LA100

ACHIEVING 100% RENEWABLE ENERGY IN LOS ANGELES

Roadmap Towards 100% Carbon Free by 2035

September 19, 2024

Agenda

- 1 2024 SLTRP Schedule
- 2 Integrated Resource Planning Process
- 2024 SLTRP Objectives and Modeling Updates
- Next Steps
- 5 Q&A

In-person Meeting

Virtual Meeting

2024 SLTRP Schedule

Regulatory Requirements & Public Policy Goals

LA100 - City Goals

Achieve LA100 Goal in Reliable, Affordable, Sustainable, and Equitable Manner

- 100% Carbon-Free. Case 1 meets the LA City Council Motion for 100% carbon-free energy by 2035 and builds upon assumptions from the LA100 Study.
- 80% RPS. Case 1 achieves the 80% RPS by 2030, a balance between the regional and local resources.

Case Breakdown		
RPS % by 2030	80%	
Carbon-free % by 2035	100%	
DERs	High	
Electrification & Energy Efficiency	High	
Transmission	Upgrade to Existing and Buildout of New Lines	
Natural Gas Phase Out	2035	
Energy Storage	Balance Between Daily and Seasonal Energy Mismatch	


```
.title)}if(_.is0bject(p)
    MdTabsView. super
```

2024 SLTRP Objectives

100% Carbon Free by 2035

A

Continued Alignment with 2035 Goals

Update The Power System Roadmap and Investments Needed to Achieve 100% Carbon Free By 2035

Update Technical Assumptions

В

Low/Medium/High Load and Market Pricing Forecasts/Sensitivities, Regulatory Framework, Emergence and Readiness of Technologies, Enhance Distributed Energy Resources, Loans and Grants Opportunities, Peak Load Reduction Strategy, Etc.)

Assess Sensitivities

Include Risk Assessments (Sensitivities) and Opportunity Analysis (Scenarios) of Various Pathways (Hydrogen Fuel Supply and Technology Risks, Higher DER, No Combustion, Pricing Risks, Climate Risks, Etc.)

Technologies Evaluations

Evaluate Technology (Energy Storage, Pumped Hydro, Offshore Wind, Green Hydrogen, Etc.). Considerations for readiness, cost, feasibility, limitations, etc.

2024 SLTRP Modeling

Reliable, Affordable, Sustainable, and Equitable Pathway to 100% Carbon Free Energy

Electrification
Efficiency
Demand Response
>2,000 MW

Distributed Energy Resources +>3000 MW

Renewable Energy Solar: +>5,700 MW Wind: +>4,300 MW

Storage +>3,000 MW

Transmission & Distribution

Dispatchable Resource

+>2,600 MW

Local Policy - 100% Carbon Free by 2035 (Case 1 Update)

SB100 Reference

High In-Basin
DER

No In-Basin Combustion No Hydrogen Supply

	Implementation Risk	Description	Applied 100% by 2035 Case
	Technology Readiness	Evaluate Technology Readiness and Feasibility	Emerging Technology Readiness (TRL) and Implementation Feasibility
	Demand Side Resources	Demand Response Local Solar and Storage Energy Efficiency	Reaching only half of LADWP's DER targets due to low customer adoption
	Low Load	Transportation/Building Electrification	Reduces projected load due to slow adoption.
	Resource Constraint	Shortfall of resources due to challenges	Unable to reach projected build rates and hire required human resources. Supply chain constraints.
	Climate Change	Impacts of climate change on resources	High peak loads, lower generation output. Future temperature rise, escalated heat storms, prolonged and increases incidents of wildfire, prolonged drought.
	Price Volatility	Renewables, Energy Storage, Hydrogen, Carbon	Low/Expected/High
	Cost/Rates	Cost impact of each option/risk	Cost breakdown for each resource type, risk, and optimization.

2024 SLTRP MODELING PROGRESS

Balancing Future Demand with Future Resources

Model Buildout

- Assessment of existing, planned and potential renewables (solar, wind, geothermal)
- Technology performance characteristics and cost
- Transmission available corridors and capacities
- · Climate change impacts to reliability

Production Cost Modeling

- System Reliability (LOLE)
- Operational performance and cost
- Buildout rates
- Emissions Reduction

Assumptions

- Load Growth
- Energy Conservation Measures
- Pricing Projections
- Technology Considerations

Capacity Expansion

- Candidate resource (offshore and land wind, solar, batteries, flow energy storage, enhanced geothermal, etc.)
- RPS Goals
- Planning Reserves

NEXT STEPS – MEETING MAP

LA100

ACHIEVING 100% RENEWABLE ENERGY IN LOS ANGELES

Q&A