlordane       ND       12       23       23       ug/kg       1         beta-BHC       ND       7.4       23       23       ug/kg       1         Chlordane (tech)       ND       96       470       470       ug/kg       1         cis-Nonachlor       ND       23       23       23       ug/kg       1         DCPA       ND       23       23       23       ug/kg       1         DCPA       ND       5.4       23       23       ug/kg       1         Deletarin       ND       7.0       23       23       ug/kg       1         Endosulfan       ND       7.0       23       23       ug/kg       1         Endosulfan II       ND       3.0       23       23       ug/kg       1         Endosulfan sulfate       ND       5.2       23       23       ug/kg       1         Endrin aldehyde       ND       6.6       23       23       ug/kg       1         Endrin aldehyde       ND       1       23       23       ug/kg       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,4'-DDT                      | 7.8            | 5.2       | 23       | 23      | ug/kg       | 1             | ال -         |
| Supplies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aldrin                        | ND             | 11        | 23       | 23      | ug/kg       | 1             |              |
| Deta-BHC   ND   7.4   23   23   ug/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alpha-BHC                     | ND             | 14        | 23       | 23      | ug/kg       | 1             |              |
| Chlordane (tech)   ND   96   470   470   ug/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | alpha-Chlordane               | ND             | 12        | 23       | 23      | ug/kg       | 1             |              |
| Cols-Nonachlor   ND   23   23   23   ug/kg   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | beta-BHC                      | ND             | 7.4       | 23       | 23      | ug/kg       | 1             |              |
| DCPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chlordane (tech)              | ND             | 96        | 470      | 470     | ug/kg       | 1             |              |
| Deletra BHC   ND   5.4   23   23   23   23   23   23   24   25   25   25   25   25   25   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cis-Nonachlor                 | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| Dieledrin         ND         7.0         23         23         ug/kg         1           Endosulfan I         ND         5.4         23         23         ug/kg         1           Endosulfan sulfate         ND         3.0         23         23         ug/kg         1           Endosulfan sulfate         ND         5.2         23         23         ug/kg         1           Endrin         ND         13         23         23         ug/kg         1           Endrin aldehyde         ND         6.6         23         23         ug/kg         1           Endrin ketone         ND         4.3         23         23         ug/kg         1           Endrin ketone         ND         4.3         23         23         ug/kg         1           Endrin ketone         ND         4.3         23         23         ug/kg         1           Igamma-BHC (Lindane)         ND         12         23         23         ug/kg         1           Heptachlor         ND         9.4         23         23         ug/kg         1           Heptachlor spoxide         ND         8.5         23         23         u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DCPA                          | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | delta-BHC                     | ND             | 5.4       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan II ND 3.0 23 23 ug/kg 1 Endosulfan sulfate ND 5.2 23 23 ug/kg 1 Endrin ND 13 23 23 ug/kg 1 Endrin aldehyde ND 6.6 23 23 ug/kg 1 Endrin ketone ND 4.3 23 23 ug/kg 1 Endrin ketone ND 4.3 23 23 ug/kg 1 Egamma-BHC (Lindane) ND 12 23 23 ug/kg 1 Egamma-Chlordane ND 9.4 23 23 ug/kg 1 Endetachlor epoxide ND 13 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor ND 13 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor ND 15.2 23 23 ug/kg 1 Eleptachlor ND 15.2 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1 Eleptachlor epoxide ND 8.5 23 23 ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dieldrin                      | ND             | 7.0       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan sulfate ND 5.2 23 23 ug/kg 1 Endrin ND 13 23 23 ug/kg 1 Endrin aldehyde ND 6.6 23 23 ug/kg 1 Endrin ketone ND 4.3 23 23 ug/kg 1 Endrin ketone ND 4.3 23 23 ug/kg 1 Egamma-BHC (Lindane) ND 12 23 23 ug/kg 1 Egamma-Chlordane ND 9.4 23 23 ug/kg 1 Eneptachlor ND 13 23 23 ug/kg 1 Eneptachlor epoxide ND 8.5 23 23 ug/kg 1 Eneptachlor epoxide ND 8.5 23 23 ug/kg 1 Eneptachlor epoxide ND 8.5 23 23 ug/kg 1 Eneptachlor epoxide ND 8.5 23 23 ug/kg 1 Eneptachlor epoxide ND 8.5 23 23 ug/kg 1 Eneptachlor epoxide ND 8.5 23 23 ug/kg 1 Eneptachlor epoxide ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23 23 ug/kg 1 Enert ND 8.5 23  | Endosulfan I                  | ND             | 5.4       | 23       | 23      | ug/kg       | 1             |              |
| Endrin ND 13 23 23 ug/kg 1 Endrin aldehyde ND 6.6 23 23 ug/kg 1 Endrin ketone ND 4.3 23 23 ug/kg 1 Endrin ketone ND 4.3 23 23 ug/kg 1 Egamma-BHC (Lindane) ND 12 23 23 ug/kg 1 Egamma-Chlordane ND 9.4 23 23 ug/kg 1 Heptachlor ND 13 23 23 ug/kg 1 Heptachlor epoxide ND 8.5 23 23 ug/kg 1 Kepone ND 210 470 470 ug/kg 1 Methoxychlor ND 5.2 23 23 ug/kg 1 Mirex ND 7.3 23 23 ug/kg 1 Dxychlordane ND 7.3 23 23 ug/kg 1 Dxychlordane ND 23 23 23 ug/kg 1 Dxychlordane ND 23 23 23 ug/kg 1 Dxychlordane ND 23 23 23 ug/kg 1 Dxychlordane ND 23 23 23 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Endosulfan II                 | ND             | 3.0       | 23       | 23      | ug/kg       | 1             |              |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Endosulfan sulfate            | ND             | 5.2       | 23       | 23      | ug/kg       | 1             |              |
| Endrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Endrin                        | ND             | 13        | 23       | 23      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)         ND         12         23         23         ug/kg         1           gamma-Chlordane         ND         9.4         23         23         ug/kg         1           Heptachlor         ND         13         23         23         ug/kg         1           Heptachlor epoxide         ND         8.5         23         23         ug/kg         1           Kepone         ND         210         470         470         ug/kg         1           Methoxychlor         ND         5.2         23         23         ug/kg         1           Mirex         ND         7.3         23         23         ug/kg         1           Doxychlordane         ND         23         23         23         ug/kg         1           Toxaphene         ND         80         700         700         ug/kg         1           Surr: Decachlorobiphenyl         64 %         Conc:150         21-125         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Endrin aldehyde               | ND             | 6.6       | 23       | 23      | ug/kg       | 1             |              |
| gamma-Chlordane         ND         9.4         23         23         ug/kg         1           Heptachlor         ND         13         23         23         ug/kg         1           Heptachlor epoxide         ND         8.5         23         23         ug/kg         1           Kepone         ND         210         470         470         ug/kg         1           Methoxychlor         ND         5.2         23         23         ug/kg         1           Mirex         ND         7.3         23         23         ug/kg         1           Dxychlordane         ND         23         23         23         ug/kg         1           Toxaphene         ND         80         700         700         ug/kg         1           rans-Nonachlor         ND         23         23         23         ug/kg         1           Surr: Decachlorobiphenyl         64 %         Conc:150         21-125         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Endrin ketone                 | ND             | 4.3       | 23       | 23      | ug/kg       | 4             |              |
| Heptachlor ND 13 23 23 ug/kg 1 Heptachlor epoxide ND 8.5 23 23 ug/kg 1 Kepone ND 210 470 470 ug/kg 1 Methoxychlor ND 5.2 23 23 ug/kg 1 Mirex ND 7.3 23 23 ug/kg 1 Dxychlordane ND 23 23 23 ug/kg 1 Toxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 80 700 700 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1 Foxaphene ND 23 23 23 ug/kg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gamma-BHC (Lindane)           | ND             | 12        | 23       | 23      | ug/kg       | 1             |              |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gamma-Chlordane               | ND             | 9.4       | 23       | 23      | ug/kg       | 1             |              |
| Kepone         ND         210         470         470         ug/kg         1           Methoxychlor         ND         5.2         23         23         ug/kg         1           Mirex         ND         7.3         23         23         ug/kg         1           Dxychlordane         ND         23         23         23         ug/kg         1           Toxaphene         ND         80         700         700         ug/kg         1           rans-Nonachlor         ND         23         23         23         ug/kg         1           Surr: Decachlorobiphenyl         64 %         Conc:150         21-125         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heptachlor                    | ND             | 13        | 23       | 23      | ug/kg       | 4             |              |
| Methoxychlor         ND         5.2         23         23         ug/kg         1           Mirex         ND         7.3         23         23         ug/kg         1           Dxychlordane         ND         23         23         23         ug/kg         1           Toxaphene         ND         80         700         700         ug/kg         1           rans-Nonachlor         ND         23         23         23         ug/kg         1           Surr: Decachlorobiphenyl         64 %         Conc:150         21-125         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heptachlor epoxide            | ND             | 8.5       | 23       | 23      | ug/kg       | 1             |              |
| Mirex         ND         7.3         23         23         ug/kg         1           Dxychlordane         ND         23         23         23         ug/kg         1           Foxaphene         ND         80         700         700         ug/kg         1           rans-Nonachlor         ND         23         23         23         ug/kg         1           Surr: Decachloroblphenyl         64 %         Conc:150         21-125         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kepone                        | ND             | 210       | 470      | 470     | ug/kg       | 1             |              |
| Dxychlordane         ND         23         23         23         ug/kg         1           Foxaphene         ND         80         700         700         ug/kg         1           rans-Nonachlor         ND         23         23         23         ug/kg         1           Surr: Decachlorobiphenyl         64 %         Conc: 150         21-125         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methoxychlor                  | ND             | 5.2       | 23       | 23      | ug/kg       | 1             |              |
| Toxaphene         ND         80         700         rug/kg         1           rans-Nonachlor         ND         23         23         23         ug/kg         1           Surr: Decachlorobiphenyl         64 %         Conc:150         21-125         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mirex                         | ND             | 7.3       | 23       | 23      | ug/kg       | 1             |              |
| rans-Nonachlor ND 23 23 23 ug/kg 1  Surr: Decachlorobiphenyl 64 % Conc:150 21-125 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oxychlordane                  | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl 64 % Conc:150 21-125 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toxaphene                     | ND             | 80        | 700      | 700     | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl 64 % Conc:150 21-125 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rans-Nonachlor                | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| Surr: Tetrachloro-meta-xylene 65 % Conc:152 18-112 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surr: Decachlorobiphenyl      | 64 %           | Conc:150  |          | 21-125  | %           |               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surr: Tetrachioro-meta-xylene | 65 %           | Conc:152  | 3        | 18-112  | %           |               |              |





Sampled: 05/29/13 08:10

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

3E30013 Report ID:

7600 Tyrone Ave, COC Project ID:

#13-1321,26, WO#

Date Received: Date Reported:

05/30/13 09:50 06/13/13 15:54

3E30013-11

LN06326

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/1 | 13 07:26 | Analyzed: 0 | 6/05/13 00:06 | Analyst: bma |
|-------------------------------|----------------|-----------|---------|----------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL     | ML       | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 22        | 22      | 22       | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 22        | 22      | 22       | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 22        | 22      | 22       | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.2       | 22      | 22       | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 6.8       | 22      | 22       | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 4.8       | 22      | 22       | ug/kg       | 1             |              |
| Aldrin                        | ND             | 10        | 22      | 22       | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 13        | 22      | 22       | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 11        | 22      | 22       | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 6.9       | 22      | 22       | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 89        | 440     | 440      | ug/kg       | 4             |              |
| cis-Nonachlor                 | ND             | 22        | 22      | 22       | ug/kg       | 1             |              |
| DCPA                          | ND             | 22        | 22      | 22       | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.0       | 22      | 22       | ug/kg       | 4             |              |
| Dieldrin                      | ND             | 6.6       | 22      | 22       | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.0       | 22      | 22       | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 2.8       | 22      | 22       | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 4.8       | 22      | 22       | ug/kg       | 1             |              |
| Endrin                        | ND             | 12        | 22      | 22       | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.1       | 22      | 22       | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.0       | 22      | 22       | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 11        | 22      | 22       | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 8.8       | 22      | 22       | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 12        | 22      | 22       | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.0       | 22      | 22       | ug/kg       | 1             |              |
| Kepone                        | ND             | 190       | 440     | 440      | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 4.8       | 22      | 22       | ug/kg       | 3             |              |
| Mirex                         | ND             | 6.8       | 22      | 22       | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 22        | 22      | 22       | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 75        | 660     | 660      | ug/kg       | 1             |              |
| rans-Nonachlor                | ND             | 22        | 22      | 22       | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 63 %           | Conc:137  |         | 21-125   | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 59 %           | Conc:129  |         | 18-112   | %           |               |              |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Sampled: 05/29/13 08:14

Report ID: 3E30013

Project ID: 7600 Tyrone Ave,COC

Date Received: Date Reported: 05/30/13 09:50 06/13/13 15:54

#13-1321,26, WO#

3E30013-12

LN06328

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A            | Batch: W3E1479 | Prepared: | 05/31/1 | 3 07:26 | Analyzed: 0 | 6/05/13 00:34 | Analyst: bma |
|------------------------------|----------------|-----------|---------|---------|-------------|---------------|--------------|
| Analyte                      | Result         | MDL       | MRL     | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                     | ND             | 24        | 24      | 24      | ug/kg       | 1             |              |
| 2,4'-DDE                     | ND             | 24        | 24      | 24      | ug/kg       | 1             |              |
| 2,4'-DDT                     | 190            | 24        | 24      | 24      | ug/kg       | 1             |              |
| 4,4'-DDD                     | ND             | 4.7       | 24      | 24      | ug/kg       | 1             |              |
| 4,4'-DDE                     | 740            | 37        | 120     | 120     | ug/kg       | 5             | M-06         |
| 4,4'-DDT                     | 270            | 5.3       | 24      | 24      | ug/kg       | 1             |              |
| Aldrin                       | ND             | 11        | 24      | 24      | ug/kg       | 1             |              |
| alpha-BHC                    | ND             | 14        | 24      | 24      | ug/kg       | 1             |              |
| alpha-Chlordane              | ND             | 13        | 24      | 24      | ug/kg       | 1             |              |
| beta-BHC                     | 37             | 7.7       | 24      | 24      | ug/kg       | 1             |              |
| Chlordane (tech)             | ND             | 99        | 490     | 490     | ug/kg       | 1             |              |
| cis-Nonachlor                | ND             | 24        | 24      | 24      | ug/kg       | 1             |              |
| DCPA                         | ND             | 24        | 24      | 24      | ug/kg       | 1             |              |
| delta-BHC                    | ND             | 5.5       | 24      | 24      | ug/kg       | 1             |              |
| Dieldrin                     | ND             | 7.3       | 24      | 24      | ug/kg       | 1             |              |
| Endosulfan I                 | ND             | 5.5       | 24      | 24      | ug/kg       | 1             |              |
| Endosulfan II                | ND             | 3.1       | 24      | 24      | ug/kg       | 1             |              |
| Endosulfan sulfate           | ND             | 5.3       | 24      | 24      | ug/kg       | 1             |              |
| Endrin                       | ND             | 13        | 24      | 24      | ug/kg       | 1             |              |
| Endrin aldehyde              | ND             | 6.8       | 24      | 24      | ug/kg       | 1             |              |
| Endrin ketone                | ND             | 4.5       | 24      | 24      | ug/kg       | -1            |              |
| gamma-BHC (Lindane)          | ND             | 13        | 24      | 24      | ug/kg       | 1             |              |
| gamma-Chlordane              | ND             | 9.7       | 24      | 24      | ug/kg       | 1             |              |
| Heptachlor                   | ND             | 13        | 24      | 24      | ug/kg       | 1             |              |
| Heptachlor epoxide           | ND             | 8.8       | 24      | 24      | ug/kg       | 1             |              |
| Kepone                       | ND             | 210       | 490     | 490     | ug/kg       | 1             |              |
| Methoxychlor                 | ND             | 5.3       | 24      | 24      | ug/kg       | 1             |              |
| Mirex                        | ND             | 7.6       | 24      | 24      | ug/kg       | 1             |              |
| Oxychlordane                 | ND             | 24        | 24      | 24      | ug/kg       | 1             |              |
| Toxaphene                    | 2400           | 83        | 730     | 730     | ug/kg       | 1             |              |
| trans-Nonachlor              | ND             | 24        | 24      | 24      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl     | 63 %           | Conc: 154 | 3       | 21-125  | %           |               |              |
| Sum: Tetrachloro-meta-xylene | 61 %           | Conc:148  |         | 18-112  | %           |               |              |



WIL

Sampled: 05/29/13 08:40

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Date Received: 05/30/13 09:50

Project ID:

7600 Tyrone Ave,COC #13-1321,26, WO# Date Reported:

06/13/13 15:54

3E30013-13

LN06332

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: 0 | 6/05/13 01:02 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.7       | 25       | 25      | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.5       | 25       | 25      | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.4       | 25       | 25      | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11        | 25       | 25      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 25       | 25      | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 13        | 25       | 25      | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.7       | 25       | 25      | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 100       | 490      | 490     | ug/kg       | -1            |              |
| cis-Nonachlor                 | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |
| DCPA                          | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.6       | 25       | 25      | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 7.4       | 25       | 25      | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.6       | 25       | 25      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.1       | 25       | 25      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.4       | 25       | 25      | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 25       | 25      | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.9       | 25       | 25      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.5       | 25       | 25      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 13        | 25       | 25      | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.8       | 25       | 25      | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 13        | 25       | 25      | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.9       | 25       | 25      | ug/kg       | 1             |              |
| Керопе                        | ND             | 220       | 490      | 490     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.4       | 25       | 25      | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.6       | 25       | 25      | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 25        | 25       | 25      | ug/kg       | 3             |              |
| Toxaphene                     | ND             | 84        | 740      | 740     | ug/kg       | 1             |              |
| rans-Nonachlor                | ND             | 25        | 25       | 25      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 56 %           | Conc:138  | 2        | 21-125  | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 67 %           | Conc: 165 | 1        | 8-112   | %           |               |              |





Sampled: 05/29/13 08:44

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30

3E30013 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06

06/13/13 15:54

3E30013-14

Project ID:

LN06334

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: 0 | 6/05/13 01:31 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.5       | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.3       | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.2       | 24       | 24      | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11        | 24       | 24      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 24       | 24      | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 12        | 24       | 24      | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.5       | 24       | 24      | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 97        | 470      | 470     | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| DCPA                          | ND             | 24        | 24       | 24      | ug/kg       | 4             |              |
| delta-BHC                     | ND             | 5.4       | 24       | 24      | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 7.1       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.4       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.0       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.2       | 24       | 24      | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 24       | 24      | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.6       | 24       | 24      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.4       | 24       | 24      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 12        | 24       | 24      | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.5       | 24       | 24      | ug/kg       | 1.1           |              |
| Heptachlor                    | ND             | 13        | 24       | 24      | ug/kg       | 4             |              |
| feptachlor epoxide            | ND             | 8.6       | 24       | 24      | ug/kg       | 1             |              |
| Kepone                        | ND             | 210       | 470      | 470     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.2       | 24       | 24      | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.4       | 24       | 24      | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 81        | 710      | 710     | ug/kg       | 1             |              |
| rans-Nonachlor                | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 64 %           | Conc: 152 |          | 21-125  | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 70 %           | Conc: 165 |          | 18-112  | %           |               |              |





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Report ID: Project ID:

3E30013

7600 Tyrone Ave, COC #13-1321,26, WO#

Date Received: Date Reported:

05/30/13 09:50 06/13/13 15:54

Los Angeles CA, 90012

Sampled: 05/29/13 09:30

3E30013-15

LN06341

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07:26 | Analyzed: 0 | 6/05/13 02:00 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 2,4'-DDT                      | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.6       | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDE                      | ND             | 7.4       | 24       | 24      | ug/kg       | 1             |              |
| 4,4'-DDT                      | ND             | 5.3       | 24       | 24      | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11        | 24       | 24      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 24       | 24      | ug/kg       | 9             |              |
| alpha-Chlordane               | ND             | 12        | 24       | 24      | ug/kg       | 1             |              |
| beta-BHC                      | ND             | 7.6       | 24       | 24      | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 98        | 480      | 480     | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| DCPA                          | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.5       | 24       | 24      | ug/kg       | 1             |              |
| Dieldrin                      | ND             | 7.2       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.5       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.1       | 24       | 24      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.3       | 24       | 24      | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 24       | 24      | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.7       | 24       | 24      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.4       | 24       | 24      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 13        | 24       | 24      | ug/kg       | 4             |              |
| gamma-Chlordane               | ND             | 9.6       | 24       | 24      | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 13        | 24       | 24      | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.8       | 24       | 24      | ug/kg       | 1             |              |
| Kepone                        | ND             | 210       | 480      | 480     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.3       | 24       | 24      | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.5       | 24       | 24      | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| Toxaphene                     | ND             | 82        | 720      | 720     | ug/kg       | 1             |              |
| rans-Nonachlor                | ND             | 24        | 24       | 24      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 63 %           | Conc: 151 | - 4      | 21-125  | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 69 %           | Conc: 166 |          | 18-112  | %           |               |              |





Report ID: Project ID:

3E30013

7600 Tyrone Ave, COC

Date Received:

05/30/13 09:50

Date Reported: #13-1321,26, WO#

06/13/13 15:54

3E30013-16

LN06343

Sampled: 05/29/13 09:34

Sampled By: Client

Matrix: Solid

| Method: EPA 8081A             | Batch: W3E1479 | Prepared: | 05/31/13 | 3 07;26 | Analyzed: 0 | 6/05/13 11:23 | Analyst: bma |
|-------------------------------|----------------|-----------|----------|---------|-------------|---------------|--------------|
| Analyte                       | Result         | MDL       | MRL      | ML      | Units       | Dilution      | Qualifier    |
| 2,4'-DDD                      | 36             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 2,4'-DDE                      | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 2,4'-DDT                      | 94             | 23        | 23       | 23      | ug/kg       | 1             |              |
| 4,4'-DDD                      | ND             | 4.5       | 23       | 23      | ug/kg       | 1             | w.           |
| 4,4'-DDE                      | 440            | 7.2       | 23       | 23      | ug/kg       | 1             |              |
| 4,4*-DDT                      | 260            | 5.1       | 23       | 23      | ug/kg       | 1             |              |
| Aldrin                        | ND             | 11        | 23       | 23      | ug/kg       | 1             |              |
| alpha-BHC                     | ND             | 14        | 23       | 23      | ug/kg       | 1             |              |
| alpha-Chlordane               | ND             | 12        | 23       | 23      | ug/kg       | 1             |              |
| beta-BHC                      | 42             | 7.4       | 23       | 23      | ug/kg       | 1             |              |
| Chlordane (tech)              | ND             | 95        | 470      | 470     | ug/kg       | 1             |              |
| cis-Nonachlor                 | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| DCPA                          | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| delta-BHC                     | ND             | 5.3       | 23       | 23      | ug/kg       |               |              |
| Dieldrin                      | ND             | 7.0       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan I                  | ND             | 5.3       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan II                 | ND             | 3.0       | 23       | 23      | ug/kg       | 1             |              |
| Endosulfan sulfate            | ND             | 5.1       | 23       | 23      | ug/kg       | 1             |              |
| Endrin                        | ND             | 13        | 23       | 23      | ug/kg       | 1             |              |
| Endrin aldehyde               | ND             | 6.5       | 23       | 23      | ug/kg       | 1             |              |
| Endrin ketone                 | ND             | 4.3       | 23       | 23      | ug/kg       | 1             |              |
| gamma-BHC (Lindane)           | ND             | 12        | 23       | 23      | ug/kg       | 1             |              |
| gamma-Chlordane               | ND             | 9.3       | 23       | 23      | ug/kg       | 1             |              |
| Heptachlor                    | ND             | 13        | 23       | 23      | ug/kg       | 1             |              |
| Heptachlor epoxide            | ND             | 8.5       | 23       | 23      | ug/kg       | 1             |              |
| Kepone                        | ND             | 210       | 470      | 470     | ug/kg       | 1             |              |
| Methoxychlor                  | ND             | 5.1       | 23       | 23      | ug/kg       | 1             |              |
| Mirex                         | ND             | 7.3       | 23       | 23      | ug/kg       | 1             |              |
| Oxychlordane                  | ND             | 23        | 23       | 23      | ид/кд       | 1             |              |
| Гохарһепе                     | 1500           | 80        | 700      | 700     | ug/kg       | 1             |              |
| rans-Nonachlor                | ND             | 23        | 23       | 23      | ug/kg       | 1             |              |
| Surr: Decachlorobiphenyl      | 64 %           | Conc:150  | 2        | 21-125  | %           |               |              |
| Surr: Tetrachloro-meta-xylene | 65 %           | Conc:153  |          | 18-112  | %           |               |              |





Report ID:

3E30013 7600 Tyrone Ave, COC Project ID:

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50

06/13/13 15:54

# QUALITY CONTROL SECTION





Report ID: Project ID: 3E30013

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

# Chlorinated Pesticides and/or PCBs - Quality Control

## Batch W3E1479 - EPA 8081A

| Analyte                       | Result | Reporting<br>Limit                     | Units | Spike<br>Level | Source<br>Result | %REC  | % REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------|--------|----------------------------------------|-------|----------------|------------------|-------|-----------------|-----|--------------|--------------------|
| Blank (W3E1479-BLK1)          |        | ······································ |       | Analyzed       | 06/04/13         | 13:16 |                 |     |              | 75 USA-186         |
| 2,4'-DDD                      | ND     | 2.5                                    | ug/kg |                | ·····            |       |                 |     |              |                    |
| 2,4'-DDE                      | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| 2,4'-DDT                      | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| 4,4*-DDD                      | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| 4,4*-DDE                      | ND     | 2.5                                    | ug/kg |                | N.               |       |                 |     |              |                    |
| 4,4'-DDT                      | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Aldrin                        | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| alpha-BHC                     | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| alpha-Chlordane               | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| beta-BHC                      | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Chlordane (tech)              | ND     | 50                                     | ug/kg |                |                  |       |                 |     |              |                    |
| cis-Nonachlor                 | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| DCPA                          | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| delta-BHC                     | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Dieldrin                      | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Endosulfan I                  | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Endosulfan II                 | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Endosulfan sulfate            | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Endrin                        | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Endrin aldehyde               | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Endrin ketone                 | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| gamma-BHC (Lindane)           | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| gamma-Chlordane               | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Heptachlor                    | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Heptachlor epoxide            | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Kepone                        | ND     | 50                                     | ug/kg |                |                  |       |                 |     |              |                    |
| Methoxychlor                  | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Mirex                         | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Oxychlordane                  | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Toxaphene                     | ND     | 75                                     | ug/kg |                |                  |       |                 |     |              |                    |
| trans-Nonachlor               | ND     | 2.5                                    | ug/kg |                |                  |       |                 |     |              |                    |
| Surr: Decachlorobiphenyl      | 14.7   |                                        | ug/kg | 25.0           |                  | 59    | 21-125          |     |              |                    |
| Surr: Tetrachloro-meta-xylene | 16.5   |                                        | ug/kg | 25.0           |                  | 66    | 18-112          |     |              |                    |
| CS (W3E1479-BS1)              |        |                                        |       | Analyzed:      | 06/04/13 1:      | 3:44  |                 |     |              |                    |
| 4,4'-DDD                      | 21,1   | 2.5                                    | ug/kg | 25.0           |                  | 85    | 48-126          | NR  |              |                    |
| 4,4"-DDE                      | 20.1   | 2.5                                    | ug/kg | 25.0           |                  | 80    | 48-121          | NR  |              |                    |
| 4,4'-DDT                      | 21.4   | 2.5                                    | ug/kg | 25.0           |                  | 85    | 45-146          | NR  |              |                    |
| Aldrin                        | 19.8   | 2.5                                    | ug/kg | 25.0           |                  | 79    | 57-137          | NR  |              |                    |
| alpha-BHC                     | 20.3   | 2.5                                    | ug/kg | 25.0           |                  | 81    | 64-131          | NR  |              |                    |
| beta-BHC                      | 20.6   | 2.5                                    | ug/kg | 25.0           |                  | 82    | 48-126          | NR  |              |                    |
| Chlordane (tech)              | ND     | 50                                     | ug/kg |                |                  |       | 41-163          |     |              |                    |
| delta-BHC                     | 19.4   | 2.5                                    | ug/kg | 25.0           |                  | 78    | 30-124          | NR  |              |                    |
| Dieldrin                      | 21.2   | 2.5                                    | ug/kg | 25.0           |                  | 85    | 49-123          | NR  |              |                    |

Page 20 of 23



Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/13/13 15:54

# Chlorinated Pesticides and/or PCBs - Quality Control

### Batch W3E1479 - EPA 8081A

| Land I                                 |            | Reporting |       | Spike     | Source     |       | % REC            | 200 | RPD   | Dat           |
|----------------------------------------|------------|-----------|-------|-----------|------------|-------|------------------|-----|-------|---------------|
| Analyte                                | Result     | Limit     | Units | Level     | Result     | %REC  | Limits           | RPD | Limit | Qualifie      |
| LCS (W3E1479-BS1)                      |            |           |       | Analyzed: | 06/04/13   | 13:44 |                  |     |       |               |
| Endosulfan i                           | 16.1       | 2.5       | ug/kg | 25.0      |            | 64    | 14-101           | NR  |       |               |
| Endosulfan II                          | 18.1       | 2.5       | ug/kg | 25.0      |            | 72    | 33-146           | NR  |       |               |
| Endosulfan sulfate                     | 22.6       | 2.5       | ug/kg | 25.0      |            | 90    | 33-146           | NR  |       |               |
| Endrin                                 | 22.0       | 2.5       | ug/kg | 25,0      |            | 88    | 39-144           | NR  |       |               |
| Endrin aldehyde                        | 17.5       | 2.5       | ug/kg | 25.0      |            | 70    | 23-104           | NR  |       |               |
| gamma-BHC (Lindane)                    | 20.3       | 2.5       | ug/kg | 25.0      |            | 81    | 43-114           | NR  |       |               |
| Heptachlor                             | 20.4       | 2.5       | ug/kg | 25.0      |            | 82    | 48-125           | NR  |       |               |
| Heptachlor epoxide                     | 21.6       | 2.5       | ug/kg | 25.0      |            | 87    | 47-121           | NR  |       |               |
| Methoxychlor                           | 21.7       | 2.5       | ug/kg | 25.0      |            | 87    | 47-157           | NR  |       |               |
| Toxaphene                              | ND         | 75        | ug/kg |           |            |       | 48-164           |     |       |               |
| Surr: Decachlorobiphenyl               | 15.3       |           | ug/kg | 25.0      |            | 61    | 21-125           |     |       |               |
| Surr: Tetrachloro-meta-xylene          | 18.1       |           | ug/kg | 25.0      |            | 72    | 18-112           |     |       |               |
|                                        |            | : 3E3001  |       | Analyzed: | 06/04/13   | 14.45 |                  |     |       |               |
| Matrix Spike (W3E1479-MS1)<br>4,4'-DDD | 210        | 24        | ug/kg | 240       | ND         | 87    | 21-119           | NR  |       | Salama (VIII) |
| 4,4'-DDE                               | 199        | 24        | ug/kg | 240       | ND         | 83    | 18-122           | NR  |       |               |
| 4,4'-DDT                               | 208        | 24        |       | 240       | ND         | 87    | 12-141           | NR  |       |               |
| Aldrin                                 |            | 24        | ug/kg | 240       | ND         | 72    | 24-173           | NR  |       |               |
| alpha-BHC                              | 173<br>175 | 24        | ug/kg | 240       | ND         | 73    | 44-146           | NR  |       |               |
| beta-BHC                               | 189        | 24        | ug/kg |           | ND         | 78    | 7-156            | NR  |       |               |
|                                        |            |           | ug/kg | 240       |            |       |                  |     |       |               |
| delta-BHC                              | 185        | 24        | ug/kg | 240       | ND         | 77    | 11-147<br>23-123 | NR  |       |               |
| Dieldrin                               | 202        | 24        | ug/kg | 240       | ND         | 84    |                  | NR  |       |               |
| Endosulfan I                           | 124        | 24        | ug/kg | 240       | ND         | 52    | 0.1-94           | NR  |       |               |
| Endosulfan II                          | 150        | 24        | ug/kg | 240       | ND         | 62    | 0.1-109          | NR  |       |               |
| Endosulfan sulfate                     | 215        | 24        | ug/kg | 240       | ND         | 89    | 0.1-152          | NR  |       |               |
| Endrin                                 | 206        | 24        | ug/kg | 240       | ND         | 86    | 22-147           | NR  |       |               |
| Endrin aldehyde                        | 179        | 24        | ug/kg | 240       | ND         | 74    | 0.1-114          | NR  |       |               |
| gamma-BHC (Lindane)                    | 178        | 24        | ug/kg | 240       | ND         | 74    | 16-121           | NR  |       |               |
| Heptachlor                             | 180        | 24        | ug/kg | 240       | ND         | 75    | 4-141            | NR  |       |               |
| Heptachlor epoxide                     | 198        | 24        | ug/kg | 240       | ND         | 82    | 17-135           | NR  |       |               |
| Methoxychlor                           | 211        | 24        | ug/kg | 240       | ND         | 88    | 14-153           | NR  |       |               |
| Surr: Decachlorobiphenyl               | 155        |           | ug/kg | 240       |            | 64    | 21-125           |     |       |               |
| Surr: Tetrachloro-meta-xylene          | 153        |           | ug/kg | 240       |            | 64    | 18-112           |     |       |               |
| Matrix Spike Dup (W3E1479-MSD1)        | Source     | 3E3001    | 3-01  | Analyzed: | 06/04/13 1 | 4:40  |                  |     |       |               |
| 4,4'-DDD                               | 215        | 24        | ug/kg | 243       | ND         | 88    | 21-119           | 2   | 25    |               |
| 4,4'-DDE                               | 203        | 24        | ug/kg | 243       | ND         | 84    | 18-122           | 2   | 25    |               |
| 4,4'-DDT                               | 220        | 24        | ug/kg | 243       | ND         | 91    | 12-141           | 6   | 25    |               |
| Aldrin                                 | 185        | 24        | ug/kg | 243       | ND         | 76    | 24-173           | 7   | 25    |               |
| alpha-BHC                              | 187        | 24        | ug/kg | 243       | ND         | 77    | 44-146           | 6   | 25    |               |
| beta-BHC                               | 200        | 24        | ug/kg | 243       | ND         | 83    | 7-156            | 6   | 25    |               |
| delta-BHC                              | 193        | 24        | ug/kg | 243       | ND         | 79    | 11-147           | 4   | 25    |               |
| Dieldrin                               | 209        | 24        | ug/kg | 243       | ND         | 86    | 23-123           | 4   | 25    |               |
| Endosulfan I                           | 116        | 24        | ug/kg | 243       | ND         | 48    | 0.1-94           | 7   | 25    |               |
| Endosulfan II                          | 135        | 24        | ug/kg | 243       | ND         | 56    | 0.1-109          | 10  | 25    |               |

Page 21 of 23







Report ID:

3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/13/13 15:54

## Chlorinated Pesticides and/or PCBs - Quality Control

#### Batch W3E1479 - EPA 8081A

|                                 |        | Reporting |       | Spike    | Source   |       | % REC   |     | RPD   | Data       |
|---------------------------------|--------|-----------|-------|----------|----------|-------|---------|-----|-------|------------|
| Analyte                         | Result | Limit     | Units | Level    | Result   | %REC  | Limits  | RPD | Limit | Qualifiers |
| Matrix Spike Dup (W3E1479-MSD1) | Source | e: 3E3001 | 3-01  | Analyzed | 06/04/13 | 14:40 |         |     |       |            |
| Endosulfan sulfate              | 235    | 24        | ug/kg | 243      | ND       | 97    | 0,1-152 | 9   | 25    |            |
| Endrin                          | 214    | 24        | ug/kg | 243      | ND       | 88    | 22-147  | 4   | 25    |            |
| Endrin aldehyde                 | 188    | 24        | ug/kg | 243      | ND       | 77    | 0.1-114 | 5   | 25    |            |
| gamma-BHC (Lindane)             | 189    | 24        | ug/kg | 243      | ND       | 78    | 16-121  | 6   | 25    |            |
| Heptachlor                      | 192    | 24        | ug/kg | 243      | ND       | 79    | 4-141   | 7   | 25    |            |
| Heptachlor epoxide              | 208    | 24        | ug/kg | 243      | ND       | 86    | 17-135  | 5   | 25    |            |
| Methoxychlor                    | 235    | 24        | ug/kg | 243      | ND       | 97    | 14-153  | 11  | 25    |            |
| Surr: Decachlorobiphenyl        | 160    |           | ug/kg | 243      |          | 66    | 21-125  |     |       |            |
| Surr: Tetrachloro-meta-xylene   | 163    |           | ug/kg | 243      |          | 67    | 18-112  |     |       |            |



# Weck Laboratories, Inc.

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30013

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: 05/

Date Reported:

05/30/13 09:50 06/13/13 15:54

#### Notes and Definitions

M-06 Due to the high concentration of analyte inherent in the sample, sample was diluted prior to preparation. The MDL and MRL were raised

due to this dilution,

J Detected but below the Reporting Limit; therefore, result is an estimated concentration.

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

MRL Method Reporting Limit

NR Not Reportable

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Page 23 of 23

# **ATTACHMENT #7**

Semi Volatile Organic Compounds (SVOCs)

**EPA METHOD 8270C** 



#### CERTIFICATE OF ANALYSIS

Client: LADWP - Environmental Laboratory

1630 North Main Street, Bldg. 7, Rm 311

Los Angeles, CA 90012

Report Date:

06/05/13 16:04

Received Date:

05/30/13 09:50

Turn Around:

5 workdays

Attention: Kevin Han

Phone: Fax: 213-367-7267 (213) 367-7285 Work Order #:

3E30014

49067-3, COC #13-1321,26

Client Project:

7600 Tyrone Ave, COC #13-1321,26,

WO#

## NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

#### Dear Kevin Han:

Enclosed are the results of analyses for samples received 05/30/13 09:50 with the Chain of Custody document. The samples were received in good condition, at 2.8 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

## Case Narrative:

Reviewed by:

Kim G Tu Project Manager ISO 17025







LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3 Project ID: 7

3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received: Date Reported: 05/30/13 09:50

06/05/13 16:04

## ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Sampled by: Sample Comments | Lab ID     | Matrix | Date Sample    |
|-----------|-----------------------------|------------|--------|----------------|
| LN06205   | Client                      | 3E30014-01 | Solid  | 05/28/13 08:0  |
| LN06207   | Client                      | 3E30014-02 | Solid  | 05/28/13 08:0  |
| LN06214   | Client                      | 3E30014-03 | Solid  | 05/28/13 08:5  |
| LN06216   | Client                      | 3E30014-04 | Solid  | 05/28/13 08:5  |
| LN06217   | Client                      | 3E30014-05 | Solid  | 05/28/13 09:00 |
| LN06219   | Client                      | 3E30014-06 | Solid  | 05/28/13 09:04 |
| LN06229   | Client                      | 3E30014-07 | Solid  | 05/28/13 09:40 |
| N06231    | Client                      | 3E30014-08 | Solid  | 05/28/13 09:44 |
| N05241    | Client                      | 3E30014-09 | Solid  | 05/28/13 10:20 |
| N06243    | Client                      | 3E30014-10 | Solid  | 05/28/13 10:24 |
| N06259    | Client                      | 3E30014-11 | Solid  | 05/28/13 11:30 |
| N06261    | Client                      | 3E30014-12 | Solid  | 05/28/13 11:34 |
| N06329    | Client                      | 3E30014-13 | Solid  | 05/29/13 08:30 |
| N06331    | Client                      | 3E30014-14 | Solid  | 05/29/13 08:34 |
| N06335    | Client                      | 3E30014-15 | Solid  | 05/29/13 09:00 |
| N06337    | Client                      | 3E30014-16 | Solid  | 05/29/13 09:04 |
| N06338    | Client                      | 3E30014-17 | Solid  | 05/29/13 09:06 |
| ND6340    | Client                      | 3E30014-18 | Solid  | 05/29/13 09:10 |
| N06341    | Client                      | 3E30014-19 | Solid  | 05/29/13 09:30 |
| N06343    | Client                      | 3E30014-20 | Solid  | 05/29/13 09:34 |

ANALYSES

Semivolatile Organic Compounds by GC/MS



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/29/13 08:30

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-13 LN06329

Sampled By: Client

Matrix: Solid

# Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared: 06/01/13 09:40 |      |      | Analyzed: 06/05/13 01:12 |          | Analyst: ab |
|---------------------------------|----------------|--------------------------|------|------|--------------------------|----------|-------------|
| Analyte                         | Result         | MDL                      | MRL  | ML   | Units                    | Dilution | Qualifier   |
| 1,2,4-Trichlorobenzene          | ND             | 0.080                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 1,2-Dichlorobenzene             | - ND           | 0.097                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 1,3-Dichlorobenzene             | ND             | 0.071                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 1,4-Dichlorobenzene             | ND             | 0.11                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2,4,5-Trichlorophenol           | ND             | 0.097                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2,4,6-Trichlorophenol           | ND             | 0.097                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2,4-Dichlorophenol              | ND             | 0.12                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2,4-Dimethylphenol              | ND             | 0.11                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2,4-Dinitrophenol               | ND             | 3.4                      | 22   | 22   | mg/kg                    | (4)      |             |
| 2,4-Dinitrotoluene              | ND             | 0.088                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2,6-Dinitrotoluene              | ND             | 0.071                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2-Chloronaphthalene             | ND             | 0.071                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2-Chlorophenol                  | ND             | 0.088                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2-Methylnaphthalene             | ND             | 0.080                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2-Methylphenol                  | ND             | 0.11                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2-Nitroaniline                  | ND             | 0.12                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 2-Nitrophenol                   | ND             | 0.19                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 3 & 4-Methylphenol              | ND             | 0.11                     | 0.44 | 0.44 | mg/kg                    | 4        |             |
| 3,3'-Dichlorobenzidine          | ND             | 1.3                      | 2.2  | 2.2  | mg/kg                    | 1        |             |
| 3-Nitroaniline                  | ND             | 0.13                     | 0.44 | 0.44 | mg/kg                    | an a     |             |
| 4,6-Dinitro-2-methylphenol      | ND             | 1.4                      | 4.4  | 4.4  | mg/kg                    | 1        |             |
| 4-Bromophenyl phenyl ether      | ND             | 0.062                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 4-Chloro-3-methylphenol         | ND             | 0.097                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 4-Chloroaniline                 | ND             | 0.12                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 4-Chlorophenyl phenyl ether     | ND             | 0.080                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| 4-Nitroaniline                  | ND             | 0.12                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| I-Nitrophenol                   | ND             | 0.13                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| Acenaphthene                    | ND             | 0.080                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| Acenaphthylene                  | ND             | 0.080                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| Aniline                         | ND             | 0.20                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| nthracene                       | ND             | 0.071                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.088                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| lenzidine                       | ND             | 1.1                      | 4.4  | 4.4  | mg/kg                    | 1        |             |
| enzo (a) anthracene             | ND             | 0.062                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| enzo (a) pyrene                 | ND             | 0.071                    | 0.44 | 0.44 | mg/kg                    | -1       |             |
| enzo (b) fluoranthene           | ND             | 0.062                    | 0.44 | 0.44 | mg/kg                    | 1        |             |
| enzo (g,h,i) perylene           | 0.11           | 0.053                    | 0.88 | 0.88 | mg/kg                    | 1        | J           |
| enzo (k) fluoranthene           | ND             | 0.12                     | 0.44 | 0.44 | mg/kg                    | 1        |             |
| enzoic acid                     | ND             | 1.7                      | 22   | 22   | mg/kg                    | 1        |             |
| enzyl alcohol                   | ND             | 0.12                     | 0.44 | 0.44 | mg/kg                    | 1        |             |

Page 27 of 48



CONTRACTOR OF CASA STREET

Sampled: 05/29/13 08:30

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID:

Project ID:

3E30014

7600 Tyrone Ave, COC

Date Received: Date Reported:

05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-13

LN06329 Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | 1: 06/01/1 | 3 09:40 | Analyzed: ( | 06/05/13 01:12 | Analyst: abj |
|-----------------------------|----------------|-----------|------------|---------|-------------|----------------|--------------|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units       | Dilution       | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.080     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Bis(2-chloroethyl)ether     | ND             | 0.097     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.12      | 0.44       | 0.44    | mg/kg       | 1              |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11      | 0.44       | 0.44    | mg/kg       | 1              |              |
| Butyl benzyl phthalate      | 0.28           | 0.13      | 0.44       | 0.44    | mg/kg       | 1              | J            |
| Carbazole                   | ND             | 0.080     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Chrysene                    | ND             | 0.080     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Dibenzo (a,h) anthracene    | ND .           | 0.044     | 0.88       | 0.88    | mg/kg       | 1              |              |
| Dibenzofuran                | ND             | 0.080     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Diethyl phthalate           | ND             | 0.053     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Dimethyl phthalate          | ND             | 0.78      | 2.2        | 2.2     | mg/kg       | 1              |              |
| Di-n-butyl phthalate        | ND             | 0.071     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Di-n-octyl phthalate        | ND             | 0.12      | 0.44       | 0.44    | mg/kg       | 1.             |              |
| Fluoranthene                | ND             | 0.097     | 0.44       | 0.44    | mg/kg       | Ť              |              |
| Fluorene                    | ND             | 0.062     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Hexachlorobenzene           | ND             | 0.071     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Hexachlorobutadiene         | ND             | 0.080     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Hexachlorocyclopentadiene   | ND             | 0.11      | 0.44       | 0.44    | mg/kg       | 1              |              |
| Hexachloroethane            | ND             | 0.062     | 0.44       | 0.44    | mg/kg       | 4              |              |
| Indeno (1,2,3-cd) pyrene    | 0.15           | 0.080     | 0.88       | 0.88    | mg/kg       | . 1            | J            |
| Isophorone                  | ND             | 0.088     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Naphthalene                 | ND             | 0.097     | 0.44       | 0.44    | mg/kg       | 4              |              |
| Nitrobenzene                | ND             | 0.097     | 0.44       | 0.44    | mg/kg       | 1              |              |
| N-Nitrosodimethylamine      | ND             | 0.080     | 0.44       | 0.44    | mg/kg       | 1              |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.080     | 0.44       | 0.44    | mg/kg       | 1              |              |
| N-Nitrosodiphenylamine      | ND             | 0.062     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Pentachlorophenol           | ND             | 0.14      | 0.44       | 0.44    | mg/kg       | 1              |              |
| Phenanthrene                | ND             | 0.071     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Phenol                      | ND             | 0.13      | 0.44       | 0.44    | mg/kg       | 1              |              |
| Pyrene                      | ND             | 0.071     | 0.44       | 0.44    | mg/kg       | 1              |              |
| Pyridine                    | ND             | 0.044     | 0.88       | 0.88    | mg/kg       | 1              |              |
| Sur: 2,4,6-Tribromophenol   | 65 %           | Conc:28.6 | 4          | 10-97   | %           |                |              |
| Surr: 2-Fluorobiphenyl      | 74 %           | Conc:16.4 | 3          | 9-100   | %           |                |              |
| Surr: 2-Fluorophenol        | 89 %           | Conc:39.6 | 2          | 6-115   | %           |                |              |
| Surr: Nitrobenzene-d5       | 76 %           | Conc:16.8 | 4          | 9-105   | %           |                |              |
| Surr: Phenol-d5             | 84 %           | Conc:37.3 | 3          | 6-105   | %           |                |              |
| Surr: Terphenyl-d14         | 86 %           | Conc:19.1 | 3          | 6-106   | %           |                |              |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC #13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-14

LN06331

Sampled: 05/29/13 08:34

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepare | d: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 01:42                                 | Analyst: abj |
|----------------------------------|----------------|---------|------------|---------|-------------|-----------------------------------------------|--------------|
| Analyte                          | Result         | MDL     | MRL        | ML      | Units       | Dilution  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.090   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 1,2-Dichlorobenzene              | ND             | 0.11    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 1,3-Dichlorobenzene              | ND             | 0.080   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 1,4-Dichlorobenzene              | ND             | 0.12    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2,4,5-Trichlorophenol            | ND             | 0.11    | 0.50       | 0.50    | mg/kg       | 1                                             | - 1          |
| 2,4,6-Trichlorophenol            | ND             | 0.11    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2,4-Dichlorophenol               | ND             | 0.13    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2,4-Dimethylphenol               | ND             | 0.12    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2,4-Dinitrophenol                | ND             | 3.8     | 25         | 25      | mg/kg       | 1                                             |              |
| 2,4-Dinitrotoluene               | ND             | 0.10    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2,6-Dinitrotoluene               | ND             | 0.080   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2-Chloronaphthalene              | ND             | 0.080   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2-Chlorophenol                   | ND             | 0.10    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2-Methylnaphthalene              | ND             | 0.090   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2-Methylphenol                   | ND             | 0.12    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2-Nitroaniline                   | · ND           | 0.13    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 2-Nitrophenol                    | ND             | 0.22    | 0.50       | 0.50    | mg/kg       | 4                                             |              |
| 3 & 4-Methylphenol               | ND             | 0.12    | 0.50       | 0.50    | .mg/kg      | 1                                             |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.5     | 2.5        | 2.5     | mg/kg       | 1                                             |              |
| 3-Nitroaniline                   | ND             | 0.15    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5     | 5.0        | 5.0     | mg/kg       | 1                                             |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.070   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 4-Chloro-3-methylphenol          | ND             | 0.11    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 4-Chloroaniline                  | ND             | 0.13    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.090   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 4-Nitroaniline                   | ND             | 0.13    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| 4-Nitrophenol                    | ND             | 0.15    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Acenaphthene                     | ND             | 0.090   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Acenaphthylene                   | ND             | 0.090   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Aniline                          | ND             | 0.23    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Anthracene                       | ND             | 0.080   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.10    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Benzidine                        | ND             | 1.3     | 5.0        | 5.0     | mg/kg       | 1                                             |              |
| Benzo (a) anthracene             | ND             | 0.070   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Benzo (a) pyrene                 | ND             | 0.080   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Benzo (b) fluoranthene           | ND             | 0.070   | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Benzo (g,h,i) perylene           | ND             | 0.060   | 1.0        | 1.0     | mg/kg       | 1                                             |              |
| Benzo (k) fluoranthene           | ND             | 0.13    | 0.50       | 0.50    | mg/kg       | 1                                             |              |
| Benzoic acid                     | ND             | 1.9     | 25         | 25      | mg/kg       | 1                                             |              |
| Benzyl alcohol                   | ND             | 0.14    | 0.50       | 0.50    | mg/kg       | 4                                             |              |

Page 29 of 48



LADWP - Environmental Laboratory. 1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/29/13 08:34

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Reported: 06/05/13 16:04

Matrix: Solid

3E30014-14 LN06331

Sampled By: Client

# Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | : 06/01/1: | 3 09:40 | Analyzed: 06/05/13 01:42 |          | Analyst: abj |
|-----------------------------|----------------|-----------|------------|---------|--------------------------|----------|--------------|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units                    | Dilution | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.090     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.14      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Butyl benzyl phthalate      | ND             | 0.15      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Carbazole                   | ND             | 0.090     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Chrysene                    | . ND           | 0.090     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Dibenzo (a,h) anthracene    | ND             | 0.050     | 1.0        | 1.0     | mg/kg                    | 1        |              |
| Dibenzofuran                | ND             | 0.090     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Diethyl phthalate           | ND             | 0.060     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Dimethyl phthalate          | ND             | 0.88      | 2.5        | 2.5     | mg/kg                    | 1        |              |
| Di-n-butyl phthalate        | ND             | 0.080     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Di-n-octyl phthalate        | ND             | 0.14      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| Fluoranthene                | ND             | 0.11      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| luorene                     | ND             | 0.070     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| lexachlorobenzene           | ND             | 0.080     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| lexachlorobutadiene         | ND             | 0.090     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| lexachlorocyclopentadiene   | ND             | 0.12      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| lexachioroethane            | ND             | 0.070     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| ndeno (1,2,3-cd) pyrene     | ND             | 0.090     | 1.0        | 1.0     | mg/kg                    | 1        |              |
| sophorone                   | ND             | 0.10      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| laphthalene                 | ND             | 0.11      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| litrobenzene                | ND             | 0.11      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| I-Nitrosodimethylamine      | ND             | 0.090     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| -Nitrosodi-n-propylamine    | ND             | 0.090     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| l-Nitrosodiphenylamine      | ND             | 0.070     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| entachlorophenol            | ND             | 0.16      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| henanthrene                 | ND             | 0.080     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| henol                       | ND             | 0.15      | 0.50       | 0.50    | mg/kg                    | 1        |              |
| yrene                       | ND             | 0.080     | 0.50       | 0.50    | mg/kg                    | 1        |              |
| yridine                     | ND             | 0.050     | 1.0        | 1.0     | mg/kg                    | 1        |              |
| ur: 2,4,6-Tribromophenol    | 61 %           | Conc:30.6 | 4          | 0-97    | %                        |          |              |
| urr: 2-Fluorobiphenyl       | 73 %           | Conc:18.0 |            | 9-100   | %                        |          |              |
| urr: 2-Fluorophenol         | 86 %           | Conc:42.9 |            | 5-115   | %                        |          |              |
| urr: Nitrobenzene-d5        | 75 %           | Conc:18.8 |            | 9-105   | %                        |          |              |
| ur: Phenol-d5               | 82 %           | Conc:40.6 |            | 5-105   | %                        |          |              |
| urr. Terphenyl-d14          | 84 %           | Conc:21.0 |            | 5-106   | %                        |          |              |



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/29/13 09:00

Report ID: 3E30014

7600 Tyrone Ave, COC Project ID:

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-15 LN06335

Sampled By: Client

Matrix: Solid

# Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Batch: W3F0001 Prepared: 06/01/13 09:40 |      |      | Analyzed: 0 | Analyzed: 06/05/13 02:12 |           |
|---------------------------------|----------------|-----------------------------------------|------|------|-------------|--------------------------|-----------|
| Analyte                         | Result         | MDL                                     | MRL  | ML   | Units       | Dilution                 | Qualifier |
| 1,2,4-Trichlorobenzene          | ND             | 0.089                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 1,2-Dichlorobenzene             | ND             | 0.11                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 1,3-Dichlorobenzene             | ND             | 0.079                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 1,4-Dichlorobenzene             | ND             | 0.12                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2,4,5-Trichlorophenol           | ND             | 0.11                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2,4,6-Trichlorophenol           | ND             | 0.11                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2,4-Dichlorophenol              | ND             | 0.13                                    | 0.50 | 0.50 | mg/kg       | 4                        |           |
| 2,4-Dimethylphenol              | ND             | 0.12                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2,4-Dinitrophenol               | ND             | 3.8                                     | 25   | 25   | mg/kg       | 1                        |           |
| 2,4-Dinitrotoluene              | ND             | 0.099                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2,6-Dinitrotoluene              | ND -           | 0.079                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2-Chloronaphthalene             | ND             | 0.079                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2-Chlorophenol                  | ND             | 0.099                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2-Methylnaphthalene             | ND             | 0.089                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2-Methylphenol                  | ND             | 0.12                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2-Nitroaniline                  | ND             | 0.13                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 2-Nitrophenol                   | ND             | 0.22                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 3 & 4-Methylphenol              | ND             | 0.12                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| 3,3'-Dichlorobenzidine          | ND             | 1.5                                     | 2.5  | 2.5  | mg/kg       | 1                        |           |
| 3-Nitroaniline                  | ND             | 0.15                                    | 0.50 | 0.50 | mg/kg       | 11                       |           |
| ,6-Dinitro-2-methylphenol       | ND             | 1.5                                     | 5.0  | 5.0  | mg/kg       | 1                        |           |
| -Bromophenyl phenyl ether       | ND             | 0.069                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| -Chloro-3-methylphenol          | ND             | 0.11                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| -Chloroaniline                  | ND             | 0.13                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| -Chlorophenyl phenyl ether      | ND             | 0.089                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| -Nitroaniline                   | ND             | 0.13                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| -Nitrophenol                    | ND             | 0.15                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| cenaphthene                     | ND             | 0.089                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| cenaphthylene                   | ND             | 0.089                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| niline                          | ND             | 0.23                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| nthracene                       | ND             | 0.079                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.099                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| enzidine                        | ND             | 1.2                                     | 5.0  | 5.0  | mg/kg       | 1                        |           |
| enzo (a) anthracene             | ND             | 0.069                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| enzo (a) pyrene                 | ND             | 0.079                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| enzo (b) fluoranthene           | ND             | 0.069                                   | 0.50 | 0.50 | mg/kg       | 1                        |           |
| enzo (g,h,i) perylene           | ND             | 0.059                                   | 0.99 | 0.99 | mg/kg       | 1                        |           |
| enzo (k) fluoranthene           | ND             | 0.13                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |
| enzoic acid                     | ND             | 1.9                                     | 25   | 25   | mg/kg       | 1                        |           |
| enzyl alcohol                   | ND             | 0.14                                    | 0.50 | 0.50 | mg/kg       | 1                        |           |

Page 31 of 48



w.P. A. Lauran praktic for the mark course statement of the Landson

Sampled: 05/29/13 09:00

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID:

3E30014

7600 Tyrone Ave, COC #13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-15

Project ID:

LN06335

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | ed: 06/01/13 09:40 |        | Analyzed: 06/05/13 02:12 |          | Analyst: abj |
|-----------------------------|----------------|------------|--------------------|--------|--------------------------|----------|--------------|
| Analyte                     | Result         | MDL        | MRL                | ML     | Units                    | Dilution | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.089      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.14       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Butyl benzyl phthalate      | ND             | 0.15       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Carbazole                   | ND             | 0.089      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Chrysene                    | ND             | 0.089      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Dibenzo (a,h) anthracene    | ND             | 0.050      | 0.99               | 0.99   | mg/kg                    | 1        |              |
| Dibenzofuran                | ND             | 0.089      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Diethyl phthalate           | ND             | 0.059      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Dimethyl phthalate          | ND             | 0.87       | 2.5                | 2.5    | mg/kg                    | 1        |              |
| Di-n-butyl phthalate        | ND             | 0.079      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Di-n-octyl phthalate        | ND -           | 0.14       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Fluoranthene                | ND             | 0.11       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Fluorene                    | ND             | 0.069      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Hexachlorobenzene           | ND             | 0.079      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Hexachlorobutadiene         | ND             | 0.089      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Hexachlorocyclopentadiene   | ND             | 0.12       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Hexachloroethane            | ND             | 0.069      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.089      | 0.99               | 0.99   | mg/kg                    | 1        |              |
| Isophorone                  | ND             | 0.099      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Naphthalene                 | ND             | 0.11       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Nitrobenzene                | ND             | 0.11       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| N-Nitrosodimethylamine      | ND             | 0.089      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.089      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| N-Nitrosodiphenylamine      | ND             | 0.069      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Pentachlorophenol           | ND             | 0.16       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Phenanthrene                | ND             | 0.079      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Phenol                      | ND             | 0.15       | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Pyrene                      | ND             | 0.079      | 0.50               | 0.50   | mg/kg                    | 1        |              |
| Pyridine                    | ND             | 0.050      | 0.99               | 0.99   | mg/kg                    | 1        |              |
| Surr. 2,4,6-Tribromophenol  | 62 %           | Conc:30.6  |                    | 40-97  | %                        |          |              |
| Surr: 2-Fluorobiphenyl      | 74 %           | Conc:18.3  |                    |        | %                        |          |              |
| Surr. 2-Fluorophenol        | 86 %           | Conc:42.8  | 2                  | 26-115 | %                        |          |              |
| Surr. Nitrobenzene-d5       | 75%            | Conc: 18.5 |                    | 9-105  | %                        |          |              |
| Surr. Phenol-d5             | 82 %           | Conc:40.4  |                    | 16-105 | %                        |          |              |
| Sur: Terphenyl-d14          | 82 %           | Conc:20.2  |                    | 6-106  | %                        |          |              |



Sampled: 05/29/13 09:04

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

permit (praeficie en Alley Agraphic Marghésipheachann), leicheachanaige (a 161

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported:

05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-16 LN06337

Sampled By: Client

Matrix: Solid

### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 06/05/13 02:42 | Analyst: abj |
|----------------------------------|----------------|----------|------------|---------|-------------|----------------|--------------|
| Analyte                          | Result         | MDL      | MRL        | ML      | Units       | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.088    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 1,2-Dichlorobenzene              | ND .           | 0.11     | 0.49       | 0.49    | rng/kg      | 3              |              |
| 1,3-Dichlorobenzene              | ND             | 0.078    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 1,4-Dichlorobenzene              | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2,4,5-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2,4,6-Trichlorophenol            | ND             | 0.11     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2,4-Dichlorophenol               | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2,4-Dimethylphenol               | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2,4-Dinitrophenol                | ND             | 3.7      | 25         | 25      | mg/kg       | 1              |              |
| 2,4-Dinitrotoluene               | ND             | 0.098    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2,6-Dinitrotoluene               | ND             | 0.078    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2-Chloronaphthalene              | ND             | 0.078    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2-Chlorophenol                   | ND             | 0.098    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2-Methylnaphthalene              | ND             | 0.088    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2-Methylphenol                   | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2-Nitroaniline                   | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 2-Nitrophenol                    | ND             | 0.22     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 3 & 4-Methylphenol               | ND             | 0.12     | 0.49       | 0.49    | mg/kg       | 4              |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.5      | 2.5        | 2.5     | mg/kg       | 1              |              |
| 3-Nitroaniline                   | ND             | 0.15     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5      | 4.9        | 4.9     | mg/kg       | 1              |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.069    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 4-Chloro-3-methylphenol          | ND             | 0.11     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 4-Chloroaniline                  | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.088    | 0.49       | 0.49    | mg/kg       | 1              |              |
| 4-Nitroaniline                   | ND -           | 0.13     | 0.49       | 0.49    | mg/kg       | 1              |              |
| 4-Nitrophenol                    | ND             | 0.15     | 0.49       | 0.49    | mg/kg       | 14             |              |
| Acenaphthene                     | ND             | 0.088    | 0.49       | 0.49    | mg/kg       | 1              |              |
| Acenaphthylene                   | ND             | 0.088    | 0.49       | 0.49    | mg/kg       | 1              |              |
| Aniline                          | ND             | 0.23     | 0.49       | 0.49    | mg/kg       | 1              |              |
| Anthracene                       | ND             | 0.078    | 0.49       | 0.49    | mg/kg       | 1              |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.098    | 0.49       | 0.49    | mg/kg       | 1              |              |
| Benzidine                        | ND             | 1.2      | 4.9        | 4.9     | mg/kg       | 1              |              |
| Benzo (a) anthracene             | ND             | 0.069    | 0.49       | 0.49    | mg/kg       | 1              |              |
| Benzo (a) pyrene                 | ND             | 0.078    | 0.49       | 0.49    | mg/kg       | 1              |              |
| Benzo (b) fluoranthene           | ND             | 0.069    | 0.49       | 0.49    | mg/kg       | 1              |              |
| Benzo (g,h,i) perylene           | ND             | 0.059    | 0.98       | 0.98    | mg/kg       | 1              |              |
| Benzo (k) fluoranthene           | ND             | 0.13     | 0.49       | 0.49    | mg/kg       | 1              |              |
| Benzoic acid                     | ND             | 1.9      | 25         | 25      | mg/kg       | 1              |              |
| Benzyl alcohol                   | ND             | 0.14     | 0.49       | 0.49    | mg/kg       | 1              |              |

Page 33 of 48





Sampled: 05/29/13 09:04

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported:

05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

LN06337 3E30014-16

Sampled By: Client

Matrix: Solid

### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 1: 06/01/ | 13 09:40 | Analyzed: 0 | 6/05/13 02:42 | Analyst: abj |
|-----------------------------|----------------|------------|-----------|----------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL        | MRL       | ML       | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.088      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.14       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.15       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.088      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Chrysene                    | ND             | 0.088      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.049      | 0.98      | 0.98     | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.088      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.059      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.86       | 2.5       | 2.5      | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.078      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.14       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.11       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.069      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Hexachlorobenzene           | ND             | 0.078      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.088      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.12       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Hexachloroethane            | ND             | 0.069      | 0.49      | 0.49     | mg/kg       | 3             |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.088      | 0.98      | 0.98     | mg/kg       | 1             |              |
| Isophorone                  | ND             | 0.098      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Naphthalene                 | ND             | 0.11       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Nitrobenzene                | ND             | 0.11       | 0.49      | 0.49     | mg/kg       | 1             |              |
| N-Nitrosodimethylamine      | ND             | 0.088      | 0.49      | 0.49     | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.088      | 0.49      | 0.49     | mg/kg       | 1             |              |
| N-Nitrosodiphenylamine      | ND             | 0.069      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Pentachlorophenol           | ND             | 0.16       | 0.49      | 0.49     | mg/kg       | 1             |              |
| Phenanthrene                | ND             | 0.078      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Phenol                      | ND             | 0.15       | 0.49      | 0.49     | mg/kg       | 1.            |              |
| Pyrene                      | ND             | 0.078      | 0.49      | 0.49     | mg/kg       | 1             |              |
| Pyridine                    | ND             | 0.049      | 0.98      | 0.98     | mg/kg       | <b>1</b> )    |              |
| Surr. 2,4,6-Tribromophenol  | 56 %           | Conc:27.5  |           | 40-97    | %           |               |              |
| Surt: 2-Fluorobiphenyl      | 67 %           | Conc:16.5  |           | 39-100   | %           |               |              |
| Surr. 2-Fluorophenal        | 78 %           | Conc:38.3  | 2         | 26-115   | %           |               |              |
| Surr. Nitrobenzene-d5       | 69 %           | Conc: 16.9 | 4         | 19-105   | %           |               |              |
| Sur: Phenol-d5              | 75 %           | Conc:36.6  | 3         | 36-105   | %           |               |              |
| Sun: Terphenyl-d14          | 73 %           | Conc: 18.0 | 3         | 86-106   | %           |               |              |

Page 34 of 48



Sampled: 05/29/13 09:06

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID:

7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-17 LN06338

Sampled By: Client

Matrix: Solid

### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepare | d: 06/01/1 | 3 09:40 | Analyzed: ( | 06/05/13 03:13 | Analyst: abj |
|----------------------------------|----------------|---------|------------|---------|-------------|----------------|--------------|
| Analyte                          | Result         | MDL     | MRL        | ML      | Units       | Dilution       | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND:            | 0.087   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 1,2-Dichlorobenzene              | ND             | 0.11    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 1,3-Dichlorobenzene              | ND             | 0.077   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 1,4-Dichlorobenzene              | ND             | 0.12    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2,4,5-Trichlorophenol            | ND             | 0.11    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2,4,6-Trichlorophenol            | ND             | 0.11    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2,4-Dichlorophenol               | ND             | 0.13    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2,4-Dimethylphenol               | ND             | 0.12    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2,4-Dinitrophenol                | ND             | 3.7     | 24         | 24      | mg/kg       | 1              |              |
| 2,4-Dinitrotoluene               | ND             | 0.097   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2,6-Dinitrotoluene               | ND             | 0.077   | 0.48       | 0.48    | mg/kg       | 9              |              |
| 2-Chloronaphthalene              | ND             | 0.077   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2-Chlorophenol                   | ND             | 0.097   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2-Methylnaphthalene              | ND             | 0.087   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2-Methylphenol                   | ND             | 0.12    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2-Nitroaniline                   | ND             | 0.13    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 2-Nitrophenol                    | ND             | 0.21    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 3 & 4-Methylphenol               | ND             | 0.12    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.5     | 2,4        | 2.4     | mg/kg       | 1              |              |
| 3-Nitroaniline                   | ND             | 0.14    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5     | 4.8        | 4.8     | mg/kg       | 1              |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.068   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 4-Chloro-3-methylphenol          | ND             | 0.11    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 4-Chloroaniline                  | ND             | 0.13    | 0.48       | 0.48    | mg/kg       | 1.             |              |
| 4-Chlorophenyl phenyl ether      | ND             | 0.087   | 0.48       | 0.48    | mg/kg       | 1              |              |
| 4-Nitroaniline                   | ND             | 0.13    | 0.48       | 0.48    | mg/kg       | 1              |              |
| 4-Nitrophenol                    | ND             | 0.14    | 0.48       | 0.48    | mg/kg       | 1              |              |
| Acenaphthene                     | ND             | 0.087   | 0.48       | 0.48    | mg/kg       | 1              |              |
| Acenaphthylene                   | ND             | 0.087   | 0.48       | 0.48    | mg/kg       | 1              |              |
| Anifine                          | ND             | 0.22    | 0.48       | 0.48    | mg/kg       | 1              |              |
| Anthracene                       | ND             | 0.077   | 0.48       | 0.48    | mg/kg       | 1              |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.097   | 0.48       | 0.48    | mg/kg       | 1              |              |
| Benzidine                        | ND             | 1.2     | 4.8        | 4.8     | mg/kg       | 1              |              |
| Benzo (a) anthracene             | ND             | 0.068   | 0.48       | 0.48    | mg/kg       | 1              |              |
| Benzo (a) pyrene                 | ND             | 0.077   | 0.48       | 0.48    | mg/kg       | 1              |              |
| Benzo (b) fluoranthene           | ND             | 0.068   | 0.48       | 0.48    | mg/kg       | 1              |              |
| Benzo (g,h,i) perylene           | ND             | 0.058   | 0.97       | 0.97    | mg/kg       | 1              |              |
| Benzo (k) fluoranthene           | ND "           | 0.13    | 0.48       | 0.48    | mg/kg       | 1              |              |
| Benzoic acid                     | ND             | 1.8     | 24         | 24      | mg/kg       | 1              |              |
| Benzyl alcohol                   | ND             | 0.14    | 0.48       | 0.48    | mg/kg       | 1              |              |

Page 35 of 48



Analytical Laboratory Service - Since 1964



Sampled: 05/29/13 09:06

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

3E30014-17 LN06338

Sampled By: Client

Matrix: Solid

Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | : 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 03:13 | Analyst: ab |
|-----------------------------|----------------|------------|-----------|---------|-------------|---------------|-------------|
| Analyte                     | Result         | MDL        | MRL       | ML      | Units       | Dilution      | Qualifie    |
| Bis(2-chloroethoxy)methane  | ND             | 0.087      | 0.48      | 0.48    | mg/kg       | 1             |             |
| Bis(2-chloroethyl)ether     | ND             | 0.11       | 0.48      | 0.48    | mg/kg       | 1             |             |
| Bis(2-chloroisopropyl)ether | ND             | 0.14       | 0.48      | 0.48    | mg/kg       | 1             |             |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12       | 0.48      | 0.48    | mg/kg       | 1             |             |
| Butyl benzyl phthalate      | ND             | 0.14       | 0.48      | 0.48    | mg/kg       | 1             |             |
| Carbazole                   | ND             | 0.087      | 0.48      | 0.48    | mg/kg       | 1             |             |
| Chrysene                    | ND             | 0.087      | 0.48      | 0.48    | mg/kg       | 1             |             |
| Dibenzo (a,h) anthracene    | ND             | 0.048      | 0.97      | 0.97    | mg/kg       | 1             |             |
| Dibenzofuran                | ND             | 0.087      | 0.48      | 0.48    | mg/kg       | 1             |             |
| Diethyl phthalate           | ND             | 0.058      | 0.48      | 0.48    | mg/kg       | 1             |             |
| Dimethyl phthalate          | ND             | 0.85       | 2.4       | 2.4     | mg/kg       | 1             |             |
| Di-n-butyl phthalate        | ND             | 0.077      | 0.48      | 0.48    | mg/kg       | 1             |             |
| Di-n-octyl phthalate        | ND             | 0.14       | 0.48      | 0.48    | mg/kg       | 1             |             |
| Fluoranthene                | ND             | 0.11       | 0.48      | 0.48    | mg/kg       | 1             |             |
| luorene                     | ND             | 0.068      | 0.48      | 0.48    | mg/kg       | 1             |             |
| · dexachlorobenzene         | ND             | 0.077      | 0.48      | 0.48    | mg/kg       | 1             |             |
| lexachlorobutadiene         | ND             | 0.087      | 0.48      | 0.48    | mg/kg       | 1             |             |
| lexachlorocyclopentadiene   | ND             | 0.12       | 0.48      | 0.48    | mg/kg       | 1             |             |
| fexachloroethane            | ND             | 0.068      | 0.48      | 0.48    | mg/kg       | 1             |             |
| ndeno (1,2,3-cd) pyrene     | ND             | 0.087      | 0.97      | 0.97    | mg/kg       | 1             |             |
| sophorone                   | ND             | 0.097      | 0.48      | 0.48    | mg/kg       | 1             |             |
| laphthalene                 | ND             | 0.11       | 0.48      | 0.48    | mg/kg       | 1             |             |
| litrobenzene                | ND             | 0.11       | 0.48      | 0.48    | mg/kg       | 1             |             |
| l-Nitrosodimethylamine      | ND             | 0.087      | 0.48      | 0.48    | mg/kg       | 1             |             |
| -Nitrosodi-n-propylamine    | ND             | 0.087      | 0.48      | 0.48    | mg/kg       | 1             |             |
| -Nitrosodiphenylamine       | ND             | 0.068      | 0.48      | 0.48    | mg/kg       | 1             |             |
| entachlorophenol            | ND             | 0.15       | 0.48      | 0.48    | mg/kg       | 1             |             |
| henanthrene                 | ND             | 0.077      | 0.48      | 0.48    | mg/kg       | 1             |             |
| henol                       | ND             | 0.14       | 0.48      | 0.48    | mg/kg       | 1             |             |
| yrene                       | ND             | 0.077      | 0.48      | 0.48    | mg/kg       | 1             |             |
| yridine                     | ND             | 0.048      | 0.97      | 0.97    | mg/kg       | 1             |             |
| urr: 2,4,6-Tribromophenol   | 55 %           | Conc:26.6  |           | 40-97   | %           |               |             |
| urr: 2-Fluorobiphenyl       | 62 %           | Conc:14.9  | 3         | 19-100  | %           |               |             |
| urr. 2-Fluorophenol         | 72 %           | Conc:34.9  | 2         | 6-115   | %           |               |             |
| urr: Nitrobenzene-d5        | 65 %           | Conc: 15.7 | 4         | 9-105   | %           |               |             |
| ırr. Phenol-d5              | 70 %           | Conc:33.9  | 3         | 6-105   | %           |               |             |
| urr: Terphenyl-d14          | 70 %           | Conc: 16.8 | 3         | 6-106   | %           |               |             |





us El Michiga Michiga por otro (Pales el Sales de Sole a Cal

Sampled: 05/29/13 09:10

Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

3E30014-18 LN06340

Sampled By: Client

Matrix: Solid

### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C                | Batch: W3F0001 | Prepared | d: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 03:43 | Analyst: abj |
|----------------------------------|----------------|----------|------------|---------|-------------|---------------|--------------|
| Analyte                          | Result         | MDL      | MRL        | ML      | Units       | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene           | ND             | 0.087    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 1,2-Dichlorobenzene              | ND             | 0.11     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 1,3-Dichlorobenzene              | ND             | 0.077    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 1,4-Dichlorobenzene              | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4,5-Trichlorophenol            | ND             | 0.11     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4,6-Trichlorophenol            | ND             | 0.11     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4-Dichlorophenol               | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4-Dimethylphenol               | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,4-Dinitrophenol                | ND             | 3.6      | 24         | 24      | mg/kg       | 1             |              |
| 2,4-Dinitrotoluene               | ND             | 0.096    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2,6-Dinitrotoluene               | ND             | 0.077    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Chloronaphthalene              | ND             | 0.077    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Chlorophenol                   | ND             | 0.096    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Methylnaphthalene              | ND             | 0.087    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Methylphenol                   | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Nitroaniline                   | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 2-Nitrophenol                    | ND             | 0.21     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 3 & 4-Methylphenol               | ND -           | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 3,3'-Dichlorobenzidine           | ND             | 1.5      | 2.4        | 2.4     | mg/kg       | 1             |              |
| 3-Nitroaniline                   | - ND           | 0.14     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4,6-Dinitro-2-methylphenol       | ND             | 1.5      | 4.8        | 4.8     | mg/kg       | 1             |              |
| 4-Bromophenyl phenyl ether       | ND             | 0.067    | 0.48       | 0.48    | mg/kg       | -1            |              |
| 4-Chloro-3-methylphenol          | ND             | 0.11     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Chloroaniline                  | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Chlorophenyl phenyl ether      | ND '           | 0.087    | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Nitroaniline                   | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| 4-Nitrophenol                    | ND             | 0.14     | 0.48       | 0.48    | mg/kg       | 1             |              |
| Acenaphthene                     | ND             | 0.087    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Acenaphthylene                   | ND .           | 0.087    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Aniline                          | ND             | 0.22     | 0.48       | 0.48    | mg/kg       | 1             |              |
| Anthracene                       | ND             | 0.077    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Azobenzene/1,2-Diphenylhydrazine | ND             | 0.096    | 0.48       | 0.48    | mg/kg       | 13:           |              |
| Benzidine                        | ND             | 1.2      | 4.8        | 4.8     | mg/kg       | 1             |              |
| Benzo (a) anthracene             | ND             | 0.067    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzo (a) pyrene                 | ND             | 0.077    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzo (b) fluoranthene           | ND             | 0.067    | 0.48       | 0.48    | mg/kg       | 1             |              |
| Benzo (g,h,i) perylene           | ND             | 0.058    | 0.96       | 0.96    | mg/kg       | 1             |              |
| Benzo (k) fluoranthene           | ND             | 0.12     | 0.48       | 0.48    | mg/kg       | 1             |              |
| enzoic acid                      | ND             | 1.8      | 24         | 24      | mg/kg       | 1             |              |
| enzyl alcohol                    | ND             | 0.13     | 0.48       | 0.48    | mg/kg       | 1             |              |

Page 37 of 48



Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

Matrix: Solid

Los Angeles CA, 90012

#13-1321,26, WO#

DANGER BERTING BERTING IN SERVERALAH DENGARAKAN BERTING BERTING BERTING BERTING BERTING BERTING BERTING PENGAR

3E30014-18 LN06340

Sampled: 05/29/13 09:10

Surr. Terphenyl-d14

Semivolatile Organic Compounds by GC/MS

Sampled By: Client

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | : 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 03:43 | Analyst: abj |
|-----------------------------|----------------|-----------|-----------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL       | MRL       | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.087     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.13      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | ND             | 0.14      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Carbazole                   | ND             | 0.087     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Chrysene                    | ND             | 0.087     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.048     | 0.96      | 0.96    | mg/kg       | 1             | -            |
| Dibenzofuran                | ND             | 0.087     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Diethyl phthalate           | ND             | 0.058     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.85      | 2.4       | 2.4     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.077     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.13      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.11      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.067     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Hexachlorobenzene           | ND             | 0.077     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.087     | 0.48      | 0.48    | mg/kg       | 4             |              |
| Hexachlorocyclopentadiene   | ND             | 0.12      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Hexachloroethane            | ND             | 0.067     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.087     | 0.96      | 0.96    | mg/kg       | ď             |              |
| Isophorone                  | ND             | 0.096     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Naphthalene                 | ND             | 0.11      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Nitrobenzene                | ND             | 0.11      | 0.48      | 0.48    | mg/kg       | . 1           |              |
| N-Nitrosodimethylamine      | ND             | 0.087     | 0.48      | 0.48    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.087     | 0.48      | 0.48    | mg/kg       | 1             |              |
| N-Nitrosodiphenylamine      | ND             | 0.067     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Pentachlorophenol           | ND             | 0.15      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Phenanthrene                | ND             | 0.077     | 0.48      | 0.48    | mg/kg       | 1             | -11          |
| Phenol                      | ND             | 0.14      | 0.48      | 0.48    | mg/kg       | 1             |              |
| Pyrene                      | ND             | 0.077     | 0.48      | 0.48    | mg/kg       | 1             |              |
| Pyridine                    | ND             | 0.048     | 0.96      | 0.96    | mg/kg       | 1             |              |
| Surr. 2,4,6-Tribromophenol  | 56 %           | Conc:26.9 | 4         | 10-97   | %           |               |              |
| Surr. 2-Fluorobiphenyl      | 62 %           | Conc:14.8 | 3         | 9-100   | %           |               |              |
| Surr. 2-Fluorophenol        | 72 %           | Conc:34.5 | 2         | 6-115   | %           |               |              |
| Surr. Nitrobenzene-d5       | 63 %           | Conc:15.2 | 4         | 9-105   | %           |               |              |
| Surr: Phenol-d5             | 69 %           | Conc:33.0 | 30        | 5-105   | %           |               |              |

Conc:21.8

91%

36-106



Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Report ID: 3E30014

Date Received:

05/30/13 09:50

Los Angeles CA, 90012

Sampled: 05/29/13 09:30

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO#

Date Reported:

06/05/13 16:04

3E30014-19

LN06341

Sampled By: Client

Matrix: Solid

### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C               | Batch: W3F0001 | Prepared | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | 6/05/13 04:13 | Analyst: abj |
|---------------------------------|----------------|----------|------------|---------|-------------|---------------|--------------|
| Analyte                         | Result         | MDL      | MRL        | ML      | Units       | Dilution      | Qualifier    |
| 1,2,4-Trichlorobenzene          | ND             | 0.081    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 1,2-Dichlorobenzene             | ND             | 0.10     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 1,3-Dichlorobenzene             | ND             | 0.072    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 1,4-Dichlorobenzene             | ND             | 0.11     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2,4,5-Trichlorophenol           | ND             | 0.10     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2,4,6-Trichlorophenol           | ND             | 0.10     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2,4-Dichlorophenol              | ND             | 0.12     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2,4-Dimethylphenol              | ND             | 0.11     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2,4-Dinitrophenol               | ND             | 3.4      | 23         | 23      | mg/kg       | 1             |              |
| 2,4-Dinitrotoluene              | ND             | 0.090    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2,6-Dinitrotoluene              | ND             | 0.072    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2-Chloronaphthalene             | ND             | 0.072    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2-Chlorophenol                  | ND             | 0.090    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2-Methylnaphthalene             | ND             | 0.081    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2-Methylphenol                  | ND             | 0.11     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2-Nitroaniline                  | ND             | 0.12     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 2-Nitrophenol                   | ND             | 0.20     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 3 & 4-Methylphenol              | ND             | 0.11     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 3,3'-Dichlorobenzidine          | ND             | 1.4      | 2.3        | 2.3     | mg/kg       | 1             |              |
| 3-Nitroaniline                  | ND             | 0.14     | 0.45       | 0.45    | mg/kg       | 1             |              |
| 4,6-Dinitro-2-methylphenol      | ND             | 1.4      | 4.5        | 4.5     | mg/kg       | 1             |              |
| 4-Bromophenyl phenyl ether      | ND             | 0.063    | 0.45       | 0.45    | mg/kg       | 1             |              |
| 1-Chloro-3-methylphenol         | ND             | 0.10     | 0.45       | 0.45    | mg/kg       | 1             |              |
| I-Chloroaniline                 | ND             | 0.12     | 0.45       | 0.45    | mg/kg       | 1             |              |
| I-Chlorophenyl phenyl ether     | ND             | 0.081    | 0.45       | 0.45    | mg/kg       | 14            |              |
| -Nitroaniline                   | ND             | 0.12     | 0.45       | 0.45    | mg/kg       | 1             |              |
| -Nitrophenol                    | ND             | 0.14     | 0.45       | 0.45    | mg/kg       | 4             |              |
| cenaphthene                     | ND             | 0.081    | 0.45       | 0.45    | mg/kg       | 1             |              |
| cenaphthylene                   | ND             | 0.081    | 0.45       | 0.45    | mg/kg       | 1             |              |
| niline                          | ND             | 0.21     | 0.45       | 0.45    | mg/kg       | 1             |              |
| nthracene                       | ND             | 0.072    | 0.45       | 0.45    | mg/kg       | 1             |              |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.090    | 0.45       | 0.45    | mg/kg       | 1             |              |
| lenzidine                       | ND             | 1.1      | 4.5        | 4.5     | mg/kg       | 1             |              |
| enzo (a) anthracene             | ND             | 0.063    | 0.45       | 0.45    | mg/kg       | 1             |              |
| enzo (a) pyrene                 | ND             | 0.072    | 0.45       | 0.45    | mg/kg       | 1             |              |
| enzo (b) fluoranthene           | ND             | 0.063    | 0.45       | 0.45    | mg/kg       | 1             |              |
| enzo (g,h,i) perylene           | ND             | 0.054    | 0.90       | 0.90    | mg/kg       | 1             |              |
| enzo (k) fluoranthene           | ND             | 0.12     | 0.45       | 0.45    | mg/kg       | 1             |              |
| enzoic acid                     | ND             | 1.7      | 23         | 23      | mg/kg       | 1             |              |
| enzyl alcohol                   | ND             | 0.13     | 0.45       | 0.45    | mg/kg       | 1             |              |

Page 39 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

terminal and a second contraction of the second second second second second second second second second second

Los Angeles CA, 90012

Sampled: 05/29/13 09:30

Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-19

LN06341

Sampled By: Client

Matrix: Solid

### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared   | 1: 06/01/1 | 3 09:40 | Analyzed: 0 | Analyst: abj |           |
|-----------------------------|----------------|------------|------------|---------|-------------|--------------|-----------|
| Analyte                     | Result         | MDL        | MRL        | ML      | Units       | Dilution     | Qualifier |
| Bis(2-chloroethoxy)methane  | ND             | 0.081      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Bis(2-chloroethyl)ether     | ND             | 0.10       | 0.45       | 0.45    | mg/kg       | 1            |           |
| Bis(2-chloroisopropyl)ether | ND             | 0.13       | 0.45       | 0.45    | mg/kg       | 1            |           |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.11       | 0.45       | 0.45    | mg/kg       | 1            |           |
| Butyl benzyl phthalate      | ND -           | 0.14       | 0.45       | 0.45    | mg/kg       | 1            |           |
| Carbazole                   | ND             | 0.081      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Chrysene                    | ND             | 0.081      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Dibenzo (a,h) anthracene    | ND             | 0.045      | 0.90       | 0.90    | mg/kg       | 1            |           |
| Dibenzofuran                | ND             | 0.081      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Diethyl phthalate           | ND             | 0.054      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Dimethyl phthalate          | - ND           | 0.80       | 2.3        | 2.3     | mg/kg       | 1            |           |
| Di-n-butyl phthalate        | ND             | 0.072      | 0.45       | 0.45    | rng/kg      | 1            |           |
| Di-n-octyl phthalate        | ND             | 0.13       | 0.45       | 0.45    | mg/kg       | 1            |           |
| Fluoranthene                | ND             | 0.10       | 0.45       | 0.45    | mg/kg       | 1            |           |
| Fluorene                    | ND             | 0.063      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Hexachlorobenzene           | ND             | 0.072      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Hexachlorobutadiene         | ND             | 0.081      | 0.45       | 0.45    | mg/kg       | 1            |           |
| Hexachlorocyclopentadiene   | ND             | 0.11       | 0.45       | 0.45    | mg/kg       | 1            |           |
| Hexachloroethane            | ND             | 0.063      | 0.45       | 0.45    | mg/kg       | 1            |           |
| ndeno (1,2,3-cd) pyrene     | ND             | 0.081      | 0.90       | 0.90    | mg/kg       | 1            |           |
| sophorone                   | ND             | 0.090      | 0.45       | 0.45    | mg/kg       | 11           |           |
| laphthalene                 | ND             | 0.10       | 0.45       | 0.45    | mg/kg       | 1            |           |
| litrobenzene                | ND             | 0.10       | 0.45       | 0.45    | mg/kg       | 1            |           |
| I-Nitrosodimethylamine      | ND             | 0.081      | 0.45       | 0.45    | mg/kg       | 1            |           |
| I-Nitrosodi-n-propylamine   | ND             | 0.081      | 0.45       | 0.45    | mg/kg       | 1            |           |
| -Nitrosodiphenylamine       | ND             | 0.063      | 0.45       | 0.45    | mg/kg       | 1            |           |
| entachlorophenol            | ND             | 0.14       | 0.45       | 0.45    | mg/kg       | 1            |           |
| henanthrene                 | ND             | 0.072      | 0.45       | 0.45    | mg/kg       | 1            |           |
| henol                       | ND             | 0.14       | 0.45       | 0.45    | mg/kg       | 1            |           |
| yrene                       | ND             | 0.072      | 0.45       | 0.45    | mg/kg       | 1            |           |
| yridine                     | ND             | 0.045      | 0.90       | 0.90    | mg/kg       | 1            |           |
| urr: 2,4,6-Tribromophenal   | 66 %           | Conc:29.8  | 4          | 10-97   | %           |              |           |
| urr: 2-Fluorobiphenyl       | 74 %           | Conc:16.7  | 3!         | 9-100   | %           |              |           |
| urr. 2-Fluoropheriol        | 88 %           | Conc:40.0  |            | 6-115   | %           |              |           |
| urr. Nitrobenzene-d5        | 75 %           | Conc: 16.9 |            | 9-105   | %           |              |           |
| urr. Phenol-d5              | 81 %           | Conc:36.9  |            | 5-105   | %           |              |           |
| ırr: Terphenyl-d14          | 83 %           | Conc:18.7  |            | 5-106   | %           |              |           |



Analytical Laboratory Service - Since 1964



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/29/13 09:34

Benzyl alcohol

Report ID: 3E30014

3E30014-20

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

LN06343

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

Matrix: Solid

Sampled By: Client

|                                 | Semivolatile ( | Organic Co | mpound      | s by GC/ |           | AND THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A STATE OF THE COLUMN TO A S | W. T. F. O. B. (198 |
|---------------------------------|----------------|------------|-------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Method: EPA 8270C               | Batch: W3F0001 | Prepared   | i: 06/01/13 | 3 09:40  | Analyzed: | 06/05/13 04:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyst: abj        |
| Analyte                         | Result         | MDL        | MRL         | ML       | Units     | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier           |
| 1,2,4-Trichlorobenzene          | ND             | 0.088      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 1,2-Dichlorobenzene             | ND             | 0.11       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 1,3-Dichlorobenzene             | ND             | 0.078      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 1,4-Dichlorobenzene             | ND             | 0.12       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2,4,5-Trichlorophenol           | ND             | 0.11       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2,4,6-Trichlorophenol           | ND             | 0.11       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2,4-Dichlorophenol              | ND             | 0.13       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2,4-Dimethylphenol              | ND             | 0.12       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2,4-Dinitrophenol               | ND             | 3.7        | 25          | 25       | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2,4-Dinitrotoluene              | ND             | 0.098      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2,6-Dinitrotoluene              | ND             | 0.078      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2-Chloronaphthalene             | ND             | 0.078      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2-Chlorophenol                  | ND             | 0.098      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2-Methylnaphthalene             | ND             | 0.088      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2-Methylphenol                  | ND             | 0.12       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2-Nitroaniline                  | ND             | 0.13       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2-Nitrophenol                   | ND             | 0.22       | 0.49        | 0.49     | mg/kg     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 8 & 4-Methylphenol              | ND             | 0.12       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 3,3'-Dichlorobenzidine          | ND             | 1.5        | 2.5         | 2.5      | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 3-Nitroaniline                  | ND             | 0.15       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| ,6-Dinitro-2-methylphenol       | ND             | 1.5        | 4.9         | 4.9      | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| -Bromophenyl phenyl ether       | ND             | 0.069      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| -Chloro-3-methylphenol          | ND             | 0.11       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| -Chloroaniline                  | ND             | 0.13       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| -Chlorophenyl phenyl ether      | ND             | 0.088      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| -Nitroaniline                   | ND             | 0.13       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Nitrophenol                     | ND             | 0.15       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| cenaphthene                     | ND             | 0.088      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| cenaphthylene                   | ND             | 0.088      | 0.49        | 0.49     | mg/kg     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| niline                          | ND             | 0.23       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| nthracene                       | ND             | 0.078      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| zobenzene/1,2-Diphenylhydrazine | ND             | 0.098      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| enzidine                        | ND             | 1.2        | 4.9         | 4.9      | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| enzo (a) anthracene             | ND             | 0.069      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| enzo (a) pyrene                 | ND             | 0.078      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| enzo (b) fluoranthene           | ND             | 0.069      | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| enzo (g,h,i) perylene           | ND             | 0.059      | 0.98        | 0.98     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| enzo (k) fluoranthene           | ND             | 0.13       | 0.49        | 0.49     | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| enzoic acid                     | ND             | 1.9        | 25          | 25       | mg/kg     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                                 | 37.77          |            |             |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

Page 41 of 48

0.14

0.49

mg/kg

ND



Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Sampled: 05/29/13 09:34

Report ID: 3E30

3E30014

7600 Tyrone Ave, COC #13-1321,26, WO# Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

3E30014-20

Project ID:

LN06343

Sampled By: Client

Matrix: Solid

### Semivolatile Organic Compounds by GC/MS

| Method: EPA 8270C           | Batch: W3F0001 | Prepared  | : 06/01/1: | 3 09:40 | Analyzed: 0 | 6/05/13 04:44 | Analyst: abj |
|-----------------------------|----------------|-----------|------------|---------|-------------|---------------|--------------|
| Analyte                     | Result         | MDL       | MRL        | ML      | Units       | Dilution      | Qualifier    |
| Bis(2-chloroethoxy)methane  | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Bis(2-chloroethyl)ether     | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Bis(2-chloroisopropyl)ether | ND             | 0.14      | 0.49       | 0.49    | mg/kg       | 1.            |              |
| Bis(2-ethylhexyl)phthalate  | ND             | 0.12      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Butyl benzyl phthalate      | 0.29           | 0.15      | 0.49       | 0.49    | mg/kg       | 1             | A)           |
| Carbazole                   | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Chrysene                    | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Dibenzo (a,h) anthracene    | ND             | 0.049     | 0.98       | 0.98    | mg/kg       | 1             |              |
| Dibenzofuran                | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | .1            |              |
| Diethyl phthalate           | ND             | 0.059     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Dimethyl phthalate          | ND             | 0.86      | 2.5        | 2.5     | mg/kg       | 1             |              |
| Di-n-butyl phthalate        | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Di-n-octyl phthalate        | ND             | 0.14      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Fluoranthene                | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Fluorene                    | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | .1            |              |
| Hexachlorobenzene           | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Hexachlorobutadiene         | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Hexachlorocyclopentadiene   | ND             | 0.12      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Hexachloroethane            | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Indeno (1,2,3-cd) pyrene    | ND             | 0.088     | 0.98       | 0.98    | mg/kg       | 1             |              |
| Isophorone                  | ND             | 0.098     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Naphthalene                 | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1.            |              |
| Nitrobenzene                | ND             | 0.11      | 0.49       | 0.49    | mg/kg       | 1             |              |
| N-Nitrosodimethylamine      | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| N-Nitrosodi-n-propylamine   | ND             | 0.088     | 0.49       | 0.49    | mg/kg       | 1             |              |
| N-Nitrosodiphenylamine      | ND             | 0.069     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Pentachlorophenol           | ND             | 0.16      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Phenanthrene                | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Phenol.                     | ND             | 0.15      | 0.49       | 0.49    | mg/kg       | 1             |              |
| Pyrene                      | ND             | 0.078     | 0.49       | 0.49    | mg/kg       | 1             |              |
| Pyridine                    | ND             | 0.049     | 0.98       | 0.98    | mg/kg       | 4             |              |
| Surr. 2,4,6-Tribromophenol  | 59 %           | Conc:28.9 | 4          | 0-97    | %           |               |              |
| Surr. 2-Fluorobiphenyl      | 67 %           | Conc:16.5 |            | 9-100   | %           |               |              |
| Surr: 2-Fluorophenol        | 83 %           | Conc:40.5 |            | 6-115   | %           |               |              |
| Surr. Nitrobenzene-d5       | 71 %           | Conc:17.4 |            | 9-105   | %           |               |              |
| Surr: Phenol-d5             | 77 %           | Conc:37.6 |            | 5-105   | %           |               |              |
| Surr. Terphenyl-d14         | 73 %           | Conc:17.9 | 30         | 5-106   | %           |               |              |



WIL

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E

3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

# QUALITY CONTROL SECTION



Analytical Laboratory Service - Since 1964



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012

Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC #13-1321,26, WO# Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

# Semivolatile Organic Compounds by GC/MS - Quality Control

### Batch W3F0001 - EPA 8270C

| Analyte                          | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC  | % REC<br>Limits | RPD   | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------|--------|--------------------|-------|----------------|------------------|-------|-----------------|-------|--------------|--------------------|
|                                  | Kesuit |                    | Units | 7 4 1          | and the state of |       |                 | INC D |              | 9                  |
| Blank (W3F0001-BLK1)             | 0.2    | 14/020             |       | Analyzed:      | 06/04/13         | 14:03 | ···· 14         |       |              |                    |
| 1,2,4-Trichlorobenzene           | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 1,2-Dichlorobenzene              | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 1,3-Dichlorobenzene              | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 1,4-Dichlorobenzene              | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2,4,5-Trichlorophenol            | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2,4,6-Trichlorophenol            | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2,4-Dichlorophenol               | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2,4-Dimethylphenol               | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2,4-Dinitrophenol                | ND     | 2.5                | mg/kg |                |                  |       |                 |       |              |                    |
| 2,4-Dinitrotoluene               | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2,6-Dinitrotoluene               | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2-Chloronaphthalene              | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2-Chlorophenol                   | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2-Methylnaphthalene              | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2-Methylphenol                   | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2-Nitroaniline                   | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 2-Nitrophenol                    | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 3 & 4-Methylphenol               | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 3,3'-Dichlorobenzidine           | ND     | 0.25               | mg/kg |                |                  |       |                 |       |              |                    |
| 3-Nitroaniline                   | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 4,6-Dinitro-2-methylphenol       | ND     | 0.50               | mg/kg |                |                  |       |                 |       |              |                    |
| 4-Bromophenyl phenyl ether       | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 4-Chloro-3-methylphenol          | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 4-Chloroaniline                  | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 4-Chlorophenyl phenyl ether      | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 4-Nitroaniline                   | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| 4-Nitrophenol                    | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Acenaphthene                     | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Acenaphthylene                   | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Aniline                          | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Anthracene                       | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Azobenzene/1,2-Diphenylhydrazine | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Benzidine                        | ND     | 0.50               | mg/kg |                |                  |       |                 |       |              |                    |
| Benzo (a) anthracene             | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Benzo (a) pyrene                 | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Benzo (b) fluoranthene           | ND     | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Benzo (g,h,i) perylene           | ND     | 0.10               | mg/kg |                |                  |       |                 |       |              |                    |
| Benzo (k) fluoranthene           |        | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| Benzoic acid                     | ND     | 2.5                | mg/kg |                |                  |       |                 |       |              |                    |
| Benzyl alcohol                   |        | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| lis(2-chloroethoxy)methane       |        | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| lis(2-chloroethyl)ether          |        | 0.050              | mg/kg |                |                  |       |                 |       |              |                    |
| lis(2-chloroisopropyl)ether      |        | 0.050              | mg/kg |                |                  |       |                 | 0.0.  |              |                    |
| iis(2-ethylhexyl)phthalate       | 0.0305 | 0.050              | mg/kg |                |                  |       |                 | NR    |              | J                  |

Page 44 of 48



LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311

Los Angeles CA, 90012

Report ID: 3E30014

Project ID:

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

### Semivolatile Organic Compounds by GC/MS - Quality Control

### Batch W3F0001 - EPA 8270C

| Value of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec | 34.000 | Reporting |       | Spike      | Source     |       | % REC  | 200 | RPD   | Da<br>Qualifier |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------|------------|------------|-------|--------|-----|-------|-----------------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result | Limit     | Units | Level      | Result     | %REC  | Limits | RPD | Limit | Qualifier       |
| Blank (W3F0001-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |           |       | Analyzed:  | 06/04/13   | 14:03 |        |     |       |                 |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Dibenzo (a,h) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 0.10      | mg/kg |            |            |       |        |     |       |                 |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND     | 0.25      | mg/kg |            |            |       |        |     |       |                 |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0315 | 0.050     | mg/kg |            |            |       |        | NR  |       | 1               |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Indeno (1,2,3-cd) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 0.10      | mg/kg |            |            |       |        |     |       |                 |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| N-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| N-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND     | 0.050     | mg/kg |            |            |       |        |     |       |                 |
| Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND     | 0.10      | mg/kg |            |            |       |        |     |       |                 |
| Surr. 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.31   | 4114      | mg/kg | 5.00       |            | 86    | 40-97  |     |       |                 |
| Surr. 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.47   |           | mg/kg | 2.50       |            | 99    | 39-100 |     |       |                 |
| Surr: 2-Fluorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.19   |           | mg/kg | 5.00       |            | 144   | 26-115 |     |       | S-11            |
| Surr. Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.55   |           | mg/kg | 2.50       |            | 102   | 49-105 |     |       |                 |
| Surr. Phenol-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.47   |           | mg/kg | 5.00       |            | 109   | 36-105 |     |       | S-11            |
| Surr: Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.80   |           | mg/kg | 2.50       |            | 112   | 36-106 |     |       | S-11            |
| CS (W3F0001-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |           | 1     | nalyzed: 0 | 6/04/13 14 | :33   |        |     |       |                 |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.94   | 0.050     | mg/kg | 2.50       |            | 78    | 28-120 | NR  |       |                 |
| I,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 0.050     | mg/kg | 2.50       |            | 79    | 41-98  | NR  |       |                 |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 0.050     | mg/kg | 2.50       |            | 83    | 43-121 | NR  |       |                 |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 0.050     | mg/kg | 2.50       |            | 78    | 22-123 | NR  |       |                 |
| -Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 0.050     | mg/kg | 2.50       |            | 75    | 26-126 | NR  |       |                 |
| -Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0.050     | mg/kg | 2.50       |            | 72    | 17-139 | NR  |       |                 |
| cenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 0.050     | mg/kg | 2.50       |            | 83    | 44-105 | NR  |       |                 |
| l-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 0.050     | mg/kg |            |            | 80    | 24-128 | NR  |       |                 |
| Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 0.050     | mg/kg | 2.50       |            | 72    | 20-116 | NR  |       |                 |

Page 45 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID:

7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported: 06/05/13 16:04

# Semivolatile Organic Compounds by GC/MS - Quality Control

### Batch W3F0001 - FPA 8270C

| 4.44                                                               |        | Reporting |       | Spike     | Source      | 40-40    | % REC           |         | RPD     | Da       |
|--------------------------------------------------------------------|--------|-----------|-------|-----------|-------------|----------|-----------------|---------|---------|----------|
| Analyte                                                            | Result | Limit     | Units | Level     | Result      | %REC     | Limits          | RPD     | Limit   | Qualifie |
| LCS (W3F0001-BS1)                                                  |        |           |       | Analyzed  | : 06/04/13  | 14:33    |                 |         |         |          |
| Phenol                                                             | 1.82   | 0.050     | mg/kg | 2.50      |             | 73       | 22-123          | NR      |         |          |
| Pyrene                                                             | 2.13   | 0.050     | mg/kg | 2.50      |             | 85       | 42-118          | NR      |         |          |
| Surr. 2,4,6-Tribromophenal                                         | 3.91   |           | mg/kg | 5.00      |             | 78       | 40-97           |         |         |          |
| Surr. 2-Fluorobiphenyl                                             | 2.15   |           | mg/kg | 2.50      |             | 86       | 39-100          |         |         |          |
| Surr. 2-Fluorophenol                                               | 4.65   |           | mg/kg | 5.00      |             | 93       | 26-115          |         |         |          |
| Surr. Nitrobenzene-d5                                              | 1.99   |           | mg/kg | 2.50      |             | 80       | 49-105          |         |         |          |
| Surr. Phenol-d5                                                    | 4.22   |           | mg/kg | 5.00      |             | 84       | 36-105          |         |         |          |
| Surr. Terphenyl-d14                                                | 2.35   |           | mg/kg | 2.50      |             | 94       | 36-106          |         |         |          |
| Matrix Spike (W3F0001-MS1)                                         | Source | e: 3E300° | 14-01 | Analyzed: | 06/04/13    | 15:03    |                 |         |         |          |
| 1,2,4-Trichlorobenzene                                             | 16.2   | 0.49      | mg/kg | 24.4      | ND          | 66       | 26-124          | NR      | 1311114 |          |
| 1,4-Dichlorobenzene                                                | 16.9   | 0.49      | mg/kg | 24.4      | ND          | 69       | 28-117          | NR      |         |          |
| 2,4-Dinitrotoluene                                                 | 19.2   | 0.49      | mg/kg | 24.4      | ND          | 79       | 26-132          | NR      |         |          |
| 2-Chlorophenol                                                     | 16.4   | 0.49      | mg/kg | 24.4      | ND          | 67       | 24-124          | NR      |         |          |
| 4-Chloro-3-methylphenol                                            | 15.9   | 0.49      | mg/kg | 24.4      | ND          | 65       | 5-153           | NR      |         |          |
| 4-Nitrophenol                                                      | 17.6   | 0.49      | mg/kg | 24.4      | ND          | 72       | 0.6-139         | NR      |         |          |
| Acenaphthene                                                       | 17.6   | 0.49      | mg/kg | 24.4      | ND          | 72       | 33-117          | NR      |         |          |
| N-Nitrosodi-n-propylamine                                          | 16.5   | 0.49      | mg/kg | 24.4      | ND          | 68       | 20-128          | NR      |         |          |
| Pentachlorophenol                                                  | 16.9   | 0.49      | mg/kg | 24.4      | 0.394       | 68       | 7-125           | NR      |         |          |
| Phenol                                                             | 15.8   | 0.49      | mg/kg | 24.4      | ND          | 65       | 40-120          | NR      |         |          |
| Pyrene                                                             | 20.1   | 0.49      | mg/kg | 24.4      | ND          | 83       | 22-148          | NR      |         |          |
| Surr: 2,4,6-Tribromophenol                                         | 34.6   |           | mg/kg | 48.8      |             | 71       | 40-97           |         |         |          |
| Surr. 2-Fluorobiphenyl                                             | 17.3   |           | mg/kg | 24.4      |             | 71       | 39-100          |         |         |          |
| Surr. 2-Fluorophenal                                               | 35.6   |           | mg/kg | 48.8      |             | 73       | 26-115          |         |         |          |
| Surr: Nitrobenzene-d5                                              | 16.1   |           | mg/kg | 24.4      |             | 66       | 49-105          |         |         |          |
| Surr. Phenol-d5                                                    | 34.3   |           | mg/kg | 48.8      |             | 70       | 36-105          |         |         |          |
| Surr. Terphenyl-d14                                                | 21.4   |           | mg/kg | 24.4      |             | 88       | 36-106          |         |         |          |
| atrix Spike Dup (W3F0001-MSD1)                                     |        | 3E30014   |       | Analyzed: | 06/04/13 1  | 5:33     |                 |         |         |          |
| 1,2,4-Trichlorobenzene                                             | 14.9   | 0.48      | mg/kg | 23.9      | ND          | 62       | 26-124          | 8       | 30      |          |
| 1,4-Dichlorobenzene                                                | 15.5   | 0.48      | mg/kg | 23.9      | ND          | 65       | 28-117          | 9       | 30      |          |
| 2,4-Dinitrotoluene                                                 | 15.8   | 0.48      | mg/kg | 23.9      | ND          | 66       | 26-132          | 19      | 30      |          |
| 2-Chlorophenol                                                     | 15.3   | 0.48      | mg/kg | 23.9      | ND          | 64       | 24-124          | 7       | 30      |          |
| 4-Chloro-3-methylphenal                                            | 14.4   | 0.48      | mg/kg | 23.9      | ND          | 60       | 5-153           | 10      | 30      |          |
| I-Nitrophenol                                                      | 13.6   | 0.48      | mg/kg | 23.9      | ND          | 57       | 0.6-139         | 25      | 30      |          |
| Acenaphthene                                                       | 16.0   | 0.48      | mg/kg | 23.9      | ND          | 67       | 33-117          | 10      | 30      |          |
| N-Nitrosodi-n-propylamine                                          |        |           |       |           | ND          |          | 20-128          | 15      | 30      |          |
| Fig. 7 (4) 100 (1) 101 (4) 101 (4) 101 (4) 101 (4) 101 (4) 101 (4) | 14.2   | 0.48      | mg/kg | 23.9      |             | 59       |                 | 31      | 30      | MS-05    |
| Pentachlorophenol<br>Phenol                                        | 12.3   | 0.48      | mg/kg | 23.9      | 0.394<br>ND | 50<br>61 | 7-125<br>40-120 |         | 30      | WIS-US   |
|                                                                    |        | 0.48      | mg/kg | 23.9      | ND          |          |                 | 9<br>25 | 30      |          |
| Pyrene                                                             |        | 0.48      | mg/kg | 23.9      | ND          | 65       | 22-148<br>40-97 | 25      | 30      |          |
| Surr. 2,4,6-Tribromophenol                                         | 27.8   |           | mg/kg | 47.8      |             | 58       |                 |         |         |          |
| iurr. 2-Fluorobiphenyl                                             | 14.9   |           | mg/kg | 23.9      |             | 62       | 39-100          | - 0     |         |          |
| turr. 2-Fluorophenol                                               | 31.0   |           | mg/kg | 47.8      |             | 65       | 26-115          |         |         |          |
| urr: Nitrobenzene-d5                                               | 14.6   |           | mg/kg | 23.9      |             | 61       | 49-105          |         |         |          |
| urr. Phenol-d5                                                     | 30.1   |           | mg/kg | 47.8      |             | 63       | 36-105          |         |         |          |

Page 46 of 48





LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: 3E30014

Project ID: 7600 Tyrone Ave, COC

#13-1321,26, WO#

Date Received:

05/30/13 09:50

Date Reported:

06/05/13 16:04

### Semivolatile Organic Compounds by GC/MS - Quality Control

### Batch W3F0001 - EPA 8270C

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC  | % REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------|--------|--------------------|-------|----------------|------------------|-------|-----------------|-----|--------------|--------------------|
| Matrix Spike Dup (W3F0001-MSD1) | Source | e: 3E30014         | -01   | Analyzed:      | 06/04/13         | 15:33 |                 |     |              |                    |
| Surr: Terphenyl-d14             | 15.7   |                    | mg/kg | 23.9           |                  | 66    | 36-106          |     |              |                    |





Analytical Laboratory Service - Since 1964

LADWP - Environmental Laboratory 1630 North Main Street, Bldg. 7, Rm 311 Los Angeles CA, 90012 Report ID: Project ID: 3E30014

7600 Tyrone Ave, COC

Date Received: Date Reported: 05/30/13 09:50 06/05/13 16:04

#13-1321,26, WO#

**Notes and Definitions** 

S-11 Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

MS-05 The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS

and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration.

NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

MRL Method Reporting Limit

NR Not Reportable

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Page 48 of 46

Client: Alta Environmental, Inc.

3777 Long Beach Blvd. Client Address:

Long Beach, CA 90807

Attn: Steve Morrill

Project Name: Tyrone

7600 Tryone Ave. Project Address:

Van Nuys, CA

Report date:

6/4/2013 A-7098

JEL Ref. No.:

Client Ref. No.:

ODWP-13-1198

Date Sampled: 6/4/2013

Date Received: 6/4/2013 Date Analyzed: 6/4/2013

Physical State: Soil Gas

### ANALYSES REQUESTED

1. EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers. Tubing placed in the ground for soil gas sampling was purged three different times as recommended by DTSC/RWOCB regulations. This purge test determined how many purges of the soil gas tubing were needed throughout the project. One, three and ten purge volumes were analyzed to make this determination.

A tracer gas mixture of n-propanol and n-pentane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No n-propanol or n-pentane was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min except when noted differently on the chain of custody record using a gas tight syringe. 1 purge volume was used since this purging level gave the highest results for the compound(s) of greatest interest.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for some length of time. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

Analytical - Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWOCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, Matrix Spike (MS) and Matrix Spike Duplicates (MSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity.

All samples were analyzed within 30 minutes of sampling.

Approval:

Steve Jones, Ph.D. Laboratory Manager

6/4/2013



### JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Alta Environmental, Inc Report date:
Client Address: 3777 Long Beach Blvd. JEL Ref. No.:

3777 Long Beach Blvd. JEL Ref. No.: A-7098

Long Beach, CA 90807 Client Ref. No.: ODWP-13-1198

Attn: Steve Morrill Date Sampled: 6/4/2013

Project: Tyrone Date Analyzed: 6/4/2013
Project Address: 7600 Tryone Ave. Physical State: Soil Gas

Van Nuys, CA

# EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | VP3-15<br>1P | VP3-15<br>3P | VP3-15<br>10P | VP3-5     | VP2-5     |                           |              |
|-----------------------------|--------------|--------------|---------------|-----------|-----------|---------------------------|--------------|
| JEL ID:                     | A-7098-01    | A-7098-02    | A-7098-03     | A-7098-04 | A-7098-05 | Practical<br>Quantitation | <u>Units</u> |
| Analytes:                   |              |              |               |           |           | Limit                     |              |
| Benzene                     | ND           | ND           | ND            | ND        | ND        | 0.008                     | µg/L         |
| Bromobenzene                | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| Bromodichloromethane        | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| Bromoform                   | ND           | ND           | ND            | ND        | ND        | 0.008                     | µg/L         |
| n-Butylbenzene              | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| sec-Butylbenzene            | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| tert-Butylbenzene           | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| Carbon tetrachloride        | 0.033        | 0.014        | 0.029         | ND        | ND        | 0.008                     | µg/L         |
| Chlorobenzene               | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| Chloroethane                | ND           | ND           | ND            | ND        | ND        | 0.008                     | $\mu g/L$    |
| Chloroform                  | 0.896        | 0.810        | 0.872         | 0.316     | ND        | 0.008                     | μg/L         |
| Chloromethane               | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 2-Chlorotoluene             | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 4-Chlorotoluene             | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| Dibromochloromethane        | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 1,2-Dibromo-3-chloropropane | ND           | ND           | ND            | ND        | ND        | 0.008                     | µg/L         |
| 1,2-Dibromoethane (EDB)     | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| Dibromomethane              | ND           | ND           | ND            | ND        | ND        | 0.008                     | µg/L         |
| 1,2- Dichlorobenzene        | ND           | ND           | ND            | ND        | ND        | 0.008                     | $\mu g/L$    |
| 1,3-Dichlorobenzene         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 1,4-Dichlorobenzene         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| Dichlorodifluoromethane     | ND           | ND           | ND            | ND        | ND        | 800.0                     | μg/L         |
| 1,1-Dichloroethane          | ND           | ND           | ND            | ND        | ND        | 0.008                     | $\mu g/L$    |
| 1,2-Dichloroethane          | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 1,1-Dichloroethene          | ND           | ND           | ND            | ND        | ND        | 0.008                     | $\mu$ g/L    |
| cis-1,2-Dichloroethene      | ND           | ND           | ND            | ND        | ND        | 0.008                     | µg/L         |
| trans-1,2-Dichloroethene    | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 1,2-Dichloropropane         | ND           | ND           | ND            | ND        | ND        | 0.008                     | µg/L         |
| 1,3-Dichloropropane         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 2,2-Dichloropropane         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |
| 1,1-Dichloropropene         | ND           | ND           | ND            | ND        | ND        | 0.008                     | μg/L         |

|                           |                       | adob tomen            | - 018-mmen              | y GC/MS + (             | Jajanan                |                           |              |
|---------------------------|-----------------------|-----------------------|-------------------------|-------------------------|------------------------|---------------------------|--------------|
| Sample ID:                | VP3-15<br>1P          | VP3-15<br>3P          | VP3-15<br>10P           | VP3-5                   | VP2-5                  |                           |              |
| JEL ID:                   | A-7098-01             | A-7098-02             | A-7098-03               | A-7098-04               | A-7098-05              | Practical<br>Quantitation | Units        |
| Analytes:                 |                       |                       |                         |                         |                        | <u>Limit</u>              |              |
| cis-1,3-Dichloropropene   | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| trans-1,3-Dichloropropene | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Ethylbenzene              | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Freon 113                 | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | $\mu$ g/L    |
| Hexachlorobutadiene       | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Isopropylbenzene          | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 4-Isopropyltoluene        | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Methylene chloride        | ND                    | ND                    | ND                      | ND                      | ND                     | 800.0                     | μg/L         |
| Naphthalene               | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| n-Propylbenzene           | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Styrene                   | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 1,1,1,2-Tetrachloroethane | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 1,1,2,2-Tetrachloroethane | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Tetrachloroethylene       | 0.057                 | 0.048                 | 0.054                   | 0.059                   | ND                     | 0.008                     | μg/L         |
| Toluene                   | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 1,2,3-Trichlorobenzene    | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 1,2,4-Trichlorobenzene    | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 1,1,1-Trichloroethane     | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 1,1,2-Trichloroethane     | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Trichloroethylene         | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Trichlorofluoromethane    | 2.83                  | 2.55                  | 2.89                    | 2.26                    | ND                     | 0.008                     | μg/L         |
| 1,2,3-Trichloropropane    | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| 1,2,4-Trimethylbenzene    | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
|                           | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L<br>μg/L |
| 1,3,5-Trimethylbenzene    |                       |                       |                         |                         |                        | 0.008                     |              |
| Vinyl chloride            | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Xylenes                   | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| MTBE                      | ND                    | ND                    | ND                      | ND                      | ND                     |                           | μg/L         |
| Ethyl-tert-butylether     | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Di-isopropylether         | ND                    | ND                    | ND                      | ND                      | ND                     | 800.0                     | μg/L         |
| tert-amylmethylether      | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| tert-Butylalcohol         | ND                    | ND                    | ND                      | ND                      | ND                     | 0.040                     | μg/L         |
| TIC:                      |                       |                       |                         |                         |                        |                           |              |
| n-propanol                | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| n-propanoi<br>n-pentane   | ND                    | ND                    | ND                      | ND                      | ND                     | 0.008                     | μg/L         |
| Dilution Factor           | 1                     | 1                     | 1                       | 1                       | 1                      |                           |              |
| Surrogate Recoveries:     |                       |                       |                         |                         |                        | OC Limi                   | its          |
| Dibromofluoromethane      | 89%                   | 109%                  | 103%                    | 105%                    | 109%                   | 75 - 12:                  |              |
| Toluene-da                | 97%                   | 99%                   | 93%                     | 98/%                    | 100%                   | 75 - 12:                  |              |
| 4-Bromofluorobenzene      | 99%                   | 97%                   | 97%                     | 97%                     | 106%                   | 75 - 12:                  |              |
| 4-DIOINOIMOIOOCIIZCIIC    |                       |                       |                         |                         |                        |                           |              |
|                           | A2-060413-A<br>7098 1 | A2-060413-A<br>7098_1 | · A2-060413-A<br>7098 1 | · A2-060413-A<br>7098 1 | A2-060413-A-<br>7098_1 |                           |              |

ND= Not Detected

6/4/2013



### JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Alta Environmental, Inc Report date:
Client Address: 3777 Long Beach Blvd. JEL Ref. No.:

3777 Long Beach Blvd. JEL Ref. No.: A-7098
Long Beach, CA 90807 Client Ref. No.: ODWP-13-1198

Attn: Steve Morrill Date Sampled: 6/4/2013

Project: Tyrone Date Analyzed: 6/4/2013
Project Address: 7600 Tryone Ave. Physical State: Soil Gas

Van Nuys, CA

Cample ID.

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | VP2-15    | VP1-5     | VP1-15    | VP9-5     | VP9-5 REP |                              |           |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|------------------------------|-----------|
| JEL ID: Analytes:           | A-7098-06 | A-7098-07 | A-7098-08 | A-7098-09 | A-7098-10 | Practical Quantitation Limit | Units     |
| Benzene                     | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Bromobenzene                | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Bromodichloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Bromoform                   | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| n-Butylbenzene              | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| sec-Butylbenzene            | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| tert-Butylbenzene           | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Carbon tetrachloride        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Chlorobenzene               | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Chloroethane                | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |
| Chloroform                  | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Chloromethane               | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 2-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 4-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Dibromochloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,2-Dibromo-3-chloropropane | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |
| 1,2-Dibromoethane (EDB)     | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Dibromomethane              | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |
| 1,2- Dichlorobenzene        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,3-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,4-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| Dichlorodifluoromethane     | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,1-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,2-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,1-Dichloroethene          | ND        | ND        | ND        | ND        | ND        | 0.008                        | $\mu$ g/L |
| cis-1,2-Dichlorocthene      | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |
| trans-1,2-Dichloroethene    | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,3-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | $\mu g/L$ |
| 2,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |
| 1,1-Dichloropropene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | $\mu g/L$ |
|                             |           |           |           |           |           |                              |           |

| EPA 8260B-Volatile Organics by GC/MS + Oxygenates |           |           |           |           |           |                        |              |  |  |
|---------------------------------------------------|-----------|-----------|-----------|-----------|-----------|------------------------|--------------|--|--|
| Sample ID:                                        | VP2-15    | VP1-5     | VP1-15    | VP9-5     | VP9-5 REP |                        |              |  |  |
| <u>JEL ID:</u>                                    | A-7098-06 | A-7098-07 | A-7098-08 | A-7098-09 | A-7098-10 | Practical Ouantitation | Unit         |  |  |
| Analytes:                                         |           |           |           |           |           | Limit                  |              |  |  |
| cis-1,3-Dichloropropene                           | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| trans-1,3-Dichloropropene                         | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Ethylbenzene                                      | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Freon 113                                         | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Hexachlorobutadiene                               | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Isopropylbenzene                                  | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 4-Isopropyltoluene                                | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Methylene chloride                                | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Naphthalene                                       | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| n-Propylbenzene                                   | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Styrene                                           | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 1,1,1,2-Tetrachloroethane                         | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 1,1,2,2-Tetrachloroethane                         | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Tetrachloroethylene                               | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Toluene                                           | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 1,2,3-Trichlorobenzene                            | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 1,2,4-Trichlorobenzene                            | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 1,1,1-Trichloroethane                             | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L<br>μg/L |  |  |
| 1,1,2-Trichloroethane                             | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L<br>μg/L |  |  |
|                                                   | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Trichloroethylene                                 |           |           |           |           |           | 0.008                  |              |  |  |
| Trichlorofluoromethane                            | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 1,2,3-Trichloropropane                            | ND        | ND        | ND        | ND        | ND        |                        | μg/L         |  |  |
| 1,2,4-Trimethylbenzene                            | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| 1,3,5-Trimethylbenzene                            | ND        | ND        | ND        | ND        | ND        | 800.0                  | μg/L         |  |  |
| Vinyl chloride                                    | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Xylenes                                           | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| MTBE                                              | ND        | ND        | ND        | ND        | ND        | 800.0                  | μg/L         |  |  |
| Ethyl-tert-butylether                             | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Di-isopropylether                                 | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| tert-amylmethylether                              | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| tert-Butylalcohol                                 | ND        | ND        | ND        | ND        | ND        | 0.040                  | μg/L         |  |  |
| TIC:                                              |           |           |           |           |           |                        |              |  |  |
| n-propanol                                        | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| n-pentane                                         | ND        | ND        | ND        | ND        | ND        | 0.008                  | μg/L         |  |  |
| Dilution Factor                                   | 1         | 1         | 1         | 1         | 1         |                        |              |  |  |
| Surrogate Recoveries:                             |           |           |           |           |           | OC Lim                 |              |  |  |
| Dibromofluoromethane                              | 102%      | 102%      | 103%      | 101%      | 109%      | 75 - 12:               | 5            |  |  |
| Toluene-da                                        | 107%      | 102%      | 102%      | 91%       | 103%      | 75 - 125               | 5            |  |  |
| 4-Bromofluorobenzene                              | 107%      | 105%      | 97%       | 93%       | 91%       | 75 - 12:               | 5            |  |  |

ND= Not Detected

7098\_1

7098\_1

A2-060413-A· A2-060413-A· A2-060413-A· A2-060413-A· A2-060413-A·

7098\_1

7098\_1

7098\_1

6/4/2013



### JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Alta Environmental, Inc Report date:
Client Address: 3777 Long Beach Blvd. JEL Ref. No.:

3777 Long Beach Blvd. JEL Ref. No.: A-7098

Long Beach, CA 90807 Client Ref. No.: ODWP-13-1198

Attn: Steve Morrill Date Sampled: 6/4/2013

Project: Tyrone Date Analyzed: 6/4/2013
Project Address: 7600 Tryone Ave. Physical State: Soil Gas

Van Nuys, CA

Cample ID.

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | VP9-15    | VP14-5    | VP14-15   | VP15-5    | VP15-15   |                              |           |  |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|------------------------------|-----------|--|
| JEL ID: Analytes:           | A-7098-11 | A-7098-12 | A-7098-13 | A-7098-14 | A-7098-15 | Practical Quantitation Limit | Units     |  |
| Benzene                     | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |  |
| Bromobenzene                | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Bromodichloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Bromoform                   | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |  |
| n-Butylbenzene              | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| sec-Butylbenzene            | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| tert-Butylbenzene           | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Carbon tetrachloride        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Chlorobenzene               | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Chloroethane                | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |  |
| Chloroform                  | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Chloromethane               | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 2-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 4-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Dibromochloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 1,2-Dibromo-3-chloropropane | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |  |
| 1,2-Dibromoethane (EDB)     | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Dibromomethane              | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |  |
| 1,2- Dichlorobenzene        | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 1,3-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 1,4-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| Dichlorodifluoromethane     | ND        | ND        | ND        | ND        | ND        | 800.0                        | μg/L      |  |
| 1,1-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 1,2-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 1,1-Dichloroethene          | ND        | ND        | ND        | ND        | ND        | 0.008                        | $\mu$ g/L |  |
| cis-1,2-Dichloroethene      | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |  |
| trans-1,2-Dichloroethene    | ND        | ND        | ND        | ND        | ND        | 0.008                        | µg/L      |  |
| 1,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 1,3-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | $\mu g/L$ |  |
| 2,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                        | μg/L      |  |
| 1,1-Dichloropropene         | ND        | ND        | ND        | ND        | ND        | 800.0                        | $\mu g/L$ |  |
|                             |           |           |           |           |           |                              |           |  |

| Ç.,                       | EPA 8       | 260B-Volatil  | e Organics b | y GC/MS + 0 | Oxygenates    |                           |              |
|---------------------------|-------------|---------------|--------------|-------------|---------------|---------------------------|--------------|
| Sample ID:                | VP9-15      | VP14-5        | VP14-15      | VP15-5      | VP15-15       |                           |              |
| JEL ID:                   | A-7098-11   | A-7098-12     | A-7098-13    | A-7098-14   | A-7098-15     | Practical<br>Quantitation | Units        |
| Analytes:                 |             |               |              |             |               | <u>Limit</u>              |              |
| cis-1,3-Dichloropropene   | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| trans-1,3-Dichloropropene | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Ethylbenzene              | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Freon 113                 | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Hexachlorobutadiene       | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Isopropylbenzene          | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 4-Isopropyltoluene        | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Methylene chloride        | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Naphthalene               | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| n-Propylbenzene           | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Styrene                   | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 1,1,1,2-Tetrachloroethane | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 1,1,2,2-Tetrachloroethane | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Tetrachloroethylene       | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Toluene                   | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 1,2,3-Trichlorobenzene    | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 1,2,4-Trichlorobenzene    | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 1,1,1-Trichloroethane     | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L<br>μg/L |
| 1,1,2-Trichloroethane     | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Trichloroethylene         | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Trichlorofluoromethane    |             |               |              | ND          |               | 0.008                     | μg/L<br>μg/L |
|                           | ND          | ND            | ND           |             | ND            | 0.008                     |              |
| 1,2,3-Trichloropropane    | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 1,2,4-Trimethylbenzene    | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| 1,3,5-Trimethylbenzene    | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Vinyl chloride            | ND          | ND            | ND           | ND          | ND            |                           | μg/L         |
| Xylenes                   | ND          | ND            | ND           | ND          | ND            | 800.0                     | μg/L         |
| MTBE                      | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Ethyl-tert-butylether     | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Di-isopropylether         | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| tert-amylmethylether      | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| tert-Butylalcohol         | ND          | ND            | ND           | ND          | ND            | 0.040                     | μg/L         |
| TIC:                      |             |               |              |             |               |                           |              |
| n-propanol                | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| n-pentane                 | ND          | ND            | ND           | ND          | ND            | 0.008                     | μg/L         |
| Dilution Factor           | 1           | 1             | 1            | 1           | 1             |                           |              |
| Surrogate Recoveries:     |             |               |              |             |               | QC Lim                    | its          |
| Dibromofluoromethane      | 107%        | 105%          | 103%         | 103%        | 101%          | 75 - 12:                  |              |
| Toluene-d <sub>8</sub>    | 99%         | 100%          | 105%         | 117%        | 95%           | 75 - 12:                  |              |
| 4-Bromofluorobenzene      | 95%         | 101%          | 101%         | 107%        | 100%          | 75 - 12:                  |              |
|                           | A2-060413-A | · A2-060413-A | A2-060413-A  | A2-060413-A | · A2-060413-A |                           |              |
|                           | 7098_1      | 7098_1        | 7098_1       | 7098_1      | 7098_1        |                           |              |
|                           |             |               |              |             |               |                           |              |

ND= Not Detected



Client: Alta Environmental, Inc Client Address: 3777 Long Beach Blvd.

Steve Morrill

Long Beach, CA 90807

Attn:

Project: Tyrone
Project Address: 7600 Tryone Ave.

Van Nuys, CA

Date Sampled: 6/4/2013 Date Received: 6/4/2013

Report date:

JEL Ref. No.:

Client Ref. No.:

Date Analyzed: 6/4/2013

Physical State: Soil Gas

6/4/2013

A-7098 ODWP-13-1198

EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | VP8-5     | VP8-15    | VP7-5     | VP7-15    | VP10-5    |                           |           |  |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|---------------------------|-----------|--|
| JEL ID:                     | A-7098-16 | A-7098-17 | A-7098-18 | A-7098-19 | A-7098-20 | Practical<br>Quantitation | Units     |  |
| Analytes:                   | . m       |           |           | 200       |           | Limit                     | 270.0     |  |
| Benzene                     | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| Bromobenzene                | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| Bromodichloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| Bromoform                   | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| n-Butylbenzene              | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| sec-Butylbenzene            | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| tert-Butylbenzene           | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| Carbon tetrachloride        | ND        | 0.017     | ND        | 0.035     | ND        | 0.008                     | µg/L      |  |
| Chlorobenzene               | ND        | ND        | ND        | ND        | ND        | 0.008                     | $\mu g/L$ |  |
| Chloroethane                | ND        | ND        | ND        | ND        | ND        | 0.008                     | $\mu g/L$ |  |
| Chloroform                  | 0.153     | 0.454     | 0.022     | 0.363     | ND        | 0.008                     | μg/L      |  |
| Chloromethane               | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 2-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 4-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| Dibromochloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,2-Dibromo-3-chloropropane | ND        | ND        | ND        | ND        | ND        | 0.008                     | µg/L      |  |
| 1,2-Dibromoethane (EDB)     | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| Dibromomethane              | ND        | ND        | ND        | ND        | ND        | 0.008                     | µg/L      |  |
| 1,2- Dichlorobenzene        | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,3-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,4-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| Dichlorodifluoromethane     | ND        | ND        | ND        | ND        | ND        | 800.0                     | μg/L      |  |
| 1,1-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,2-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,1-Dichloroethene          | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| cis-1,2-Dichloroethene      | ND        | ND        | ND        | ND        | ND        | 0.008                     | µg/L      |  |
| trans-1,2-Dichloroethene    | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,3-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 800.0                     | μg/L      |  |
| 2,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |
| 1,1-Dichloropropene         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L      |  |

|                           | EPA 8     | 260B-Volatil | e Organics b | y GC/MS + ( | Oxygenates |                           |           |
|---------------------------|-----------|--------------|--------------|-------------|------------|---------------------------|-----------|
| Sample ID:                | VP8-5     | VP8-15       | VP7-5        | VP7-15      | VP10-5     |                           |           |
| JEL ID:                   | A-7098-16 | A-7098-17    | A-7098-18    | A-7098-19   | A-7098-20  | Practical<br>Quantitation | Units     |
| Analytes:                 |           |              |              |             |            | <u>Limit</u>              |           |
| cis-1,3-Dichloropropene   | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| trans-1,3-Dichloropropene | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Ethylbenzene              | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Freon 113                 | ND        | ND           | ND           | 0.057       | ND         | 0.008                     | μg/L      |
| Hexachlorobutadiene       | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Isopropylbenzene          | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 4-Isopropyltoluene        | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Methylene chloride        | ND        | ND           | ND           | ND          | ND         | 800.0                     | μg/L      |
| Naphthalene               | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| n-Propylbenzene           | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Styrene                   | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,1,1,2-Tetrachloroethane | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,1,2,2-Tetrachloroethane | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Tetrachloroethylene       | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Toluene                   | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,2,3-Trichlorobenzene    | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,2,4-Trichlorobenzene    | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,1,1-Trichloroethane     | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,1,2-Trichloroethane     | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Trichloroethylene         | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Trichlorofluoromethane    | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,2,3-Trichloropropane    | ND        | ND           | ND           | ND          | ND         | 0.008                     | µg/L      |
| 1,2,4-Trimethylbenzene    | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| 1,3,5-Trimethylbenzene    | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Vinyl chloride            | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Xylenes                   | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| MTBE                      | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Ethyl-tert-butylether     | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| Di-isopropylether         | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| tert-amylmethylether      | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| tert-Butylalcohol         | ND        | ND           | ND           | ND          | ND         | 0.040                     | μg/L      |
| TIC:                      |           |              |              |             |            |                           |           |
| n-propanol                | ND        | ND           | ND           | ND          | ND         | 0.008                     | $\mu$ g/L |
| n-pentane                 | ND        | ND           | ND           | ND          | ND         | 0.008                     | μg/L      |
| <b>Dilution Factor</b>    | 1         | 1            | 1            | 1           | 1          |                           |           |
| Surrogate Recoveries:     |           |              |              |             |            | QC Lim                    |           |
| Dibromofluoromethane      | 99%       | 102%         | 101%         | 113%        | 98%        | 75 - 12                   |           |
| Toluene-d <sub>8</sub>    | 104%      | 105%         | 95%          | 95%         | 100%       | 75 - 12                   |           |
| 4-Bromofluorobenzene      | 105%      | 101%         | 103%         | 93%         | 93%        | 75 - 12                   | 5         |

ND= Not Detected

A2-060413-A· A2-060413-A· A2-060413-A· A2-060413-A· A2-060413-A·

7098\_1

7098\_1

7098\_1

7098\_1

7098\_1



Client: Alta Environmental, Inc Report date: 6/4/2013 Client Address: 3777 Long Beach Blvd. JEL Ref. No.: A-7098

ODWP-13-1198 Long Beach, CA 90807 Client Ref. No.:

Steve Morrill 6/4/2013 Attn: Date Sampled: Date Received: 6/4/2013

Project: Tyrone Date Analyzed: 6/4/2013

7600 Tryone Ave. Project Address: Physical State: Soil Gas

### Van Nuys, CA EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | METHOD<br>BLANK | SAMPLING<br>BLANK |                        |       |
|-----------------------------|-----------------|-------------------|------------------------|-------|
| JEL ID:                     | A-7098-21       | A-7098-22         | Practical Quantitation | Units |
| Analytes:                   |                 |                   | <u>Limit</u>           |       |
| Benzene                     | ND              | ND                | 0.008                  | µg/L  |
| Bromobenzene                | ND              | ND                | 0.008                  | μg/L  |
| Bromodichloromethane        | ND              | ND                | 0.008                  | µg/L  |
| Bromoform                   | ND              | ND                | 0.008                  | μg/L  |
| n-Butylbenzene              | ND              | ND                | 0.008                  | μg/L  |
| sec-Butylbenzene            | ND              | ND                | 0.008                  | μg/L  |
| tert-Butylbenzene           | ND              | ND                | 0.008                  | μg/L  |
| Carbon tetrachloride        | ND              | ND                | 0.008                  | µg/L  |
| Chlorobenzene               | ND              | ND                | 0.008                  | µg/L  |
| Chloroethane                | ND              | ND                | 0.008                  | µg/L  |
| Chloroform                  | ND              | ND                | 0.008                  | μg/L  |
| Chloromethane               | ND              | ND                | 0.008                  | μg/L  |
| 2-Chlorotoluene             | ND              | ND                | 0.008                  | μg/L  |
| 4-Chlorotoluene             | ND              | ND                | 0.008                  | μg/L  |
| Dibromochloromethane        | ND              | ND                | 0.008                  | μg/L  |
| 1,2-Dibromo-3-chloropropane | ND              | ND                | 0.008                  | µg/L  |
| 1,2-Dibromoethane (EDB)     | ND              | ND                | 0.008                  | μg/L  |
| Dibromomethane              | ND              | ND                | 0.008                  | µg/L  |
| 1,2- Dichlorobenzene        | ND              | ND                | 0.008                  | μg/L  |
| 1,3-Dichlorobenzene         | ND              | ND                | 0.008                  | μg/L  |
| 1,4-Dichlorobenzene         | ND              | ND                | 0.008                  | µg/L  |
| Dichlorodifluoromethane     | ND              | ND                | 0.008                  | μg/L  |
| 1,1-Dichloroethane          | ND              | ND                | 0.008                  | μg/L  |
| 1,2-Dichloroethane          | ND              | ND                | 0.008                  | μg/L  |
| 1,1-Dichloroethene          | ND              | ND                | 0.008                  | μg/L  |
| cis-1,2-Dichloroethene      | ND              | ND                | 0.008                  | µg/L  |
| trans-1,2-Dichloroethene    | ND              | ND                | 0.008                  | µg/L  |
| 1,2-Dichloropropane         | ND              | ND                | 0.008                  | μg/L  |
| 1,3-Dichloropropane         | ND              | ND                | 0.008                  | µg/L  |
| 2,2-Dichloropropane         | ND              | ND                | 0.008                  | μg/L  |
| 1,1-Dichloropropene         | ND              | ND                | 0.008                  | μg/L  |

# EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                | METHOD<br>BLANK | SAMPLING<br>BLANK |                                  |
|---------------------------|-----------------|-------------------|----------------------------------|
| JEL ID:                   | A-7098-21       | A-7098-22         | Practical                        |
|                           | 11 7070 21      | 11 1070 22        | <u>Quantitation</u> <u>Units</u> |
| Analytes:                 |                 |                   | <u>Limit</u>                     |
| cis-1,3-Dichloropropene   | ND              | ND                | 0.008 µg/L                       |
| trans-1,3-Dichloropropene | ND              | ND                | 0.008 µg/L                       |
| Ethylbenzene              | ND              | ND                | $0.008$ $\mu g/L$                |
| Freon 113                 | ND              | ND                | $0.008$ $\mu$ g/L                |
| Hexachlorobutadiene       | ND              | ND                | 0.008 μg/L                       |
| Isopropylbenzene          | ND              | ND                | 0.008 µg/L                       |
| 4-Isopropyltoluene        | ND              | ND                | 0.008 μg/L                       |
| Methylene chloride        | ND              | ND                | 0.008 μg/L                       |
| Naphthalene               | ND              | ND                | $0.008$ $\mu g/L$                |
| n-Propylbenzene           | ND              | ND                | 0.008 μg/L                       |
| Styrene                   | ND              | ND                | 0.008 μg/L                       |
| 1,1,1,2-Tetrachloroethane | ND              | ND                | 0.008 μg/L                       |
| 1,1,2,2-Tetrachloroethane | ND              | ND                | 0.008 μg/L                       |
| Tetrachloroethylene       | ND              | ND                | 0.008 μg/L                       |
| Toluene                   | ND              | ND                | 0.008 µg/L                       |
| 1,2,3-Trichlorobenzene    | ND              | ND                | 0.008 µg/L                       |
| 1,2,4-Trichlorobenzene    | ND              | ND                | 0.008 μg/L                       |
| 1,1,1-Trichloroethane     | ND              | ND                | 0.008 μg/L                       |
| 1,1,2-Trichloroethane     | ND              | ND                | 0.008 μg/L                       |
| Trichloroethylene         | ND              | ND                | 0.008 µg/L                       |
| Trichlorofluoromethane    | ND              | ND                | 0.008 μg/L                       |
| 1,2,3-Trichloropropane    | ND              | ND                | 0.008 μg/L                       |
| 1,2,4-Trimethylbenzene    | ND              | ND                | 0.008 μg/L                       |
| 1,3,5-Trimethylbenzene    | ND              | ND                | 0.008 μg/L                       |
| Vinyl chloride            | ND              | ND                | 0.008 μg/L                       |
| Xylenes                   | ND              | ND                | 0.008 µg/L                       |
| MTBE                      | ND              | ND                | 0.008 μg/L                       |
| Ethyl-tert-butylether     | ND              | ND                | 0.008 μg/L                       |
| Di-isopropylether         | ND              | ND                | 0.008 μg/L                       |
| tert-amylmethylether      | ND              | ND                | 0.008 μg/L                       |
| tert-Butylalcohol         | ND              | ND                | 0.040 μg/L                       |
| TIC:                      |                 |                   |                                  |
| n-propanol                | ND              | ND                | 0.008 μg/L                       |
| n-pentane                 | ND              | ND                | 0.008 μg/L                       |
| <b>Dilution Factor</b>    | 1               | 1                 |                                  |
| Surrogate Recoveries:     | /5.55 -         | 3.25.62           | OC Limits                        |
| Dibromofluoromethane      | 100%            | 103%              | 75 - 125                         |
| Toluene-d <sub>8</sub>    | 107%            | 100%              | 75 - 125                         |
| 4-Bromofluorobenzene      | 109%            | 97%               | 75 - 125                         |
|                           |                 | A-A2-060413-A-    |                                  |
|                           | 7098_1          | 7098_1            |                                  |

ND= Not Detected



# JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Alta Environmental, Inc Report date: 6/4/2013
Client Address: 3777 Long Beach Blvd.
Long Beach, CA 90807
Long Beach, CA 90807
Report date: 6/4/2013
JEL Ref. No.: A-7098
Client Ref. No.: ODWP-13-1198

Attn: Steve Morrill Date Sampled: 6/4/2013

Date Received: 6/4/2013

Project: Tyrone Date Analyzed: 6/4/2013
Project Address: 7600 Tryone Ave. Physical State: Soil Gas

Van Nuys, CA

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample Spiked: Ambie   |              | t Air        | GC#: | A2-060413-A-  |           |               |
|------------------------|--------------|--------------|------|---------------|-----------|---------------|
| JEL ID:                | A-7098-24    | A-7098-25    |      |               | A-7098-23 |               |
|                        | MS           | MSD          |      | Acceptability |           | Acceptability |
| Parameter              | Recovery (%) | Recovery (%) | RPD  | Range (%)     | LCS       | Range (%)     |
| 1,1-Dichloroethylene   | 105%         | 107%         | 2.2% | 70-130        | 105%      | 70-130        |
| Benzene                | 96%          | 100%         | 4.6% | 70-130        | 100%      | 70-130        |
| Trichloroethylene      | 112%         | 108%         | 3.1% | 70-130        | 95%       | 70-130        |
| Toluene                | 107%         | 101%         | 5.2% | 70-130        | 116%      | 70-130        |
| Chlorobenzene          | 112%         | 113%         | 1.6% | 70-130        | 100%      | 70-130        |
| Surrogate Recovery:    |              |              |      |               |           |               |
| Dibromofluoromethane   | 99%          | 105%         |      | 75-125        | 113%      | 75-125        |
| Toluene-d <sub>8</sub> | 109%         | 106%         |      | 75-125        | 114%      | 75-125        |
| 4-Bromofluorobenzene   | 101%         | 99%          |      | 75-125        | 103%      | 75-125        |

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%



P.O. Box 5387
Fullerton, CA 92838
(714) 449-9937
Fax (714) 449-9685
www.jonesenvironmentallab.com

# **Chain-of-Custody Record**

| JEL Project #            | 8202-8 / / / / /   |                        | Lab Use Only Sample Condition      |                   | Remarks/Special Instructions   | 13. T      |           | 61         | 7         | 2         | 1 0       | 7          | 4          | 1 4       | 2         | Total Number of Containers | The delivery of samples and the signature on | authorization to perform the analyses specified | above under the Terms and Conditions set forth on the back hereof. |
|--------------------------|--------------------|------------------------|------------------------------------|-------------------|--------------------------------|------------|-----------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|----------------------------|----------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|
| Anaz                     | THE                | 1                      | 1                                  | -                 | 1                              | 1          | n         | 2          | 1         | 45        | V         | 7          |            | À,        | S         | Date<br>0'2/03/13          | Time 32                                      | Date                                            | Тіте                                                               |
| SOIL GAS                 | -                  | NOS TV                 | Shoenby                            | TSI efform        | W aldway                       |            | X 29      | X          | X 30      | × 35      | 86        | X Sp       | X          | X         | X         |                            | Givinmontal                                  |                                                 |                                                                    |
| SOIL Purge Number: 74.1P | Shut in Test 9 / N | - Tracer:              | n-pentane                          |                   | Laboratory<br>Sample<br>Number | A-70918-01 | A-7098-62 | A-7098-03  | A-7098-64 | A-709X-05 | A-7098-66 | A- 7098-07 | A- 4098-08 | A-7098-69 | A-7098-10 | Inothe &                   | Jones Grimm                                  | Received by Laboratory (signature)              |                                                                    |
| 5                        | 11#<br>-13-1191X   | 1                      | Rush 24-48 Hours  Rush 72-96 Hours | al<br>e Lab       | Sample<br>Analysis<br>Time     | 07/50      | 0804      | 0819       | 0853      | 1780      | 1090      | Mal        | 0935       | 0440      | 100       | Received by (signature)    | Сотралу                                      |                                                 | Сотрапу                                                            |
| Date   O.G. 04           | Client Project #   | Turn Around Requested: | Rush Rush                          | Normal Mobile Lab | Sample<br>Collection<br>Time   | 10739      | 0.750     | 28         | 0825      | 6838      | 0821      | 5160       | PA 23      | 0935      | 0937      | 4/13                       | 1300 G                                       | 0                                               | S                                                                  |
|                          |                    |                        |                                    |                   | Date                           | 6/4        | -         |            |           |           |           |            |            |           | >         | Date 5                     | e Ka                                         | Date                                            | Time                                                               |
|                          |                    |                        |                                    |                   | Purge<br>Volume                | 643        | 1930      | W433       | 583       | 280       | 643       | 589        | 643        | 589       | 589       |                            |                                              |                                                 |                                                                    |
| R, Inc                   |                    |                        | A                                  | 3                 | Purge<br>Number                | -          | 3         | 0          | -         | -         | -         | -          | -          | -         | -         | <                          | 746                                          |                                                 |                                                                    |
| Alto Environmental, Inc  | TYTONE             | 7600 Tynne Are         | Van Nuys, CA                       | Kristyn Dake      | Sample ID                      | VP3-15 19  | NP3-15 38 | VP3-15 POP | 163-5     | NP2-5     | VP2-15    | VP1-5      | 11-137     | 2-697     | 149-5 REP | The                        | HIP TAME                                     | Helinquished by (signature)                     | Сотрапу                                                            |



P.O. Box 5387
Fullerton, CA 92838
(714) 449-9937
Fax (714) 449-9685
www.jonesenvironmentallab.com

# Chain-of-Custody Record

Chilled 🗆 yes 📈 no Sealed Yyes uno gran tight glass springe A-7098 4 Sample Condition as Received: authorization to perform the analyses specified JEL Project # Remarks/Special Instructions The delivery of samples and the signature on Lab Use Only above under the Terms and Conditions set fotal Number of Containers this Chain of Custody form constitutes forth on the back hereof. Number of Confamers Analysis Requested d CV d d N N 0 S N 8/5/9 38 Тіте Date Purge Number: 17P 13P 17P 110P INKS CONTINUENTER Purge Rate: ~240 cc/min A-7098-19 WE A-7098-18 A. 7098-20 Shut in Test 🔊 N A-7098-13 A-7098-M A-7098-16 A-7007-A A-7098-15 A-7018-11 A-7098-12 Laboratory Sample Number An-propanol Received by Laboratory (signature) ☐ 1,1-DFA Helium 1228 Sample Analysis Time 1313 U Immediate Attention 10 1059 Rush 24-48 Hours Rush 72-96 Hours 130 2 Turn Around Requested: 103 STO STO 至二 06.04.13 Company Company Normal Mobile Lab Client Project # Sample Collection Time 633 940 30 100 3 10 1209 Time / 758 100 /ch ch9 Time Date Purge 589 643 643 43 5X9 184 243 584 Purge AHRI ENVINNMENTAL INC DAR. CTA SNVIRON Van Naugr Relinquished by (signature) 10-01 Sample ID VP15-15 VP14-15 Npd-18 S-MAN 11-191 10801 VP 8-15 1-1- di それが 2009 Project Address Project Contact Project Name B Reling Company

Client: Alta Environmental, Inc

Client Address: 3777 Long Beach Blvd.

Long Beach, CA 90807

Attn: Steve Morrill

Project Name: Tyrone

Project Address: 7600 Tryone Ave.

Van Nuys, CA

Report date: 6/5/2

6/5/2013 D-0573

JEL Ref. No.: D-05
Client Ref. No.: ODW

ODWP-13-1198

Date Sampled: 6/5/

6/5/2013 6/5/2013

Date Received: 6/2
Date Analyzed: 6/2

6/5/2013

Physical State: Soi

Soil Gas

### ANALYSES REQUESTED

1. EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sampling - Soil Gas samples were collected in glass gas-tight syringes equipped with Teflon plungers.

A tracer gas mixture of n-propanol and n-pentane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No n-propanol or n-pentane was found in any of the samples reported herein.

The sampling rate was approximately 200 cc/min except when noted differently on the chain of custody record using a gas tight syringe. 1 purge volume was used since previous sampling events determined this to be the appropriate purging volume.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for some length of time. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, Matrix Spike (MS) and Matrix Spike Duplicates (MSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity.

All samples were analyzed within 30 minutes of sampling.

Approval:

Steve Jones, Ph.D. Laboratory Manager



VP12-5

VP12-15

### JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Alta Environmental, Inc Report date: 6/5/2013
Client Address: 3777 Long Beach Blvd. JEL Ref. No.: D-0573

Long Beach, CA 90807 Client Ref. No.: ODWP-13-1198

VP13-15

VP6-5

Attn: Steve Morrill Date Sampled: 6/5/2013

Project: Tyrone Date Analyzed: 6/5/2013
Project Address: 7600 Tryone Ave. Physical State: Soil Gas

Project Address: 7600 Tryone Ave. Van Nuys, CA

Sample ID:

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

VP13-5

| Sample 10.                  | 1112-5    | VI 12-13  | 41.15-5   | VI 15-15    | 110-5     |                           |           |
|-----------------------------|-----------|-----------|-----------|-------------|-----------|---------------------------|-----------|
| JEL ID:                     | D-0573-01 | D-0573-02 | D-0573-03 | D-0573-04   | D-0573-05 | Practical<br>Quantitation | Units     |
| Analytes:                   | 520       | - Gran-   |           | - W. (1974) |           | <u>Limit</u>              |           |
| Benzene                     | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Bromobenzene                | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Bromodichloromethane        | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Bromoform                   | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| n-Butylbenzene              | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| sec-Butylbenzene            | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| tert-Butylbenzene           | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Carbon tetrachloride        | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Chlorobenzene               | ND        | ND        | ND        | ND          | ND        | 0.008                     | $\mu g/L$ |
| Chloroethane                | ND        | ND        | ND        | ND          | ND        | 0.008                     | $\mu g/L$ |
| Chloroform                  | 0.039     | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Chloromethane               | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 2-Chlorotoluene             | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 4-Chlorotoluene             | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Dibromochloromethane        | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 1,2-Dibromo-3-chloropropane | ND        | ND        | ND        | ND          | ND        | 0.008                     | µg/L      |
| 1,2-Dibromoethane (EDB)     | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| Dibromomethane              | ND        | ND        | ND        | ND          | ND        | 0.008                     | µg/L      |
| 1,2- Dichlorobenzene        | ND        | ND        | ND        | ND          | ND        | 0.008                     | $\mu g/L$ |
| 1,3-Dichlorobenzene         | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 1,4-Dichlorobenzene         | ND        | ND        | ND        | ND          | ND        | 0.008                     | µg/L      |
| Dichlorodifluoromethane     | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 1,1-Dichloroethane          | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 1,2-Dichloroethane          | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 1,1-Dichloroethene          | ND        | ND        | ND        | 0.118       | ND        | 0.008                     | μg/L      |
| cis-1,2-Dichloroethene      | ND        | ND        | ND        | ND          | ND        | 0.008                     | µg/L      |
| trans-1,2-Dichloroethene    | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 1,2-Dichloropropane         | ND        | ND        | ND        | ND          | ND        | 0.008                     | µg/L      |
| 1,3-Dichloropropane         | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 2,2-Dichloropropane         | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |
| 1,1-Dichloropropene         | ND        | ND        | ND        | ND          | ND        | 0.008                     | μg/L      |

|                           | EPA 8       | 260B-Volatil | e Organics b | y GC/MS + 0 | Oxygenates  |                           |      |
|---------------------------|-------------|--------------|--------------|-------------|-------------|---------------------------|------|
| Sample ID:                | VP12-5      | VP12-15      | VP13-5       | VP13-15     | VP6-5       |                           |      |
| JEL ID:                   | D-0573-01   | D-0573-02    | D-0573-03    | D-0573-04   | D-0573-05   | Practical<br>Quantitation | Unit |
| Analytes:                 |             |              |              |             |             | Limit                     |      |
| cis-1,3-Dichloropropene   | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| trans-1,3-Dichloropropene | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Ethylbenzene              | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Freon 113                 | 0.184       | 0.529        | 0.203        | 1.13        | 0.651       | 0.008                     | μg/L |
| Hexachlorobutadiene       | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Isopropylbenzene          | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 4-Isopropyltoluene        | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Methylene chloride        | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Naphthalene               | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| n-Propylbenzene           | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Styrene                   | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,1,1,2-Tetrachloroethane | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,1,2,2-Tetrachloroethane | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Tetrachloroethylene       | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Toluene                   | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,2,3-Trichlorobenzene    | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,2,4-Trichlorobenzene    | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,1,1-Trichloroethane     | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,1,2-Trichloroethane     | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Trichloroethylene         | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Trichlorofluoromethane    | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,2,3-Trichloropropane    | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,2,4-Trimethylbenzene    | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| 1,3,5-Trimethylbenzene    | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Vinyl chloride            | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Xylenes                   | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| MTBE                      | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Ethyl-tert-butylether     | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Di-isopropylether         | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| tert-amylmethylether      | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| tert-Butylalcohol         | ND          | ND           | ND           | ND          | ND          | 0.040                     | μg/L |
| TIC:                      |             |              |              |             |             |                           |      |
| n-propanol                | ND          | ND           | ND           | ND          | ND          | 800.0                     | μg/L |
| n-pentane                 | ND          | ND           | ND           | ND          | ND          | 0.008                     | μg/L |
| Dilution Factor           | 1           | 1            | 1            | 1           | 1           |                           |      |
| Surrogate Recoveries:     |             |              |              |             |             | OC Limi                   | its  |
| Dibromofluoromethane      | 100%        | 97%          | 97%          | 103%        | 101%        | 75 - 125                  |      |
| Toluene-da                | 87%         | 89%          | 91%          | 89%         | 85%         | 75 - 125                  |      |
| 4-Bromofluorobenzene      | 111%        | 101%         | 115%         | 118%        | 102%        | 75 - 12:                  |      |
|                           | D2-060513-D | D2-060513-D  | D2-060513-D  | D2-060513-D | D2-060513-D |                           |      |
|                           | 0573_1      | 0573_1       | 0573_1       | 0573_1      | 0573_1      |                           |      |

ND= Not Detected



Client: Alta Environmental, Inc Report date: 6/5/2013
Client Address: 3777 Long Beach Blvd. JEL Ref. No.: D-0573

Long Beach, CA 90807 Client Ref. No.: ODWP-13-1198

Attn: Steve Morrill Date Sampled: 6/5/2013

Tyrone Date Received: 6/5/2013

Date Analyzed: 6/5/2013

VP10-15

Project Address: 7600 Tryone Ave. Physical State: Soil Gas

Van Nuys, CA

VP11-5

VP6-15

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

VP11-5 REP VP11-15

|                             | 120.00    | 15.55.0   | 1177.5    | 2 7 77 77 |           |                           |              |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|---------------------------|--------------|
| JEL ID:                     | D-0573-06 | D-0573-07 | D-0573-08 | D-0573-09 | D-0573-10 | Practical<br>Quantitation | <u>Units</u> |
| Analytes:                   |           |           |           |           |           | <u>Limit</u>              |              |
| Benzene                     | ND        | ND        | ND        | ND        | ND        | 800.0                     | μg/L         |
| Bromobenzene                | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Bromodichloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Bromoform                   | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| n-Butylbenzene              | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| sec-Butylbenzene            | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| tert-Butylbenzene           | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Carbon tetrachloride        | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Chlorobenzene               | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Chloroethane                | ND        | ND        | ND        | ND        | ND        | 0.008                     | µg/L         |
| Chloroform                  | 0.046     | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Chloromethane               | ND        | ND        | ND        | ND        | ND        | 800.0                     | μg/L         |
| 2-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 4-Chlorotoluene             | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Dibromochloromethane        | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,2-Dibromo-3-chloropropane | ND        | ND        | ND        | ND        | ND        | 0.008                     | µg/L         |
| 1,2-Dibromoethane (EDB)     | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Dibromomethane              | ND        | ND        | ND        | ND        | ND        | 0.008                     | µg/L         |
| 1,2- Dichlorobenzene        | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,3-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,4-Dichlorobenzene         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| Dichlorodifluoromethane     | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,1-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,2-Dichloroethane          | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,1-Dichloroethene          | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| cis-1,2-Dichloroethene      | ND        | ND        | ND        | ND        | ND        | 0.008                     | µg/L         |
| trans-1,2-Dichloroethene    | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,3-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 2,2-Dichloropropane         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
| 1,1-Dichloropropene         | ND        | ND        | ND        | ND        | ND        | 0.008                     | μg/L         |
|                             |           |           |           |           |           |                           | 4 -4         |

Project:

Sample ID:

| ELL PA | OZUUD- | VUIALIIC | Organics | Dy | CHAIR | Oxygenates |  |
|--------|--------|----------|----------|----|-------|------------|--|
|        |        |          |          |    |       |            |  |

| Analytes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VP6-15    | VP11-5      | VP11-5 REP | VP11-15   | VP10-15     |                     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------|-----------|-------------|---------------------|-------|
| cis-1,3-Dichloropropene         ND         ND         ND         ND         ND         0.008         µg/I           trans-1,3-Dichloropropene         ND         ND         ND         ND         ND         0.008         µg/I           Eryblenzene         ND         ND         ND         ND         ND         0.008         µg/I           Freon 113         0.964         ND         ND         ND         ND         0.008         µg/I           Hexachlorobutadiene         ND         ND         ND         ND         ND         0.008         µg/I           Hexachlorobutadiene         ND         ND         ND         ND         ND         ND         0.008         µg/I           4-Isopropyltolucne         ND         ND         ND         ND         ND         ND         ND         0.008         µg/I           4-Isopropyltolucne         ND         ND         ND         ND         ND         ND         ND         0.008         µg/I           4-Isopropyltolucne         ND         ND         ND         ND         ND         ND         ND         0.008         µg/I           4-Isopropyltolucne         ND         ND         ND <th>JEL ID:</th> <th>D-0573-06</th> <th>D-0573-07</th> <th>D-0573-08</th> <th>D-0573-09</th> <th>D-0573-10</th> <th><b>Quantitation</b></th> <th>Units</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JEL ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D-0573-06 | D-0573-07   | D-0573-08  | D-0573-09 | D-0573-10   | <b>Quantitation</b> | Units |
| trans-1,3-Dichloropropene         ND         ND         ND         ND         ND         0.008         µg/L           Ethylbenzene         ND         ND         ND         ND         ND         0.008         µg/L           Freon 113         0.964         ND         ND         ND         0.008         ND         0.008         µg/L           Hexachlorobutadiene         ND         ND         ND         ND         ND         ND         0.008         µg/L           Lisopropylbenzene         ND         ND         ND         ND         ND         ND         0.008         µg/L           4-Isopropylbenzene         ND         ND         ND         ND         ND         ND         0.008         µg/L           4-Isopropylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           4-Isopropylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           7-Propylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,1,2-Tetrablorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analytes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |            |           |             | <u>Limit</u>        |       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND        | ND          | ND         | ND        | ND          | 0.008               | µg/L  |
| Ethythenzene ND ND ND ND ND ND 0.008 µg/I. Freon 113 0.964 ND ND ND 0.068 ND 0.008 µg/I. Freon 113 0.964 ND ND ND ND 0.068 ND 0.008 µg/I. Freon 113 0.964 ND ND ND ND 0.008 µg/I. Isopropylichizene ND ND ND ND ND 0.008 µg/I. Isopropylichizene ND ND ND ND ND ND 0.008 µg/I. Isopropylichizene ND ND ND ND ND ND 0.008 µg/I. Isopropylichizene ND ND ND ND ND ND 0.008 µg/I. Naphthalene ND ND ND ND ND ND 0.008 µg/I. Naphthalene ND ND ND ND ND ND 0.008 µg/I. Naphthalene ND ND ND ND ND ND 0.008 µg/I. Naphthalene ND ND ND ND ND ND 0.008 µg/I. I.1,1,2-Tetrachloroethane ND ND ND ND ND 0.008 µg/I. I.1,1,2-Tetrachloroethane ND ND ND ND ND 0.008 µg/I. I.1,1,2-Tetrachloroethane ND ND ND ND ND 0.008 µg/I. I.1,1,2-Tichaloroethane ND ND ND ND ND 0.008 µg/I. I.1,1,2-Tichaloroethane ND ND ND ND ND 0.008 µg/I. I.1,1,2-Tichaloroethane ND ND ND ND ND 0.008 µg/I. I.2,3-Tirichlorobenzene ND ND ND ND ND 0.008 µg/I. I.2,3-Tirichloroethane ND ND ND ND ND 0.008 µg/I. I.1,1-Tirichloroethane ND ND ND ND ND 0.008 µg/I. I.1,2-Tirichloroethane ND ND ND ND ND 0.008 µg/I. I.1,1-Tirichloroethane ND ND ND ND ND 0.008 µg/I. Irichloroethylene ND ND ND ND ND 0.008 µg/I. III-III ND ND ND ND 0.008 µg/I. III-III ND ND ND 0.008 µg/I. III-III ND ND ND ND 0.008 µg/I. III-III ND ND ND 0.008 µg/I. III-III ND ND ND 0.008 µg/I. III-III ND ND ND 0.008 µg/I. III-III ND ND 0.008 µg/I. III-III ND ND 0.008 µg/I. III-III ND ND 0.008 µg/I. III-III ND ND 0.008 µg/I. IIII ND 0.008 µg/I. IIIIII ND 0.008 µg/I. IIII ND 0.008 µg/I. IIII ND 0.008 µg/I. IIII ND | trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND        | ND          | ND         | ND        | ND          | 0.008               | μg/L  |
| Freen   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND        | ND          | ND         | ND        | ND          | 0.008               | μg/L  |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ND          |            |           | ND          | 0.008               | μg/L  |
| Isopropylenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | ND          | ND         |           | ND          | 0.008               | μg/L  |
| A-Isopropyltoluene   ND   ND   ND   ND   ND   0.008   µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |             |            |           |             | 0.008               | μg/L  |
| Methylene chloride         ND         ND         ND         ND         ND         ND         0.008         µg/L           Naphthalene         ND         ND         ND         ND         ND         ND         0.008         µg/L           n-propplenzene         ND         ND         ND         ND         ND         ND         0.008         µg/L           Styrene         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,1,2,2-Tetrachloroethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,1,2,2-Tetrachloroethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           Toluene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,3-Trichloroethane         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,1,1-Trichloroethane         ND         ND         ND         ND         ND         ND         ND         ND         ND         0.008         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             | 0.008               | μg/L  |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| NP   NP   NP   NP   NP   NP   NP   NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Styrene   ND   ND   ND   ND   ND   ND   0.008   µg/L     1,1,1,2-Tetrachloroethane   ND   ND   ND   ND   ND   ND   0.008   µg/L     1,1,2,2-Tetrachloroethane   ND   ND   ND   ND   ND   ND   0.008   µg/L     1,1,2,2-Tetrachloroethane   ND   ND   ND   ND   ND   0.008   µg/L     1,2,2-Tetrachloroethylene   ND   ND   ND   ND   ND   0.008   µg/L     1,2,3-Trichlorobenzene   ND   ND   ND   ND   ND   0.008   µg/L     1,2,4-Trichloroethane   ND   ND   ND   ND   ND   0.008   µg/L     1,1,1-Trichloroethane   ND   ND   ND   ND   ND   0.008   µg/L     1,1,2-Trichloroethane   ND   ND   ND   ND   ND   0.008   µg/L     1,1,2-Trichloroethane   ND   ND   ND   ND   ND   0.008   µg/L     1,1,2-Trichloroethane   ND   ND   ND   ND   ND   0.008   µg/L     1,2,3-Trichloroethane   ND   ND   ND   ND   ND   0.008   µg/L     1,2,3-Trichloropropane   ND   ND   ND   ND   ND   0.008   µg/L     1,2,3-Trimethylbenzene   ND   ND   ND   ND   0.008   µg/L     1,2,4-Trimethylbenzene   ND   ND   ND   ND   0.008   µg/L     1,3,5-Trimethylbenzene   ND   ND   ND   ND   0.008    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| 1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| 1,2,3-Trichlorobenzene         ND         ND         ND         ND         0.008         µg/L           1,2,4-Trichlorobenzene         ND         ND         ND         ND         ND         0.008         µg/L           1,1,1-Trichloroethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,1,2-Trichloroethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           Trichloroethylene         ND         ND         ND         ND         ND         ND         0.008         µg/L           Trichloroftuoromethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,3-Trichloropropane         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,4-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,3,5-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| 1,2,4-Trichlorobenzene         ND         ND         ND         ND         0.008         µg/L           1,1,1-Trichloroethane         ND         ND         ND         ND         ND         0.008         µg/L           1,1,2-Trichloroethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,1,2-Trichloroethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,3-Trichloropropane         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,3-Trichloropropane         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,4-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,3,5-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Xylenes         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L <t< td=""><td>2.5.4. (1.0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5.4. (1.0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |             |            |           |             |                     |       |
| 1,1,1-Trichloroethane         ND         ND         ND         ND         0.008         µg/L           1,1,2-Trichloroethane         ND         ND         ND         ND         ND         0.008         µg/L           Trichloroethylene         ND         ND         ND         ND         ND         ND         0.008         µg/L           Trichlorofluoromethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,3-Trichloropropane         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,4-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,3,5-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Vinyl chloride         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Kylenes         ND         ND         ND         ND         ND         ND         0.008         µg/L           Ethyl-tert-butyle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |           |             |            |           |             |                     |       |
| 1,1,2-Trichloroethane         ND         ND         ND         ND         ND         0.008         µg/L           Trichloroethylene         ND         ND         ND         ND         ND         ND         0.008         µg/L           Trichlorofluoromethane         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,3-Trichloropropane         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,2,4-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,3,5-Trimethylbenzene         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Vinyl chloride         ND         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Xylenes         ND         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Ethyl-tert-butylether         ND         ND         ND         ND         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Trichlorofluoromethane   ND   ND   ND   ND   ND   0.008   μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     | µg/L  |
| 1,2,3-Trichloropropane         ND         ND         ND         ND         ND         0.008         µg/L           1,2,4-Trimethylbenzene         ND         ND         ND         ND         ND         ND         0.008         µg/L           1,3,5-Trimethylbenzene         ND         ND         ND         ND         ND         ND         0.008         µg/L           Vinyl chloride         ND         ND         ND         ND         ND         ND         0.008         µg/L           Vinyl chloride         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Vinyl chloride         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Xylenes         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           MTBE         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Ethyl-tert-butylether         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| 1,2,4-Trimethylbenzene         ND         ND         ND         ND         0.008         µg/L           1,3,5-Trimethylbenzene         ND         ND         ND         ND         ND         0.008         µg/L           Vinyl chloride         ND         ND         ND         ND         ND         ND         0.008         µg/L           Xylenes         ND         ND         ND         ND         ND         ND         0.008         µg/L           MTBE         ND         ND         ND         ND         ND         ND         0.008         µg/L           Ethyl-tert-butylether         ND         ND         ND         ND         ND         ND         0.008         µg/L           Ethyl-tert-butylether         ND         ND         ND         ND         ND         ND         0.008         µg/L           tert-amylmethylether         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           TTC:         n-propanol         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Dilution Factor         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| 1,3,5-Trimethylbenzene         ND         ND         ND         ND         0.008         μg/L           Vinyl chloride         ND         ND         ND         ND         ND         0.008         μg/L           Xylenes         ND         ND         ND         ND         ND         ND         0.008         μg/L           MTBE         ND         ND         ND         ND         ND         ND         ND         0.008         μg/L           Ethyl-tert-butylether         ND         ND         ND         ND         ND         ND         0.008         μg/L           Di-isopropylether         ND         ND         ND         ND         ND         ND         ND         ND         0.008         μg/L           tert-amylmethylether         ND         ND         ND         ND         ND         ND         ND         0.008         μg/L           TTC:         n-propanol         ND         ND         ND         ND         ND         ND         0.008         μg/L           Dilution Factor         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 보고 있는 경기를 보고 있습니다. 그는 모든 보고 있는 사람들이 되는 것이 되었습니다. 그 보고 있는 사람들이 되었습니다. 그리고 있다면 보고 있는 것이다. 그리고 있다면 보고 있다면 보고 있습니다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Vinyl chloride         ND         ND         ND         ND         ND         0.008         µg/L           Xylenes         ND         ND         ND         ND         ND         0.008         µg/L           MTBE         ND         ND         ND         ND         ND         ND         0.008         µg/L           Ethyl-tert-butylether         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           Di-isopropylether         ND         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           tert-amylmethylether         ND         ND         ND         ND         ND         ND         ND         ND         0.008         µg/L           tert-Butylalcohol         ND         ND         ND         ND         ND         ND         ND         0.040         µg/L           TIC:         n-propanol         ND         ND         ND         ND         ND         ND         0.008         µg/L           Dilution Factor         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| MTBE         ND         ND         ND         ND         0.008         μg/L           Ethyl-tert-butylether         ND         ND         ND         ND         ND         0.008         μg/L           Di-isopropylether         ND         ND         ND         ND         ND         ND         ND         0.008         μg/L           tert-amylmethylether         ND         ND         ND         ND         ND         ND         ND         0.008         μg/L           tert-Butylalcohol         ND         ND         ND         ND         ND         ND         0.040         μg/L           TIC:         n-propanol         ND         ND         ND         ND         ND         ND         0.008         μg/L           n-pentane         ND         ND         ND         ND         ND         ND         0.008         μg/L           Dilution Factor         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Ethyl-tert-butylether   ND   ND   ND   ND   ND   0.008   μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| Di-isopropylether   ND   ND   ND   ND   ND   0.008   μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| tert-amylmethylether ND ND ND ND ND 0.008 μg/L tert-Butylalcohol ND ND ND ND ND ND 0.040 μg/L  TIC:  n-propanol ND ND ND ND ND ND ND 0.008 μg/L n-pentane ND ND ND ND ND ND ND 0.008 μg/L  Dilution Factor 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     | μg/L  |
| tert-Butylalcohol ND ND ND ND 0.040 μg/L  TIC:  n-propanol ND ND ND ND ND 0.008 μg/L  n-pentane ND ND ND ND ND ND 0.008 μg/L  Dilution Factor 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| TIC: n-propanol ND ND ND ND ND 0.008 μg/L n-pentane ND ND ND ND ND 0.008 μg/L  Dilution Factor 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     | μg/L  |
| n-propanol         ND         ND         ND         ND         ND         0.008         μg/L           n-pentane         ND         ND         ND         ND         ND         0.008         μg/L           Dilution Factor         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tert-Butylalcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND        | ND          | ND         | ND        | ND          | 0.040               | μg/L  |
| n-pentane ND ND ND ND 0.008 μg/L <u>Dilution Factor</u> 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             | 0.070               |       |
| Dilution Factor 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     | μg/L  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n-pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | ND          | ND         |           | ND          | 0.008               | μg/L  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Dilution Factor</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1         | 1           | 1          | 1         | 1           |                     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate Recoveries:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             |            |           |             |                     |       |
| Dibromofluoromethane 95% 98% 97% 91% 101% 75 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |            |           |             |                     |       |
| Toluene-d <sub>8</sub> 88% 96% 83% 93% 86% 75 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |            |           |             |                     |       |
| 4-Bromofluorobenzene 117% 105% 106% 117% 118% 75 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117%      | 105%        | 106%       | 117%      | 118%        | 75 - 125            |       |
| D2-060513-D-D2-060513-D-D2-060513-D-D2-060513-D-D2-060513-D-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | D2-060513-D |            |           | D2-060513-D |                     |       |
| 0573_1 0573_1 0573_1 0573_1 0573_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0573_1    | 0573_1      | 0573_1     | 0573_1    | 0573_1      |                     |       |

ND= Not Detected



Client: Alta Environmental, Inc Report date: 6/5/2013 Client Address: 3777 Long Beach Blvd. JEL Ref. No.: D-0573 ODWP-13-1198 Long Beach, CA 90807 Client Ref. No.: Steve Morrill 6/5/2013 Date Sampled: Attn: 6/5/2013 Date Received:

Project:TyroneDate Analyzed:6/5/2013Project Address:7600 Tryone Ave.Physical State:Soil Gas

Van Nuys, CA

METHOD SAMPLING

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | BLANK     | BLANK     |                              |           |
|-----------------------------|-----------|-----------|------------------------------|-----------|
| JEL ID:                     | D-0573-11 | D-0573-12 | Practical                    | 11-14-    |
| Analytes:                   |           |           | Quantitation<br><u>Limit</u> | Units     |
| Benzene                     | ND        | ND        | 0.008                        | µg/L      |
| Bromobenzene                | ND        | ND        | 0.008                        | μg/L      |
| Bromodichloromethane        | ND        | ND        | 0.008                        | μg/L      |
| Bromoform                   | ND        | ND        | 0.008                        | μg/L      |
| n-Butylbenzene              | ND        | ND        | 0.008                        | μg/L      |
| sec-Butylbenzene            | ND        | ND        | 0.008                        | μg/L      |
| tert-Butylbenzene           | ND        | ND        | 0.008                        | μg/L      |
| Carbon tetrachloride        | ND        | ND        | 0.008                        | µg/L      |
| Chlorobenzene               | ND        | ND        | 0.008                        | μg/L      |
| Chloroethane                | ND        | ND        | 0.008                        | µg/L      |
| Chloroform                  | ND        | ND        | 0.008                        | µg/L      |
| Chloromethane               | ND        | ND        | 0.008                        | μg/L      |
| 2-Chlorotoluene             | ND        | ND        | 0.008                        | μg/L      |
| 4-Chlorotoluene             | ND        | ND        | 0.008                        | μg/L      |
| Dibromochloromethane        | ND        | ND        | 0.008                        | μg/L      |
| 1,2-Dibromo-3-chloropropane | ND        | ND        | 0.008                        | µg/L      |
| 1,2-Dibromoethane (EDB)     | ND        | ND        | 0.008                        | μg/L      |
| Dibromomethane              | ND        | ND        | 0.008                        | µg/L      |
| 1,2- Dichlorobenzene        | ND        | ND        | 0.008                        | $\mu g/L$ |
| 1,3-Dichlorobenzene         | ND        | ND        | 0.008                        | μg/L      |
| 1,4-Dichlorobenzene         | ND        | ND        | 0.008                        | μg/L      |
| Dichlorodifluoromethane     | ND        | ND        | 0.008                        | μg/L      |
| 1,1-Dichloroethane          | ND        | ND        | 0.008                        | μg/L      |
| 1,2-Dichloroethane          | ND        | ND        | 0.008                        | μg/L      |
| 1,1-Dichloroethene          | ND        | ND        | 0.008                        | $\mu$ g/L |
| cis-1,2-Dichloroethene      | ND        | ND        | 0.008                        | µg/L      |
| trans-1,2-Dichloroethene    | ND        | ND        | 0.008                        | μg/L      |
| 1,2-Dichloropropane         | ND        | ND        | 0.008                        | μg/L      |
| 1,3-Dichloropropane         | ND        | ND        | 0.008                        | $\mu g/L$ |
| 2,2-Dichloropropane         | ND        | ND        | 0.008                        | μg/L      |
| 1,1-Dichloropropene         | ND        | ND        | 0.008                        | μg/L      |
|                             |           |           |                              |           |

Cample ID.

| EPA 8260B-Volatile ( | Organics by | GC/MS+ | Oxygenates |
|----------------------|-------------|--------|------------|
|----------------------|-------------|--------|------------|

| Sample ID:                | METHOD<br>BLANK | SAMPLING<br>BLANK |                              |
|---------------------------|-----------------|-------------------|------------------------------|
| JEL ID:                   | D-0573-11       | D-0573-12         | Practical Quantitation Units |
| Analytes:                 |                 |                   | <u>Limit</u>                 |
| cis-1,3-Dichloropropene   | ND              | ND                | 0.008 μg/L                   |
| trans-1,3-Dichloropropene | ND              | ND                | 0.008 μg/L                   |
| Ethylbenzene              | ND              | ND                | 0.008 μg/L                   |
| Freon 113                 | ND              | ND                | 0.008 µg/L                   |
| Hexachlorobutadiene       | ND              | ND                | 0.008 μg/L                   |
| Isopropylbenzene          | ND              | ND                | 0.008 μg/L                   |
| 4-Isopropyltoluene        | ND              | ND                | 0.008 μg/L                   |
| Methylene chloride        | ND              | ND                | 0.008 μg/L                   |
| Naphthalene               | ND              | ND                | 0.008 µg/L                   |
| n-Propylbenzene           | ND              | ND                | 0.008 µg/L                   |
| Styrene                   | ND              | ND                | 0.008 μg/L                   |
| 1,1,1,2-Tetrachloroethane | ND              | ND                | 0.008 μg/L                   |
| 1,1,2,2-Tetrachloroethane | ND              | ND                | 0.008 μg/L                   |
| Tetrachloroethylene       | ND              | ND                | 0.008 µg/L                   |
| Toluene                   | ND              | ND                | 0.008 µg/L                   |
| 1,2,3-Trichlorobenzene    | ND              | ND                | 0.008 μg/L                   |
| 1,2,4-Trichlorobenzene    | ND              | ND                | 0.008 µg/L                   |
| 1,1,1-Trichloroethane     | ND              | ND                | 0.008 µg/L                   |
| 1,1,2-Trichloroethane     | ND              | ND                | 0.008 µg/L                   |
| Trichloroethylene         | ND              | ND                | 0.008 µg/L                   |
| Trichlorofluoromethane    | ND              | ND                | 0.008 µg/L                   |
| 1,2,3-Trichloropropane    | ND              | ND                | 0.008 μg/L                   |
| 1,2,4-Trimethylbenzene    | ND              | ND                | 0.008 μg/L                   |
| 1,3,5-Trimethylbenzene    | ND              | ND                | 0.008 μg/L                   |
| Vinyl chloride            | ND              | ND                | 0.008 μg/L                   |
| Xylenes                   | ND              | ND                | 0.008 μg/L                   |
| MTBE                      | ND              | ND                | 0.008 µg/L                   |
| Ethyl-tert-butylether     | ND              | ND                | 0.008 μg/L                   |
| Di-isopropylether         | ND              | ND                | 0.008 μg/L                   |
| tert-amylmethylether      | ND              | ND                | 0.008 μg/L                   |
| tert-Butylalcohol         | ND              | ND                | 0.040 μg/L                   |
| TIC:                      |                 |                   |                              |
| n-propanol                | ND              | ND                | 0.008 μg/L                   |
| n-pentane                 | ND              | ND                | 0.008 μg/L                   |
| <b>Dilution Factor</b>    | 1               | 1                 |                              |
| Surrogate Recoveries:     | 930             | 722               | OC Limits                    |
| Dibromofluoromethane      | 80%             | 98%               | 75 - 125                     |
| Toluene-da                | 116%            | 110%              | 75 - 125                     |
| 4-Bromofluorobenzene      | 95%             | 91%               | 75 - 125                     |
|                           |                 | D2-060513-D       |                              |
|                           | 0573_1          | 0573_1            |                              |

ND= Not Detected



# JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Alta Environmental, Inc Report date: 6/5/2013
Client Address: 3777 Long Beach Blvd. JEL Ref. No.: D-0573

Long Beach, CA 90807 Client Ref. No.: ODWP-13-1198

Attn: Steve Morrill Date Sampled: 6/5/2013

Project: Tyrone Date Received: 6/5/2013
Project Address: 7600 Tryone Ave. Date Analyzed: 6/5/2013
Physical State: Soil Gas

Van Nuys, CA

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample Spiked:         | Ambien       | nt Air       | GC#: | D2-060513-D-  | 0573_1    |               |
|------------------------|--------------|--------------|------|---------------|-----------|---------------|
| JEL ID:                | D-0573-14    | D-0573-15    |      |               | D-0573-13 |               |
|                        | MS           | MSD          |      | Acceptability |           | Acceptability |
| Parameter              | Recovery (%) | Recovery (%) | RPD  | Range (%)     | LCS       | Range (%)     |
| 1,1-Dichloroethylene   | 108%         | 111%         | 2.6% | 70-130        | 96%       | 70-130        |
| Benzene                | 102%         | 105%         | 2.7% | 70-130        | 103%      | 70-130        |
| Trichloroethylene      | 98%          | 106%         | 7.5% | 70-130        | 105%      | 70-130        |
| Toluene                | 104%         | 111%         | 6.9% | 70-130        | 105%      | 70-130        |
| Chlorobenzene          | 102%         | 110%         | 7.9% | 70-130        | 111%      | 70-130        |
| Surrogate Recovery:    |              |              |      |               |           |               |
| Dibromofluoromethane   | 81%          | 81%          |      | 75-125        | 83%       | 75-125        |
| Toluene-d <sub>8</sub> | 104%         | 112%         |      | 75-125        | 103%      | 75-125        |
| 4-Bromofluorobenzene   | 89%          | 89%          |      | 75-125        | 93%       | 75-125        |

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference; Acceptability range for RPD is  $\leq 15\%$ 



P.O. Box 5387
Fullerton, CA 92838
(714) 449-9937
Fax (714) 449-9685
Www.jonesenvironmentallab.com

# Chain-of-Custody Record

| JEL Project #           | 1/1/0543               | Page of of             | Lab Use Only Sample Condition         | lo .                   | Remarks/Special Instructions                | 1         | 9         | 6         |           |          |           |           |           |            | ->        | Total Number of Containers   | The delivery of samples and the signature on | this Chain of Custody form constitutes authorization to perform the analyses specified | above under the Ierms and Conditions set<br>forth on the back hereof. |
|-------------------------|------------------------|------------------------|---------------------------------------|------------------------|---------------------------------------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|------------|-----------|------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Analysis Requested      | //                     | /                      | /                                     | WINDEN O               | Magnehell<br>Number of                      | 45 2      | 45 2      |           | 1 15      | 45 2     | 5         |           | 5         | 45 2       | 45 2      | 13                           | 1                                            |                                                                                        | ⊋<br>                                                                 |
|                         | (5) SEE                | A                      | 1                                     |                        | /                                           |           |           |           | 1         | 1        | '         | 1         | V         | N          | 4         | Date Ochos                   | Time                                         | Date                                                                                   | Time                                                                  |
| 77.0                    | cc/min                 | A See                  | Shoenby                               | ODS<br>TES BOM<br>SUBL | Jan jos jos jos jos jos jos jos jos jos jos | ×         | ×         | (G ×      | ×         | 大地       | X         | -         | × ×       | × ys       | X ys      |                              | nentro                                       |                                                                                        |                                                                       |
| SOIL GAS                | ate: 2000<br>Test Q/ N | Tracer.                | 1,1-DFA                               |                        | Laboratory<br>Sample<br>Number              | 0-0573-01 | D-05+3-02 | D-0573-03 | D-05+3-04 | DUST3-05 | 0-0573-06 | D-0573-07 | D-0573-08 | PO-6573-09 | 0-05+3-10 | July Mary                    | Les Envionment                               | atory (signature)                                                                      |                                                                       |
| 5                       | T3-119D                | 1 Around Requested:    | ☐ Rush 24-48 Hours ☐ Rush 72-96 Hours | _<br>Lab               | Sample<br>Analysis<br>Time                  | tht9      | 5 080     | £180      | 0832      | ナナルの     | 0403      | 0943      | 8560      | 1012       | 1026      | Received by (signature)      | Company                                      | Received by Laboratory (signature)                                                     | Company                                                               |
| Date OC. DS.            | Client Project         | Turn Around Requested: | Rush 2                                | Normal Mobile Lab      | Sample<br>Collection<br>Time                | 6739      | 1240      | 9030      | 0.5%0     | 6835     | 0880      | 2610      | 0928      | 1007       | 910       | 5/13 0                       | 8                                            | 0                                                                                      | Ö                                                                     |
|                         |                        |                        |                                       |                        | Date                                        | 5/9       |           |           |           |          |           |           |           |            | >         | Date                         | Time /                                       | Date                                                                                   | Time                                                                  |
| 2                       |                        | 6                      |                                       | -1                     | Purge<br>Volume                             | 326       | 643       | 583       | Eha       | 580      | 643       | 585       | 284       | 643        | 643       |                              | THI                                          |                                                                                        |                                                                       |
| 7                       |                        | 送る                     | CA                                    | Drake                  | Purge                                       |           | 3         | -         | -         | -        |           | -         | -         | -          | -         | 3                            | URE                                          |                                                                                        |                                                                       |
| alter Environmental Inc | 76 P                   | TOPET THE AND THE AND  | Nums                                  |                        | Sample ID                                   | VP13-5    | VP13-15   | VP13-5    | VP13-15   | NP6-5    | VP 6-15   | 7-11-J    | VPII-5PEP | 1011-112   | VP1075    | Supering State of Algebrania |                                              | <ol> <li>Relinquished by (signature)</li> </ol>                                        | Sompany                                                               |

Alta Environmental Client: Client Address:

3777 Long Beach Blvd.

Long Beach, CA 90807

Attn: Steve Morrill

Project Name: Tyrone Property 1600 Tyrone Ave Project Address:

Van Nuys, CA

Report date:

6/14/2013

JEL Ref. No.: Client Ref. No.:

ST-6995 LDWP-13-1198

Date Sampled:

6/12/2013

Date Received: Date Analyzed: 6/12/2013 6/13/2013

Physical State:

Soil Gas

### ANALYSES REQUESTED

1. EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Sampling - Soil Gas samples were collected in one liter summa canisters.

The sampling rate was approximately 200 cc/min except when noted differently on the chain of custody record using a gas tight syringe. 1 purge volume was used.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for some length of time. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

Analytical - Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113), Instrument Continuing Calibration Verification, OC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, Matrix Spike (MS) and Matrix Spike Duplicates (MSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity.

All samples were analyzed within 30 minutes of sampling.

Approval:

Steve Jones, Ph.D. Laboratory Manager



Client: Alta Environmental Report date: 6/14/2013 Client Address: 3777 Long Beach Blvd. JEL Ref. No.: ST-6995

LDWP-13-1198 Long Beach, CA 90807 Client Ref. No.:

Steve Morrill 6/12/2013 Attn: Date Sampled:

Date Received: 6/12/2013 Project: **Tyrone Property** Date Analyzed: 6/13/2013 Project Address: 1600 Tyrone Ave Physical State: Soil Gas

Van Nuys, CA

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | SV16-5'    | SV16-15'   | SV16-5'<br>REP |                         |           |
|-----------------------------|------------|------------|----------------|-------------------------|-----------|
| JEL ID:                     | ST-6995-01 | ST-6995-02 | ST-6995-03     | Practical  Quantitation | Units     |
| Analytes:                   |            |            |                | <u>Limit</u>            |           |
| Benzene                     | ND         | ND         | ND             | 0.020                   | μg/L      |
| Bromobenzene                | ND         | ND         | ND             | 0.020                   | μg/L      |
| Bromodichloromethane        | ND         | ND         | ND             | 0.020                   | $\mu g/L$ |
| Bromoform                   | ND         | ND         | ND             | 0.020                   | μg/L      |
| n-Butylbenzene              | ND         | ND         | ND             | 0.020                   | μg/L      |
| sec-Butylbenzene            | ND         | ND         | ND             | 0.020                   | μg/L      |
| tert-Butylbenzene           | ND         | ND         | ND             | 0.020                   | μg/L      |
| Carbon tetrachloride        | ND         | ND         | ND             | 0.020                   | μg/L      |
| Chlorobenzene               | ND         | ND         | ND             | 0.020                   | μg/L      |
| Chloroethane                | ND         | ND         | ND             | 0.020                   | µg/L      |
| Chloroform                  | ND         | ND         | ND             | 0.020                   | µg/L      |
| Chloromethane               | ND         | ND         | ND             | 0.020                   | µg/L      |
| 2-Chlorotoluene             | ND         | ND         | ND             | 0.020                   | μg/L      |
| 4-Chlorotoluene             | ND         | ND         | ND             | 0.020                   | μg/L      |
| Dibromochloromethane        | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,2-Dibromo-3-chloropropane | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,2-Dibromoethane (EDB)     | ND         | ND         | ND             | 0.020                   | µg/L      |
| Dibromomethane              | ND         | ND         | ND             | 0.020                   | µg/L      |
| 1,2- Dichlorobenzene        | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,3-Dichlorobenzene         | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,4-Dichlorobenzene         | ND         | ND         | ND             | 0.020                   | μg/L      |
| Dichlorodifluoromethane     | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,1-Dichloroethane          | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,2-Dichloroethane          | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,1-Dichloroethene          | ND         | ND         | ND             | 0.020                   | μg/L      |
| cis-1,2-Dichloroethene      | ND         | ND         | ND             | 0.020                   | μg/L      |
| trans-1,2-Dichloroethene    | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,2-Dichloropropane         | ND         | ND         | ND             | 0.020                   | µg/L      |
| 1,3-Dichloropropane         | ND         | ND         | ND             | 0.020                   | μg/L      |
| 2,2-Dichloropropane         | ND         | ND         | ND             | 0.020                   | μg/L      |
| 1,1-Dichloropropene         | ND         | ND         | ND             | 0.020                   | µg/L      |

| EPA 8260B-Volatile Organics by GC/MS + Oxygenates |
|---------------------------------------------------|
| CV16 El                                           |

| Sample ID:                                  | SV16-5'    | SV16-15'   | SV16-5'<br>REP |                                  |              |
|---------------------------------------------|------------|------------|----------------|----------------------------------|--------------|
| JEL ID:                                     | ST-6995-01 | ST-6995-02 | ST-6995-03     | <u>Practical</u><br>Quantitation | Units        |
| Analytes:                                   |            |            |                | Limit                            |              |
| cis-1,3-Dichloropropene                     | ND         | ND         | ND             | 0.020                            | μg/L         |
| trans-1,3-Dichloropropene                   | ND         | ND         | ND             | 0.020                            | μg/L         |
| Ethylbenzene                                | ND         | ND         | ND             | 0.020                            | μg/L         |
| Freon 113                                   | ND         | ND         | ND             | 0.020                            | μg/L         |
| Hexachlorobutadiene                         | ND         | ND         | ND             | 0.020                            | μg/L         |
| Isopropylbenzene                            | ND         | ND         | ND             | 0.020                            | μg/L         |
| 4-Isopropyltoluene                          | ND         | ND         | ND             | 0.020                            | μg/L         |
| Methylene chloride                          | ND         | ND         | ND             | 0.020                            | μg/L         |
| Naphthalene                                 | ND         | ND         | ND             | 0.020                            | μg/L         |
| n-Propylbenzene                             | ND         | ND         | ND             | 0.020                            | μg/L         |
| Styrene                                     | ND         | ND         | ND             | 0.020                            | μg/L         |
| 1,1,1,2-Tetrachloroethane                   | ND         | ND         | ND             | 0.020                            | μg/L         |
| 1,1,2,2-Tetrachloroethane                   | ND         | ND         | ND             | 0.020                            | μg/L         |
| Tetrachloroethylene                         | ND         | ND         | ND             | 0.020                            | μg/L         |
| Toluene                                     | ND         | ND         | ND             | 0.020                            | μg/L<br>μg/L |
| 1,2,3-Trichlorobenzene                      | ND         | ND         | ND             | 0.020                            |              |
| 1,2,4-Trichlorobenzene                      | ND         | ND         | ND             | 0.020                            | μg/L         |
| 1,1,1-Trichloroethane                       | ND         | ND         | ND             | 0.020                            | μg/L         |
| 1,1,2-Trichloroethane                       | ND         | ND         | ND             | 0.020                            | μg/L         |
|                                             | ND         |            |                | 0.020                            | μg/L         |
| Trichloroethylene<br>Trichlorofluoromethane |            | ND         | ND             | 0.020                            | μg/L         |
|                                             | ND         | ND         | ND             |                                  | μg/L         |
| 1,2,3-Trichloropropane                      | ND         | ND         | ND             | 0.020                            | μg/L         |
| 1,2,4-Trimethylbenzene                      | ND         | ND         | ND             | 0.020                            | μg/L         |
| 1,3,5-Trimethylbenzene                      | ND         | ND         | ND             | 0.020                            | μg/L         |
| Vinyl chloride                              | ND         | ND         | ND             | 0.020                            | μg/L         |
| Xylenes                                     | ND         | ND         | ND             | 0.020                            | μg/L         |
| MTBE                                        | ND         | ND         | ND             | 0.020                            | μg/L         |
| Ethyl-tert-butylether                       | ND         | ND         | ND             | 0.020                            | μg/L         |
| Di-isopropylether                           | ND         | ND         | ND             | 0.020                            | µg/L         |
| tert-amylmethylether                        | ND         | ND         | ND             | 0.020                            | μg/L         |
| tert-Butylalcohol                           | ND         | ND         | ND             | 0.100                            | μg/L         |
| TIC:                                        | . Sec. 20  | 16.50      |                | 0000                             |              |
| n-propanol                                  | ND         | ND         | ND             | 0.020                            | $\mu g/L$    |
| n-pentane                                   | ND         | ND         | ND             | 0.020                            | μg/L         |
| <b>Dilution Factor</b>                      | 1          | 1          | 1              |                                  |              |
| Surrogate Recoveries:                       |            |            |                | OC Limit                         |              |
| Dibromofluoromethane                        | 95%        | 95%        | 99%            | 75 - 125                         |              |
| Toluene-d <sub>8</sub>                      | 96%        | 91%        | 96%            | 75 - 125                         |              |
| 4-Bromofluorobenzene                        | 94%        | 86%        | 95%            | 75 - 125                         |              |
|                                             | B1-061313- | B1-061313- | B1-061313-     |                                  |              |
|                                             | ST-6995    | ST-6995    | ST-6995        |                                  |              |

ND= Not Detected



Client: Alta Environmental Report date: 6/14/2013 Client Address: 3777 Long Beach Blvd. JEL Ref. No.: ST-6995

LDWP-13-1198 Long Beach, CA 90807 Client Ref. No.:

Steve Morrill 6/12/2013 Attn: Date Sampled: 6/12/2013

Date Received: Project: **Tyrone Property** Date Analyzed: 6/13/2013 Project Address: 1600 Tyrone Ave Physical State: Soil Gas

Van Nuys, CA

METHOD SAMPLING

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                  | BLANK      | BLANK      |                              |  |
|-----------------------------|------------|------------|------------------------------|--|
| JEL ID:                     | ST-6995-04 | ST-6995-05 | Practical Quantitation Units |  |
| Analytes:                   |            |            | Limit                        |  |
| Benzene                     | ND         | ND         | 0.020 μg/L                   |  |
| Bromobenzene                | ND         | ND         | 0.020 μg/L                   |  |
| Bromodichloromethane        | ND         | ND         | 0.020 μg/L                   |  |
| Bromoform                   | ND         | ND         | 0.020 μg/L                   |  |
| n-Butylbenzene              | ND         | ND         | 0.020 μg/L                   |  |
| sec-Butylbenzene            | ND         | ND         | 0.020 μg/L                   |  |
| tert-Butylbenzene           | ND         | ND         | 0.020 μg/L                   |  |
| Carbon tetrachloride        | ND         | ND         | 0.020 μg/L                   |  |
| Chlorobenzene               | ND         | ND         | 0.020 μg/L                   |  |
| Chloroethane                | ND         | ND         | 0.020 μg/L                   |  |
| Chloroform                  | ND         | ND         | 0.020 μg/L                   |  |
| Chloromethane               | ND         | ND         | 0.020 µg/L                   |  |
| 2-Chlorotoluene             | ND         | ND         | 0.020 μg/L                   |  |
| 4-Chlorotoluene             | ND         | ND         | 0.020 μg/L                   |  |
| Dibromochloromethane        | ND         | ND         | 0.020 µg/L                   |  |
| 1,2-Dibromo-3-chloropropane | ND         | ND         | 0.020 µg/L                   |  |
| 1,2-Dibromoethane (EDB)     | ND         | ND         | 0.020 µg/L                   |  |
| Dibromomethane              | ND         | ND         | 0.020 μg/L                   |  |
| 1,2- Dichlorobenzene        | ND         | ND         | 0.020 μg/L                   |  |
| 1,3-Dichlorobenzene         | ND         | ND         | 0.020 μg/L                   |  |
| 1,4-Dichlorobenzene         | ND         | ND         | 0.020 μg/L                   |  |
| Dichlorodifluoromethane     | ND         | ND         | 0.020 μg/L                   |  |
| 1,1-Dichloroethane          | ND         | ND         | 0.020 μg/L                   |  |
| 1,2-Dichloroethane          | ND         | ND         | 0.020 μg/L                   |  |
| 1,1-Dichloroethene          | ND         | ND         | 0.020 μg/L                   |  |
| cis-1,2-Dichloroethene      | ND         | ND         | 0.020 μg/L                   |  |
| trans-1,2-Dichloroethene    | ND         | ND         | 0.020 μg/L                   |  |
| 1,2-Dichloropropane         | ND         | ND         | 0.020 μg/L                   |  |
| 1,3-Dichloropropane         | ND         | ND         | 0.020 μg/L                   |  |
| 2,2-Dichloropropane         | ND         | ND         | 0.020 μg/L                   |  |
| 1,1-Dichloropropene         | ND         | ND         | 0.020 μg/L                   |  |

Sample ID:

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample ID:                | METHOD<br>BLANK | SAMPLING<br>BLANK |                                  |
|---------------------------|-----------------|-------------------|----------------------------------|
| JEL ID:                   | ST-6995-04      | ST-6995-05        | Practical                        |
| Y                         |                 |                   | <u>Quantitation</u> <u>Units</u> |
| Analytes:                 |                 |                   | <u>Limit</u>                     |
| cis-1,3-Dichloropropene   | ND              | ND                | 0.020 μg/L                       |
| trans-1,3-Dichloropropene | ND              | ND                | $0.020$ $\mu$ g/L                |
| Ethylbenzene              | ND              | ND                | 0.0 <b>2</b> 0 μg/L              |
| Freon 113                 | ND              | ND                | 0.020 µg/L                       |
| Hexachlorobutadiene       | ND              | ND                | 0.020 μg/L                       |
| Isopropylbenzene          | ND              | ND                | 0.020 µg/L                       |
| 4-Isopropyltoluene        | ND              | ND                | 0.020 µg/L                       |
| Methylene chloride        | ND              | ND                | 0.020 µg/L                       |
| Naphthalene               | ND              | ND                | 0.020 µg/L                       |
| n-Propylbenzene           | ND              | ND                | 0,020 μg/L                       |
| Styrene                   | ND              | ND                | 0.020 μg/L                       |
| 1,1,1,2-Tetrachloroethane | ND              | ND                | 0.020 µg/L                       |
| 1,1,2,2-Tetrachloroethane | ND              | ND                | 0.020 μg/L                       |
| Tetrachloroethylene       | ND              | ND                | 0.020 μg/L                       |
| Toluene                   | ND              | ND                | 0.020 µg/L                       |
| 1,2,3-Trichlorobenzene    | ND              | ND                | 0.020 μg/L                       |
| 1,2,4-Trichlorobenzene    | ND              | ND                | 0.020 μg/L                       |
| 1,1,1-Trichloroethane     | ND              | ND                | 0.020 μg/L                       |
| 1,1,2-Trichloroethane     | ND              | ND                | 0.020 µg/L                       |
| Trichloroethylene         | ND              | ND                | 0.020 μg/L                       |
| Trichlorofluoromethane    | ND              | ND                | 0.020 μg/L                       |
| 1,2,3-Trichloropropane    | ND              | ND                | 0.020 μg/L                       |
| 1,2,4-Trimethylbenzene    | ND              | ND                | 0.020 μg/L                       |
| 1,3,5-Trimethylbenzene    | ND              | ND                | 0.020 μg/L                       |
| Vinyl chloride            | ND              | ND                | 0.020 μg/L                       |
| Xylenes                   | ND              | ND                | 0.020 µg/L                       |
| MTBE                      | ND              | ND                | 0.020 µg/L                       |
| Ethyl-tert-butylether     | ND              | ND                | 0.020 μg/L                       |
| Di-isopropylether         | ND              | ND                | 0.020 µg/L                       |
| tert-amylmethylether      | ND              | ND                | 0.020 µg/L                       |
| tert-Butylalcohol         | ND              | ND                | 0.100 μg/L                       |
| TIC:                      |                 |                   |                                  |
| n-propanol                | ND              | ND                | 0.020 μg/L                       |
| n-pentane                 | ND              | ND                | 0.020 μg/L                       |
| <u>Dilution Factor</u>    | 1               | 1                 |                                  |
| Surrogate Recoveries:     |                 |                   | OC Limits                        |
| Dibromofluoromethane      | 98%             | 98%               | 75 - 125                         |
| Toluene-d <sub>8</sub>    | 101%            | 96%               | 75 - 125                         |
| 4-Bromofluorobenzene      | 100%            | 99%               | 75 - 125                         |
|                           | B1-061313-      | B1-061313-        |                                  |
|                           | ST-6995         | ST-6995           |                                  |

ND= Not Detected



# JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:Alta EnvironmentalReport date:6/14/2013Client Address:3777 Long Beach Blvd.JEL Ref. No.:ST-6995

Long Beach, CA 90807 Client Ref. No.: LDWP-13-1198

Attn: Steve Morrill Date Sampled: 6/12/2013

Project: Tyrone Property Date Analyzed: 6/13/2013
Project Address: 1600 Tyrone Ave Physical State: Soil Gas

Van Nuys, CA

### EPA 8260B-Volatile Organics by GC/MS + Oxygenates

| Sample Spiked:       | Ambien       | t Air        | GC#: | B1-061313-ST  | -6995      |               |
|----------------------|--------------|--------------|------|---------------|------------|---------------|
| JEL ID:              | ST-6995-07   | ST-6995-08   |      |               | ST-6995-06 |               |
|                      | MS           | MSD          |      | Acceptability |            | Acceptability |
| Parameter            | Recovery (%) | Recovery (%) | RPD  | Range (%)     | LCS        | Range (%)     |
| 1,1-Dichloroethylene | 71%          | 67%          | 6.3% | 70-130        | 76%        | 70-130        |
| Benzene              | 100%         | 107%         | 6.1% | 70-130        | 106%       | 70-130        |
| Trichloroethylene    | 96%          | 98%          | 1.9% | 70-130        | 100%       | 70-130        |
| Toluene              | 98%          | 100%         | 2.7% | 70-130        | 106%       | 70-130        |
| Chlorobenzene        | 97%          | 101%         | 4.4% | 70-130        | 104%       | 70-130        |
| Surrogate Recovery:  |              |              |      |               |            |               |
| Dibromofluoromethane | 98%          | 96%          |      | 75-125        | 84%        | 75-125        |
| Toluene-dg           | 97%          | 96%          |      | 75-125        | 101%       | 75-125        |
| 4-Bromofluorobenzene | 98%          | 98%          |      | 75-125        | 82%        | 75-125        |

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference; Acceptability range for RPD is ≤ 15%



P.O. Box 5387
Fullerton, CA 92838
(714) 449-9937
Fax (714) 449-9685
Www joneservironmentaliab.com

# **Chain-of-Custody Record**

| Purple   Date    | Project Name Project Address  The Contract Ave  The Contract Ave  The Contract Ave  Val. Notes Ave | 7      |   |         | Citient Project #  Charles Project #  Charles Project #  Turn Around Requested:  Charles Attention  Rush 24-48 Hours  Rush 72-96 Hours | Interview of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Project of the Proj | SOIL GAS Purge Number: A 1P    | GAS  - cc/min | 1          | 7 12 13                                                                        | EL Project #  STC99  age of of sample Condition as Received: |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|---|---------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|
| Purge   Purge   Purge   Sample   Laboratory   Sample      | Apistos Contact                                                                                    |        |   |         | Mobile L                                                                                                                               | -ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | St. States    | //         | Chilled                                                                        | ☐ yes                                                        |
| 7 1478 HE CONTRACT SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SERVING SER | Gemple 1D                                                                                          | Purge  |   | 100     | Sample<br>Collection<br>Time                                                                                                           | Sample<br>Analysis<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory<br>Sample<br>Number | 978           | - Constant |                                                                                | nctions                                                      |
| 5 REP 1478 SS -5 1  Western the state of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the | SNIB-5,                                                                                            |        | 1 | 6/2/13  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | ×             | to         | MINIA (                                                                        |                                                              |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                  |        | 1 | 11      | 1410                                                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (6)                            | X.85          | 19         |                                                                                |                                                              |
| Date   Pare   Persuad   Signature   Pare   P | SVIB-5"REP                                                                                         |        | 1 | >       | 1428                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | X98           | 4          | / SUMMA                                                                        | 4                                                            |
| Date Date Company Association (signature)  Date Date Company  Time Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |        |   |         |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |            |                                                                                |                                                              |
| Date Date Title Company (Signature)  Date Date Gormany  Time Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |        |   |         |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |            |                                                                                |                                                              |
| Date Date Company (signature)  Tighe PECENED by Laboratory (signature)  Time Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |        |   |         |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |            |                                                                                |                                                              |
| Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Documents   Date   Da   |                                                                                                    |        |   |         |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |            |                                                                                |                                                              |
| Date Company (signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 E                                                                                              |        |   | Date    | 1/2/13                                                                                                                                 | Recowad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manuel Am                      |               | Date /     |                                                                                | ners                                                         |
| Late & Received by Laboratory (signature) (pate Time Company)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alto Tavitona                                                                                      | Enta ( |   | Tighe 7 | 12 8                                                                                                                                   | / Jusdun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JEC.                           |               | Vie /      | The delivery of samples and the sign:<br>this Chain of Custody form constitute | ature on                                                     |
| Time Company Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B ReInquished by (signature)                                                                       |        |   | Date    | 0                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coratory (signature)           |               | Date       | authorization to perform the analyses above under the Terms and Condition      | specified<br>set                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Затіралу                                                                                           |        |   | TIME    | 8                                                                                                                                      | трату                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |               | Time       | forth on the back hereof.                                                      |                                                              |

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER B1 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0825 B1-1' 0.0 0827 B1-2 0.0 MLS 0830 B1-3" 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B2 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0930 B2-1' 0.0 0932 B2-2 0.0 MLS 0934 B2-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B3 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0920 B3-1 0.0 0922 B3-2 0.0 MLS 0924 B3-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B4 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0910 B4-1' 0.0 0912 B4-2 0.0 MLS 0914 R4-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B5 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1030 B5-1 0.0 1032 B5-2 0.0 MLS 1034 R5-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B6 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1000 B6-1 0.0 1002 0.0 MLS 1004 B8-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B7 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1040 B7-1' 0.0 1042 B7-2 0.0 MLS 1044 B7-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B8 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1010 B8-1' 0.0 1012 0.0 MLS 1014 B8-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B9 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1100 B9-1 0.0 1102 0.0 MLS 1104 B9.3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER B10 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1110 B10-1 0.0 B10-2" 1112 0.0 MLS 1114 B10-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER B11 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1210 B11-1' 0.0 1212 B11-2 0.0 MLS 1214 B11-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B12 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1300 B12-1 0.0 B12-2" 1302 0.0 MLS 1304 B12-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B13 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0745 B13-1 0.0 0747 B13-2 0.0 MLS 0749 B13-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B14 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0840 B14-1 0.0 0842 B14-2 0.0 MLS 0844 B14-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B15 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0800 B15-1 0.0 0802 B15-2 0.0 MLS 0804 B15-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B16 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0810 B16-1 0.0 B16-2" 0812 0.0 MLS 0814 B16-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER B17 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1306 B17-1' 0.0 1308 B17-2 0.0 MLS 1310 B17-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B18 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0950 B18-1 0.0 0952 B18-2 0.0 MLS 0954 B18-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B19 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0810 B19-1' 0.0 0812 B19-2 0.0 MLS 0814 B19-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B20 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1050 B20-1 0.0 1052 B20-2 0.0 MLS 1054 B20-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B21 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0800 B21-1' 0.0 0802 B21-2° 0.0 MLS 0804 B21-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B22 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0850 B22-1' 0.0 B22-2" 0852 0.0 MLS 0854 B22-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B23 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0830 B23-1' 0.0 0832 B23-2" 0.0 MLS 0834 B23-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B24 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0906 B24-1' 0.0 0908 B24-2" 0.0 MLS 0910 B24-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B25 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0900 B25-1' 0.0 0902 B25-2" 0.0 MLS 0904 B25-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B26 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0940 B26-1 0.0 0942 B26-2" 0.0 MLS 0944 B26-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B27 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0900 B27-1' 0.0 B27-2" 0902 0.0 MLS 0904 B27-3' 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B28 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/29/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 0930 B28-1' 0.0 0932 B28-2" 0.0 MLS 0934 B28-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER** B29 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1020 B29-1' 0.0 1022 B29-2 0.0 MLS 1024 B29\_3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

# **ALTA ENVIRONMENTAL Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER B30 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/28/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California SLOT SIZE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 3 WELL DEPTH (FT BGS) NA DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. SAMPLE GRAPHIC PID (ppm) U.S.C.S. DEPTH (BGS) LITHOLOGIC DESCRIPTION WELL DIAGRAM Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1130 B30-1 0.0 1132 B30-2 0.0 MLS 1134 B30-3 0.0 Boring Terminated at 3' bgs. WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 No Groundwater Encountered.

## ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP1 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA CHECKED BY S, Ridenour LOGGED BY K, Drake DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT ₫ GRAPHIC SAMPLE PID (ppm) DEPTH (BGS) USCS SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION 3" Asphalt Sandy Silt, very fine grained sand, light to medium 1/4" Nylaflow brown, dry, medium dense, no staining, no odor Tubing (typical) MLS Dry granular bentonite (typical) Sand pack (#3 Sand - typical) Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor No Soll ML Seal (hydrated bentonite (Gradual change to light brown with depth) chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

# ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP2 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA CHECKED BY S, Ridenour LOGGED BY K, Drake DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE PID (ppm) USCS DEPTH (BGS) WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, light to medium brown, dry, medium dense, no staining, no odor 1/4" Nylaflow Tubing (typical) MLS Dry granular bentonite (typical) Sand pack (#3 Sand - typical) Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor No Soll ML Seal (hydrated bentonite (Gradual change to light brown with depth) chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

## ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP3 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA CHECKED BY S, Ridenour LOGGED BY K, Drake DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT ₫ GRAPHIC SAMPLE PID (ppm) DEPTH (BGS) USCS SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION 3" Asphalt Sandy Silt, very fine grained sand, light to medium 1/4" Nylaflow brown, dry, medium dense, no staining, no odor Tubing (typical) MLS Dry granular bentonite (typical) Sand pack (#3 Sand - typical) Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor No Soll ML Seal (hydrated bentonite (Gradual change to light brown with depth) chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

## ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP4 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California **DRILLING METHOD** Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE PID (ppm) DEPTH (BGS) USCS WELL DIAGRAM LITHOLOGIC DESCRIPTION 3" Asphalt Sandy Silt, very fine grained sand, light to medium 1/4" Nylaflow brown, dry, medium dense, no staining, no odor Tubing (typical) MLS Dry granular bentonite (typical) Sand pack (#3 Sand - typical) No Soll Samples Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor ML Seal (hydrated bentonite chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

## ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP5 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California **DRILLING METHOD** Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE PID (ppm) DEPTH (BGS) USCS WELL DIAGRAM LITHOLOGIC DESCRIPTION 3" Asphalt Sandy Silt, very fine grained sand, light to medium 1/4" Nylaflow brown, dry, medium dense, no staining, no odor Tubing (typical) MLS Dry granular bentonite (typical) Sand pack (#3 Sand - typical) No Soll Samples Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor ML Seal (hydrated bentonite chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

#### ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER VP6** PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2.25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT ₫ SAMPLE GRAPHIC PID (ppm) DEPTH (BGS) USCS SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM 3" Asphalt Sandy Silt, very fine grained sand, trace coarse grains, 1/4" Nylaflow medium brown, dry, medium dense, no staining, no odor Tubing (typical) Dry granular bentonite (typical) MLS Sand pack (#3 Sand - typical) No Soll Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor Sandy Silt, very fine grained sand, trace coarse grains, medium brown, dry, medium dense, no staining, no odor MLS Seal (hydrated bentonite chips - typical) chips - typical) SIIt, trace very fine grained sand, trace coarse grains, medium dense, medium to light brown, dry, no staining, no ML Same as above, ~2" layer of medium angular gravel at 13' WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

# ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP7 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA CHECKED BY S, Ridenour LOGGED BY K, Drake DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE USCS PID (ppm) DEPTH (BGS) WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1/4" Nylaflow Tubing (typical) Dry granular bentonite (typical) Sand pack (#3 Sand - typical) MLS No Soll Same as above, trace small gravel and coarse grains Samples Seal (hydrated bentonite chips - typical) Silt, trace very fine grained sand, dense, medium to light brown, dry, no staining, no odor WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

### ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER VP8** PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA CHECKED BY S, Ridenour LOGGED BY K, Drake DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT ₫ GRAPHIC SAMPLE PID (ppm) DEPTH (BGS) USCS SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION 3" Asphalt Sandy Silt, very fine grained sand, trace medium grains, 1/4" Nylaflow medium brown, dry, no staining, no odor Tubing (typical) Dry granular bentonite (typical) Sand pack (#3 Sand - typical) MLS No Soll Same as above, trace small gravel and coarse grains Samples Seal (hydrated bentonite chips - typical) SIIt, trace very fine grained sand, dense, medium to light WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas brown, dry, no staining, no odor implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

# ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP9 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 CASING DIAMETER/TYPE NA LOCATION 7600 Tyrone Avenue, Van Nuys, California **DRILLING METHOD** Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S. Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE PID (ppm) USCS DEPTH (BGS) WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, light to medium brown, dry, medium dense, no staining, no odor 1/4" Nylaflow Tubing (typical) Dry granular bentonite (typical) MLS Sand pack (#3 Sand - typical) No Soll Samples SIIt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor ML Seal (hydrated bentonite chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

### ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP10 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour REMARKS BLOW COUNT ₫ GRAPHIC SAMPLE PID (ppm) USCS DEPTH (BGS) SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, light to medium brown, dry, loose, no staining, no odor 1/4" Nylaflow Tubing (typical) Dry granular bentonite (typical) MIS Sand pack (#3 Sand - typical) No Soll Samples Well Graded Sand medium brown, dry, loose, no staining, no odor SW Seal (hydrated bentonite chips - typical) Silt, trace very fine grained sand, loose, medium to light brown, dry, no staining, no odor ML WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

### ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER VP11** PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA DRILLING METHOD Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour REMARKS BLOW COUNT ₫ GRAPHIC SAMPLE PID (ppm) USCS DEPTH (BGS) SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, light to medium brown, dry, loose, no staining, no odor 1/4" Nylaflow Tubing (typical) Dry granular bentonite (typical) MIS Sand pack (#3 Sand - typical) No Soll Samples Well Graded Sand medium brown, dry, loose, no staining, no odor SW Seal (hydrated bentonite chips - typical) chips - typical) Silt, trace very fine grained sand, loose, medium to light brown, dry, no staining, no odor ML WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

#### ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER VP12** PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2.25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT ₫ GRAPHIC SAMPLE USCS PID (ppm) DEPTH (BGS) SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, trace coarse grains, medium brown, dry, medium dense, no staining, no odor 1/4" Nylaflow Tubing (typical) MLS Dry granular bentonite (typical) Sand pack (#3 Sand - typical) No Soll Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor ML Sandy Silt, very fine grained sand, trace coarse grains, medium brown, dry, medium dense, no staining, no odor MLS Seal (hydrated bentonite ML Silt, trace very fine grained sand, trace coarse grains, medium dense, medium to light brown, dry, no staining, no Same as above, layer of medium angular gravel at 14' WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

#### ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP13 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2.25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT ₫ GRAPHIC SAMPLE USCS PID (ppm) DEPTH (BGS) SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, trace coarse grains, medium brown, dry, medium dense, no staining, no odor 1/4" Nylaflow Tubing (typical) MLS Dry granular bentonite (typical) Sand pack (#3 Sand - typical) No Soll Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor ML Sandy Silt, very fine grained sand, trace coarse grains, medium brown, dry, medium dense, no staining, no odor MLS Seal (hydrated bentonite ML Silt, trace very fine grained sand, trace coarse grains, medium dense, medium to light brown, dry, no staining, no Same as above, layer of medium angular gravel at 14' WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

## ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 BORING/WELL NUMBER VP14 PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE PID (ppm) DEPTH (BGS) USCS WELL DIAGRAM LITHOLOGIC DESCRIPTION 4" Asphait Sandy Silt, very fine grained sand, light to medium 1/4" Nylaflow brown, dry, medium dense, no staining, no odor Tubing (typical) Dry granular bentonite (typical) MLS Sand pack (#3 Sand - typical) No Soll Samples Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor ML Seal (hydrated bentonite chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

## ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER VP15** PROJECT NAME LADWP Tyrone Site DATE DRILLED 5/30/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA **DRILLING METHOD** Geoprobe SCREEN INTERVAL NA SLOT SIZE NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. BORING DEPTH (FT BGS) 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA LOGGED BY K, Drake CHECKED BY S, Ridenour DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE PID (ppm) DEPTH (BGS) USCS WELL DIAGRAM LITHOLOGIC DESCRIPTION 4" Asphait Sandy Silt, very fine grained sand, light to medium 1/4" Nylaflow brown, dry, medium dense, no staining, no odor Tubing (typical) Dry granular bentonite (typical) MLS Sand pack (#3 Sand - typical) No Soll Samples Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor ML Seal (hydrated bentonite chips - typical) WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20

# ALTA ENVIRONMENTAL **Boring Log** PROJECT NUMBER LDWP-13-1198 **BORING/WELL NUMBER VP16** PROJECT NAME LADWP Tyrone Site DATE DRILLED 6/12/13 LOCATION 7600 Tyrone Avenue, Van Nuys, California CASING DIAMETER/TYPE NA DRILLING METHOD Geoprobe SLOT SIZE NA SCREEN INTERVAL NA SAMPLING METHOD Continuous Core GRAVEL PACK TYPE NA **BORING DIAMETER 2,25"** DRILLING CONTRACTOR Interphase Environmental, Inc. **BORING DEPTH (FT BGS)** 15 WELL DEPTH (FT BGS) 5' and 15' DEPTH TO WATER DURING DRILLING (FT BGS) NA CHECKED BY S, Ridenour LOGGED BY K, Drake DEPTH TO WATER AFTER INSTALLATION (FT BGS) NA REMARKS BLOW COUNT SAMPLE ID. GRAPHIC SAMPLE USCS PID (ppm) DEPTH (BGS) WELL DIAGRAM LITHOLOGIC DESCRIPTION Sandy Silt, very fine grained sand, trace medium grains, medium brown, dry, no staining, no odor 1/4" Nylaflow Tubing (typical) Dry granular bentonite (typical) Sand pack (#3 Sand - typical) MLS No Soll Samples Silt, trace very fine grained sand, medium dense, medium to light brown, dry, no staining, no odor Seal (hydrated bentonite chips - typical) ML WELL-MODIFIED LDWP-13-1198.GPJ WELL.GDT 6/20/13 1/4" Soil-gas implant (typical) Boring Terminated at 15' bgs. No Groundwater Encountered. Soil vapor probes installed at 5' and 15' bgs. -20